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We consider asymptotic heat kernel expansion for elliptic differential operators acting on
compact closed curved manifolds. The coefficients in this expansion are quantities of funda-
mental importance in quantum field theory, quantum gravity, spectral geometry and topo-
logy of manifolds. Obtaining explicit expressions for these quantities is very laborious task,
especially in the problems of modern physics studying complicated operators (high order and
nonminimal) in complicated geometric environment (in the presence of torsion and gauge
fields in addition to the Riemannian curvature tensor). In fact, the task cannot be accom-
plished without computer algebra tools. In this paper we describe a covariant algorithm for
computing the heat kernel coefficients. With the help of a C implementation of the algo-
rithm some new results were obtained. The most significant of them concern nonminimal
operators and manifolds with torsion.

1 Introduction

Determination of the internal structure of an object via the spectra of different radiations and
waves around the object is one of the archetypal problems in physics. Particular instances
of this problem arise practically in all fields of physics ranging from experimental physics of
elementary particles to problems in seismology and medical tomography. More restricted but
more precise mathematical version of this problem may be formulated as follows. A manifold
(bundle) equipped with such structures as metric, curvature, torsion, gauge fields etc. and an
elliptic (pseudo)differential operator acting on this manifold are given. What information about
the manifold can one obtain by studying the spectral properties of the operator? M. Kac phrases
the problem in an evocative title of his paper “Can one hear the shape of a drum?”. Historically
first studies were devoted mainly to the Laplace operator acting on a Riemannian manifold
and for a while there was even impression that geometrical properties of the manifold can be
completely restored by the spectrum. Only in 1964, J. Milnor [1] found the first counter-example,
namely, a pair of 16-dimensional tori with different (flat) Riemannian metrics but with identical
spectra of the Laplace operator acting on the tori. Later on many similar examples of multiply
connected isospectral manifolds have been constructed, and recently, in 1999, D. Schüth [2]
constructed continuous isospectral families of metrics on the product of spheres S4 × S3 × S3,
the first example of closed simply connected isospectral but non-isometric Riemannian manifolds.

Nevertheless, many important properties of manifold can be restored by the spectrum of
elliptic operator acting on it. In particular, such global geometric invariants as dimension,
volume, and total scalar curvature, are known to be spectrally determined. Moreover, various
manifolds such as round spheres of dimension ≤ 6 and 2-dimensional flat tori are uniquely
determined by the spectra of the Laplacian.

Whereas the classical spectral geometry deals mainly with Laplace operator acting on Rie-
mannian manifold, the needs of modern physics force to consider similar problems for operators
more general than Laplacian and acting on manifolds more general than Riemannian.

Approaches, based on studying asymptotical properties of spectrum, make the problem
available for computational methods. The main and most constructive approach consists in
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investigation of the heat kernel expansion. This approach can be described briefly as follows.
Starting with an elliptic operator A of the order 2r, acting on a bundle whose base is a compact
close n-dimensional manifold M , and introducing an additional “temporal” variable t one can
construct the heat operator A− ∂

∂t . Then one can compute the short-time asymptotic expansion
of the diagonal elements of the kernel of this heat operator:

〈x|e−tA|x〉 ∼
∑
m≥0

Em(x|A)t
m−n
2r , t → +0. (1)

The coefficients Em(x|A) in this expansion are spectral invariants of the operator A, and encode
information about the asymptotic properties of the spectrum. The Em’s are of fundamental
importance in spectral geometry and topology of manifolds, mathematical physics, quantum
field theory and quantum gravity. These coefficients are called the heat invariants or heat kernel
coefficients. They are also widely known under the (different combinations of) names Hadamard,
DeWitt, Seeley, Gilkey, according to papers of these authors [3–6]. Hereinafter we shall use the
term DeWitt–Seeley–Gilkey (DWSG) coefficients, since these authors pay special attention to
the important for us differential geometric (covariant) aspect of the problem.

Computation of the DWSG coefficients in the case of curved space-time includes complicated
manipulations with tensor expressions, integrations, leading in many cases to expressions in
terms of hypergeometric and gamma functions, and simplification of these expressions. To cope
with these difficulties we elaborated (and implemented in C ) an algorithm [7].

