
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1039–1050

Hamiltonian Type Operators in Representations

of the Quantum Algebra suq(1, 1)

Natig ATAKISHIYEV † and Anatoliy KLIMYK †‡
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We study some classes of symmetric operators for the discrete series representations of the
quantum algebra suq(1, 1), which may serve as Hamiltonians of various physical systems.
These operators are expressed in the canonical basis by a Jacobi matrix. The problem
of diagonalization of these operators (eigenfunctions, spectra, overlap coefficients, etc.) is
solved by using the connection of such operators with the theory of orthogonal polynomials.

1 Introduction

The theory of representations of the Lie group SU(1, 1) � SL(2, R) and its Lie algebra has
been extensively employed in various branches of physics and mathematics. Representations
of the Lie algebra su(1, 1) have been particularly useful in studying the isotropic harmonic
oscillator, non-relativistic Coulomb problem, relativistic Schrödinger equation, Dirac equation
with the Coulomb interaction, and so on. The Hamiltonian H in the interacting boson model
is represented as a linear combination of the operators, corresponding to generating elements
Jcl

+ , Jcl− , Jcl
0 of the Lie algebra su(1, 1). For this reason, the diagonalization of representation

operators, corresponding to such linear combinations, is an important problem.
After the appearance of quantum groups and quantum algebras, most problems of the rep-

resentation theory for Lie groups and Lie algebras have been transferred to the representation
theory of quantized groups and algebras. This development is also very important from the
point of view of possible applications both in mathematics and in physics. In particular, the
diagonalization of representation operators for simplest quantum algebras (especially, such as
suq(2) and suq(1, 1)) is of great significance.

Representation operators for the quantum algebras suq(2) and suq(1, 1) find wide applications
in physics. For example, some models in quantum optics, such as Raman and Brillouin scatte-
ring, parametric conversion and the interaction of two-level atoms with a single-mode radiation
field (Dicke model), can be described by interaction Hamiltonians, which are representation
operators for suq(2) or suq(1, 1) (see, for example, [1] and references therein).

A great interest to spectral analysis of the operators for the positive discrete series of suq(1, 1)
appears in the analysis on noncommutative (quantum) spaces. For example, the Laplace opera-
tor and the squared radius (together with the third operator, which serves as the operator J0)
generate the algebra suq(1, 1), acting on the space of polynomials on the n-dimensional Manin
space or on the quantum complex vector space (see [2–4]). These operators realize irreducible
representations of the algebra suq(1, 1), which belong to the positive discrete series and form
a q-analogue of the oscillator representations of the Lie algebra su(1, 1). To construct Hamilto-
nians of physical systems, existing in the Manin space or in the quantum complex vector space
(for example, Hamiltonians for harmonic oscillators in these spaces), one thus needs to deal
with operators of the positive discrete series representations of suq(1, 1). Consequently, the
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diagonalization of these Hamiltonians reduces to the problem of diagonalization of representation
operators for the quantum algebra suq(1, 1).

In the present paper we discuss the problem of the diagonalization (eigenfunctions, spectra,
transition coefficients, etc.) of some classes of operators for the discrete series representations of
the quantum algebra suq(1, 1), related to q-orthogonal polynomials. We restrict ourselves by the
discrete series representations of suq(1, 1), because these very representation operators are often
used as Hamiltonians of physical models and these representations are related to the q-oscillator
algebra.

Throughout the sequel we always assume that q is a fixed positive number such that q < 1.
We extensively use the theory of q-special functions and notations of the standard q-analysis
(see, for example, [5] and [6]). In particular, we use q-numbers defined as

[a]q :=
qa/2 − q−a/2

q1/2 − q−1/2
,

where a is any complex number.

2 The algebra suq(1, 1) and its discrete series representations

The classical Lie algebra su(1, 1) is generated by the elements Jcl
0 , Jcl

1 , Jcl
2 , satisfying the relations

[Jcl
0 , Jcl

1 ] = iJcl
2 , [Jcl

1 , Jcl
2 ] = −iJcl

0 , [Jcl
2 , Jcl

0 ] = iJcl
1 .

In terms of the raising and lowering operators Jcl± = Jcl
1 ± iJcl

2 these commutation relations can
be written as

[Jcl
0 , Jcl

± ] = ±Jcl
± , [Jcl

− , Jcl
+ ] = 2Jcl

0 .

The discrete series representations T+
l of su(1, 1) with lowest weights are given by a positive

number l and they are realized on the spaces Ll of polynomials in x. The basis in Ll consists of
the monomials

gl
n(x) = {(2l)n/n!}1/2xn , n = 0, 1, 2, 3, . . . .