With the help of our program we succeed in obtaining some new results. Most substantial and
difficult among them is computation of complete expression [8] of E4 for so-called nonminimal
operator important in the quantum theory of gauge fields and quantum gravity. Note that
just this coefficient is most important for the physical 4-dimensional space-time in view of the
Atiyah–Bott formula [9,10] expressing the index of elliptic operator A on n-dimensional manifold
in terms of the coefficient En. Moreover, we obtained some new results for higher order operators
and for manifolds with torsion. In particular, the spectral invariant E2 for nonminimal operator
on manifold with torsion has been computed in [11].

The problems with torsion are especially difficult from the computational standpoint and
we focused special attention on them. The torsion is defined as antisymmetric part of affine
(or linear) connection T λ

µν = Γλ
νµ − Γλ

µν , where Γλ
µν are the coefficients of connection. The

Einstein’s General Relativity is based on a special connection called Levi-Civita connection, i.e.,
symmetric and compatible with metric affine connection. This torsionless connection can be
expressed completely in terms of metric. The General Relativity describes well the interaction
of the matter with the gravity as far as macroscopic bulk matter is considered. However, on the
microscopic level, it seems reasonable to take into account the influence of spin on the geometry
of space-time. To describe the interaction of spinning particles with the gravitation, a gravitation
theory should include the non-vanishing torsion. In 1922 Elie Cartan first pointed out that there
is no a priori reason to assume an affine connection to be symmetric in the context of General
Relativity. He proposed also a theory of gravitation with torsion which is known now as the
Einstein–Cartan theory. The torsion arises naturally in the different (based on Poincaré and
affine groups) gauge theories of gravity developed in the recent years. Moreover, all kinds of
modern superstring theories also predict the existence of torsion.

2 Operators on manifolds and applications of heat kernel

Let us consider a compact closed n-dimensional manifold M equipped with Riemann metric g
and linear (or affine) connection defined in the bundle of linear (affine) frames over M. We assume
that the connection (locally expressed in terms of the Christoffel symbols Γα

µν) is compatible
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with the metric g, but not necessarily symmetric. We shall denote the curvature and torsion of
this connection by the symbols Rα

βµν and Tα
µν , respectively.

In more general setup, we consider also a vector bundle over M with the gauge connection
in this bundle. The curvature of the gauge connection we denote by the symbol Wµν .

Using all these connections we can construct the covariant differentiation Dµ acting in the
smooth sections of the bundle E. Using the operators Dµ one can construct covariant diffe-
rential operators of different kinds. For example, the operator � = gµνDµDν is a covariant
generalization of the Laplace operator.

Typical examples of so-called minimal operators studied in physics and mathematics are
−� + X, and �2 + V µνDµDν + NµDµ + X. Here V µν , Nµ, X are matrix valued tensor
fields (sections of bundle of endomorphisms EndE of the bundle E). We write explicitly only
“Lorentz” (i.e., corresponding to the coordinates in the manifold M) indices. The “gauge”
indices are assumed implicitly. The term minimal means the operator symbol is Lorentzian
scalar and its leading term is power of the Laplace operator.

Operators of more complicated type with non-Laplacian leading terms are called nonminimal.
The simplest example of nonminimal operator is the Navier–Lamé operator of classical elasticity,
µ∆�V + (λ + µ)∇(∇�V ) (the Lamé constants, λ and µ, characterize the material). H. Weyl was
apparently the first who investigated the asymptotics of spectrum of operators of the like type.
We shall consider nonminimal operator of the form

−gµν� + aDµDν + Xµν , (2)

where Xµν is a tensor field, a is a scalar parameter.
In recent years nonminimal operators of a similar sort have been encountered by physicists

studying the quantization of gauge fields. For example, the quantization of Yang–Mills field in an
arbitrary covariant background gauge leads to the operator Aab

µν = −δµν�
ab − (

1
α − 1

)
Dac

µ Dcb
ν −

2facbGc
µν , where Dµ is a covariant derivative containing the external field potential Aµ, Gµν

is a corresponding field strength and fabc are the structure constants of a corresponding Lie
algebra. An analogous operator arises also in quantum gravity.

We present below some examples of applications of the DWSG coefficients in different fields
of mathematics and physics:

• Spectral geometry and topology. The index of elliptic operator A on a n-dimensional
manifold M can be expressed via the Atiyah–Bott formula:

ind (A) ≡ dim Ker A − dim Coker A = Tr
[
e−tA+A − e−tAA+]

.

For the trace of the operator exponent the following asymptotic formula holds Tr e−tA =∑
i

e−tλi ∼ ∑
m≥0

Bm(A)t
m−n
2r , t → 0+, where Bm(A) are invariants of the manifold expressed

in terms of the DWSG coefficients: Bm(A) =
∫
M dnx

√
g tr Em(x|A). Here, Tr means the

trace of the operator in the functional space, tr means the trace with respect to the
Lorentz indices, g is the determinant of metric. In particular cases the invariants Bm(A)
can be interpreted as: B0 is the volume of the manifold; if n = 2 and A = −�, then
E2 = (4π)−1R/6 and B2 ∼ ∫

d2x
√

gR is the Gauss–Bonnet invariant of two-dimensional
manifold; if m = n, then Bm is the index of A.

• Korteweg–de Vries hierarchy. The DWSG coefficients, computed for the Sturm–
Liouville (1-dimensional Schrödinger) operator A = − d2

dx2 − U , form the hierarchy of
the higher Korteweg–de Vries equations. The mth KdV equation takes the form ∂U

∂τ =
∂
∂xGm(U), where Gm = m!

2(m/2)!Em. This approach extends somewhat the standard con-
struction of the KdV hierarchy. For example, one can consider the matrix valued operator
and construct the matrix KdV equation: ∂U

∂τ = ∂
∂xG4(U) = ∂3

xU + 3(∂xU)U + 3U(∂xU).
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• Spectral ζ-function and functional determinants in quantum field theory (one-
loop divergences of the effective action, the Green functions and the axial and trace anoma-
lies etc.). Many problems in the theoretical physics are reduced to the computation of the
functional integrals of the form Z =

∫
DΦ e−S(Φ) (or Z =

∫
DΦ e−iS(Φ)). In accordance

with the Laplace method (or saddle-point method) the main contribution into the integral
gives the vicinity of the stationary point Φ of the action S(Φ): δS

δΦ

∣∣
Φ=Φ

= 0. The integ-
ral can be written approximately as Z =

∫
Dφe−S(Φ+φ) = e−S(Φ)

∫
Dφe−φS′′(Φ)φ+O(φ3) ∼

e−S(Φ)det−1/2S′′(Φ). In this formula S′′(Φ) ≡ A and detA =
∏

i λi, that is, we have to
compute the determinant of a matrix of infinite size. To cope with this difficulty we can
use the regularization with the help of spectral (also called generalized) ζ-function which is
an analog of the Riemann ζ-function with eigenvalues of the operator A in place of integer
numbers in the classical Riemann function ζ(s) =

∑
i

1
λs

i
≡ 1

Γ(s)

∫ ∞
0 dt ts−1Tr e−tA. As is

seen from the definition of the spectral ζ-function ln detA = −ζ ′(s)
∣∣
s=0

. On the other
hand, Tr e−tA can be expressed via the DWSG coefficients.

Besides there are many other applications like Huygens’ principle for hyperbolic operators, high
temperature expansion of the partition function in statistical physics etc.

3 Algorithm for computing the DWSG coefficients

Following the approach based on the covariant generalization of the pseudodifferential calcu-
lus [12], let us consider a positive elliptic operator which spectrum lies inside a contour C. The
Dunford formula e−tA =

∫
C

idλ
2π e−tλ(A − λ)−1, allows to express the heat operator exp(−tA)

in terms of the resolvent (A − λ)−1 of the operator A. In the pseudodifferential calculus the
following asymptotic representation for the matrix elements of the resolvent is used

G(x, x′, λ) ≡ 〈x| 1
A − λ

|x′〉 =
∫

dnk

(2π)n
√

g(x′)
eil(x,x′,k)σ(x, x′, k; λ), (3)

where σ(x, x′, k; λ) is an amplitude, l(x, x′, k) is a (real) phase function which is a biscalar with
respect to general coordinate transformations, k is a wave vector.

The resolvent of operator A satisfies the equation (A − λ)G = 1l (unit operator) which leads
to an equation for the amplitude:

(A(x, Da + iDal) − λ)σ(x, x′, k; λ) = I(x, x′), (4)

where I(x, x′) is a transport function having both bundle and Lorentz indices.
The covariant generalization of the pseudodifferential calculus is reduced to the proper defini-

tions of the phase and transport functions occurring in formulas (3) and (4). Suitable definitions,
suggested by H. Widom, can be described as follows. In the flat space the phase function is a
linear function of the coordinates x, l(x, x′, k) = ka(x−x′)a, and the transport function is (in the
functional space) the unit matrix I(x, x′) = 1l, i.e., constant. One can provide these properties
by postulating vanishing of all derivatives for the transport function I and derivatives of the
order > 1 for the phase function l. The covariant analog of these properties of the phase and
transport functions is that the correspondent symmetrized covariant derivatives should be equal
to zero at the point x = x′, i.e.:

[{Da1 . . . Dam}l] = 0, m > 1; [{Da1 . . . Dam}I] = 0, m ≥ 1, (5)

where {. . .} means symmetrizing in all Lorentz indices, and [. . .] means transition to coincidence
limit (x = x′).
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Equations (5) together with the “initial conditions” [l] = 0, [Dal] = ka and [I] = 1l allow one
to compute the coincidence limits (these are just only values we need for the diagonal elements
of the heat kernel) for nonsymmetrized covariant derivatives [Da1 . . . Dam l] and [Da1 . . . DamI].
The coincidence limits of nonsymmetrized derivatives are obtained directly from (5) by reducing
all terms to a unified index ordering with the help of the Ricci identity for the commutator of
covariant derivatives. The resulting expressions are polynomials in the curvature tensors Ra

bcd

and Wab, torsion T a
bc, and covariant derivatives of all these tensors. The functions l(x, x′, k) and

I(x, x′), introduced with the help of relations (5), play an important role in so-called intrinsic
symbolic calculus developed by Widom. In fact, just these universal functions manifest the
geometric properties of a base manifold and a bundle.

Expanding the amplitude σ in the degrees of homogeneity of k: σ =
∞∑

m=1
σm(x, x′, k; λ), we

obtain the recursion equations for σm from equation (4). Solving the recursion equations we
obtain σm. The heat invariants are expressed in terms of integrals of the coincidence limits [σm]
by the formula

Em(x|A) =
∫

dnk

(2π)n√g

∫
C

idλ

2π
e−λ[σm](x, k, λ) ≡ J([σm]). (6)

The integrals in (6) can be expressed in terms of gamma and Gauss hypergeometric functions
for a wide class of operators A. The typical integral of terms in (6) takes the form

J

(
k2pka1 . . . ka2s

(k2r − λ)l[(1 − a)k2r − λ]m

)

= g{a1...a2s}
Γ ((p + s + n/2) /r)

(4π)n/22srΓ(n/2 + s)Γ(l + m)
F (m, (p + s + n/2)/r; l + m; a) , (7)

where g{µ1...µ2s} is a symmetrized sum of products of metric tensors.
Since m and l are integer numbers, the hypergeometric function in (7) can be expressed in

terms of elementary functions with the help of one of the Gauss relations which is a second
order recurrence with respect to the parameter a:

a(1 − z)F (a + 1, b; c; z) = (2a − c − az + bz)F (a, b; c; z) + (c − a)F (a − 1, b; c; z). (8)

To finish transition to the elementary functions we should solve this recurrence with the fol-
lowing initial conditions: F (0, b; m; z) = 1, F (1, b; m; z) = (m − 1)! (−z)1−m

(1−b)m−1

[
(1 − z)m−b−1

−
m−2∑
k=0

(b−m+1)k

k! zk
]
, m = 1, 2, . . ., m − b 
= 1, 2, . . ..

Here, (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol (shifted factorial).
Besides, some additional work on structuring large output expressions is needed to make

them as short and readable as possible. For this purpose we should first of all to find a suitable
basis of independent elements in accordance with some criteria. The problem of constructing
such bases is very difficult and up to now have no satisfactory algorithmic solution. As one can
see, any coefficient Em in expansion (1) is a linear combination of tensor monomials of a given
mass dimensionality. These monomials are constructed from tensors by multiplication and index
contraction. Factors in the monomials could be, in general case, non-commutative and posses
symmetries leading to non-obvious linear dependencies among the monomials. Simplifying the
tensor expressions one should take into account the symmetry properties of the tensors Ra

bcd,
T a

bc, Wab, the Ricci identity:

[Da, Db]ϕb1...bl
a1...ak

=
l∑

i=1

Rbi
jabϕ

b1...bi−1jbi+1...bl
a1...ak −

k∑
i=1

Rj
aiabϕ

b1...bl
a1...ai−1jai+1...ak
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+ T j
abDjϕ

b1...bl
a1...ak

+ Wabϕ
b1...bl
a1...ak

, (9)

the Bianchi identities for both affine Ra
bcd and gauge Wab curvatures:

DaR
b
cde + DdR

b
cea + DeR

b
cad + T i

adR
b
cei + T i

deR
b
cai + T i

eaR
b
cdi = 0, (10)

DaWbc + DbWca + DcWab + WaiT
i
bc + WbiT

i
ca + WciT

i
ab = 0, (11)

the cyclic identity:

Ra
bcd + Ra

cdb + Ra
dbc + DbT

a
cd + DcT

a
db + DdT

a
bc + T a

biT
i
cd

+ T a
ciT

i
db + T a

diT
i
bc = 0, (12)

and also different consequences of these identities obtained by covariant differentiations and
index contractions. In addition, tensor expressions are invariant with respect to renaming of
dummy indices (i.e., with respect to the group Sn of all permutations of these indices, where
n is the number of pairs of dummy indices in a given tensor monomial). All these identities
and symmetries make the problem of choice of canonical basis rather nontrivial. Certainly,
the problem have no unique solution and different bases are useful for different purposes. The
problems with torsion are especially difficult, as the Bianchi and cyclic identities are non-linear
in the presence of torsion. It may happen, that, in general, the problem of canonizing tensor
expressions has no algorithmic solution at all, the usual situation for non-commutative and non-
associative structures. Taking all the above into account, we elaborated a heuristic approach
based on choosing a certain ordering of tensors and tensor indices and reducing tensor monomials
to minimal ones with respect to this ordering. Of course, such approach does not ensure the full
independence of the tensor invariants in the final expressions (especially in the case of high degree
tensor polynomials arising in the DWSG coefficients of high order). Nevertheless, the approach
works quite satisfactory and allows, in most cases, to decrease the expressions essentially.

In the case of non-minimal and high-order operators, the scalar coefficients at tensor invariants
depend on the dimension of the manifold n and parameters of operator (like a in (2)). As a rule,
there are many linear dependencies among these scalar coefficients. The dependences should be
eliminated by the linear algebra methods to make the resulting formulas as compact as possible.

The algorithm has been implemented in the C language. The C code of total length about
11000 lines contains about 250 functions for different manipulations with tensors and scalars.
These functions are gathered into two programs CoincidenceLimits and DWSGCoefficient.

The CoincidenceLimits program computes the coincidence limits of non-symmetrized
derivatives of the functions l(x, x′, k) and I(x, x′) and writes them to the disk. Once computed
and stored they are used in many calculations for different operators A.

4 New results

With the help of the programs CoincidenceLimits and DWSGCoefficient we have obtained
several new results. Some of them were not known entirely, others were known only partly or
at different simplifying assumptions. Among the new results we can mention the following:

• E4 with gauge and Riemann curvatures and torsion for operator −� + X.

• E2, E4 (gauge, Riemann curvatures; torsion) and E6 (without torsion) for operator
−�+BiD

i+X. For example, E2 = (4π)−
n
2

{−X − 1
4B2 + 1

6R + Di

(
1
2Bi + 1

6T i
)

+ 1
12T 2 −

1
24TijkT

ijk − 1
12TijkT

jik
}

, where Ti = T j
ji, T 2 = TiT

i, B2 = BiB
i.

• E2, E4 (gauge, Riemann curvatures; torsion) for operator �2 + V µνDµDν + NµDµ + X.
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As to the nonminimal operator −gµν�+aDµDν +Xµν , we succeeded in computing the coef-
ficient E2 in the presence of gauge and Riemannian curvatures and torsion and the coefficient E4

without torsion. In view of importance of the last result, let us consider it in more detail.
Recall from Atiyah–Bott formula that the coefficient E4 is connected intimately just with

the dimension of physical space-time n = 4 due to the fact that the Atiyah–Singer index of an
elliptic operator on a manifold of dimension n can be expressed in terms of En with the help
of integration. The full expression for E4 can not be present here (one can find it in [8]), since
it consists in 73 tensor terms with 43 different scalar coefficients (with 28 linear dependencies
among them). Here we reproduce only the trace (with respect to Lorentz indices) trLE4. The
expression for the trace still contains some novelties in comparison with the result of Branson,
Gilkey and Pierzchalski [13], since they computed trLE4 without gauge field and neglecting the
terms with total derivative (essential if the topology of manifold is non-trivial).

trLE4 = (4π)−
n
2

{
− C1�Xi

i − C2DiDjX
ij + C3

(
Xi

iXj
j + XijX

ij
)

+ C4XijX
ji + C5XijW

ij − C6WijX
ij + C7WijW

ij + C8RijklR
ijkl

− C9RijX
ij − C10RijR

ij + C11�R + C12R
2 − C13RXi

i
}

, (13)

where

C1 =
1

96a2
(

n
2 − 2

)
4

{
(1 − a)1−

n
2
(
96 − 96a − 48an + 8a2n + 6a2n2 + a2n3

)

− 96(1 − a)2 + 32a2n + 2a2n2 − 5a2n3 + a2n4
}
,

C2 =
1

48a2
(

n
2 − 2

)
4

{
(1 − a)1−

n
2

(−48n + 48a + 24an − 4a2n + a2n3
)

+ 48n − 48a − 72an + 24an2 + 48a2 + 4a2n − 24a2n2 + 5a2n3
}
,

C3 =
1

16a
(

n
2 − 1

)
3

{
(1 − a)−

n
2 (−4 + 2a + an) + 4 − 2a + an

}
,

C4 =
1

16a
(

n
2 − 1

)
3

{
(1 − a)−

n
2 (4 + 4n − 6a − 3an) − 4 − 4n + 6a − 3an − 2an2 + an3

}
,

C5 =
1

192a2
(

n
2 − 2

)
5

{
(1 − a)−1−n

2
(
192n + 48n2 + 576a + 192an − 216an2 − 24an3

− 1152a2 − 944a2n + 136a2n2 + 62a2n3 + 2a2n4 + 576a3 + 664a3n + 86a3n2

− 31a3n3 − 5a3n4 − 104a4n
) − 62a4n2 − a4n3 + 2a4n4 − 192n − 48n2 − 576a

− 384an + 72an2 + 576a2 + 272a2n − 208a2n2 + 10a2n3 + 4a2n4 − 24a3n + 26a3n2

− 9a3n3 + a3n4
}
,

C6 =
1

192a2
(

n
2 − 2

)
5

{
(1 − a)−1−n

2
( − 192n − 48n2 + 384a + 816an + 96an2 + 12an3

− 768a2 − 1120a2n − 148a2n2 − 8a2n3 − 2a2n4 + 384a3 + 584a3n + 150a3n2 + 7a3n3

− 88a4n − 58a4n2 − 5a4n3 + a4n4
)

+ 192n + 48n2 − 384a − 624an + 48an2 + 12an3

+ 384a2 + 304a2n − 164a2n2 + 8a2n3 + 2a2n4 − 24a3n + 26a3n2 − 9a3n3 + a3n4
}
,

C7 =
1

48a
(

n
2 − 1

)
2

{
(1 − a)1−

n
2
( − 96 + 22an + an2 + 2a2n − a2n2

)
+ 96 − 96a + 26an

− 3an2 + an3
}
,

C8 =
(1 − a)2−

n
2 − 16 + n

180
,
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C9 =
1

24a
(

n
2 − 1

)
3

{
(1 − a)−

n
2
(
12n − 12a − 8an − an2 + 2a2n + a2n2

) − 12n + 12a

+ 8an − 5an2
}
,

C10 =
1

1440a
(

n
2 − 1

)
3

{
(1 − a)−

n
2
( − 360n + 360a + 296an + 60an2 + an3 − 112a2n

− 60a2n2 − 2a2n3 − 4a3n + a3n3
)

+ 360n − 360a − 296an + 116an2 − an3 + an4
}
,

C11 =
1

480a2
(

n
2 − 2

)
4

{
(1 − a)1−

n
2
(
480 − 240n − 240a − 120an + 16a2n + 26a2n2

+ 11a2n3 + a2n4 + 4a3n + 4a3n2 − a3n3 − a3n4
) − 480 + 240n + 720a − 360an

+ 120an2 − 240a2 + 104a2n − 70a2n2 + 15a2n3 − 5a2n4 + a2n5
}
,

C12 =
1

576a
(

n
2 − 1

)
3

{
(1 − a)−

n
2
( − 144 + 72a + 56an + 12an2 + an3 − 16a2n − 12a2n2

− 2a2n3 − 4a3n + a3n3
)

+ 144 − 72a + 16an − 16an2 − an3 + an4
}
,

C13 =
1

48a
(

n
2 − 1

)
3

{
(1 − a)−

n
2
( − 24 + 12a + 8an + an2 − 2a2n − a2n2

)
+ 24 − 12a

− an2 + an3
}
.

As one can see, the scalar coefficients in (13) depend in a rather non-trivial way not only
on the gauge parameter a, but also on the space dimension n. This is a typical property of
nonminimal and high order operators [12].
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