Assuming that this basis consists of orthonormal elements, one defines a scalar product in Ll.
The closure of Ll leads to a Hilbert space, on which the representation T+

l acts.
We consider an explicit realization of representation operators Jcl

i , i = 0, 1, 2, in terms of the
first-order differential operators:

Jcl
0 = x

d

dx
+ l , Jcl

1 =
1
2
(1 + x2)

d

dx
+ lx , Jcl

2 =
i

2
(1 − x2)

d

dx
− ilx .

Then

Jcl
0 gl

n = (l + n) gl
n, Jcl

+gl
n =

√
(2l + n)(n + 1) gl

n+1, Jcl
−gl

n =
√

(2l + n − 1)n gl
n−1.

The quantum algebra suq(1, 1) and its irreducible representations are obtained by deformation
of the corresponding relations for the Lie algebra su(1, 1) and its irreducible representations. The
algebra suq(1, 1) is defined as the associative algebra, generated by the elements J+, J−, and J0,
which satisfy the commutation relations

[J0, J±] = ±J±, [J−, J+] =
qJ0 − q−J0

q1/2 − q−1/2
≡ [2J0]q, (1)
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and the conjugation relations

J∗
0 = J0, J∗

+ = J−. (2)

(Observe that here we have replaced J− by −J− in the usual definition of the algebra slq(2).)
We are interested in the discrete series representations of suq(1, 1) with lowest weights. These

irreducible representations will be denoted by T+
l , where l is a lowest weight, which can be any

positive number (see, for example, [7]). These representations are obtained by deforming the
corresponding representations of the Lie algebra su(1, 1).

As in the classical case, the representation T+
l can be realized on the space Ll of all polyno-

mials in x. We choose a basis for this space, consisting of the monomials

f l
n ≡ f l

n(x) := cl
n xn, n = 0, 1, 2, . . . , (3)

where

cl
0 = 1, cl

n =
n∏

k=1

[2l + k − 1]1/2
q

[k]1/2
q

= q(1−2l)n/4 (q2l; q)1/2
n

(q; q)1/2
n

, n = 1, 2, 3, . . . , (4)

and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1). The representation T+
l is then realized by the

operators

J0 = x
d

dx
+ l, J± = x±1[J0 ± l]q . (5)

As a result of this realization, we have

J0 f l
n = (l + n) f l

n, J+ f l
n =

√
[2l + n]q [n + 1]q f l

n+1, (6)

J− f l
n =

√
[2l + n − 1]q [n]q f l

n−1. (7)

Obviously, these operators satisfy the commutation relations (1).
We know that the discrete series representations T+

l can be realized on a Hilbert space,
on which the conjugation relations (2) are satisfied. In order to obtain such a Hilbert space,
we assume that the monomials f l

n(x), n = 0, 1, 2, . . ., constitute an orthonormal basis for this
Hilbert space. This introduces a scalar product 〈·, ·〉 into the space Ll. Then we close this space
with respect to this scalar product and obtain a Hilbert space, which will be denoted by Hl.
The Hilbert space Hl consists of functions (series)

f(x) =
∞∑

n=0

bnf l
n(x) =

∞∑
n=0

bncl
nxn =

∞∑
n=0

anxn,

where an = bncl
n. Since 〈f l

m, f l
n〉 = δmn by definition, for f(x) =

∞∑
n=0

anxn and f̃(x) =
∞∑

n=0
ãn xn

we have 〈f, f̃〉 =
∞∑

n=0
an ãn/|cl

n|2, that is, the Hilbert space Hl consists of analytical functions

f(x) =
∞∑

n=0
an xn, such that

‖f‖2 ≡
∞∑

n=0

|an/cl
n|2 < ∞.
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It is directly checked that for a function f(x) ∈ Hl we have qcx d
dx f(x) = f(qcx). Therefore,

taking into account formulas (5), we conclude that

qJ0/2 f(x) = q
1
2
(x d

dx
+l) f(x) = ql/2 f(q1/2x), (8)

J+ f(x) =
x

q1/2 − q−1/2

[
qlf(q1/2x) − q−lf(q−1/2x)

]
, (9)

J− f(x) =
1

(q1/2 − q−1/2)x

[
f(q1/2x) − f(q−1/2x)

]
. (10)

3 Hamiltonian type operators

We are interested in spectra, eigenfunctions and overlap functions for operators in the represen-
tations T+

l , which correspond to elements of the quantum algebra suq(1, 1) of the form

H := qp J0(J+ + J−) qp J0 + f(qJ0), p ∈ R, (11)

where f is some polynomial (or function). These operators have the following properties:

(i) They are representable in the basis (3) by a Jacobi matrix.

(ii) They are symmetric operators.

(iii) They are not necessarily self-adjoint operators.

Recall that a Jacobi matrix is a matrix, with all entries vanishing except for those which
occur on the main diagonal and on two neighbouring (upper and lower) diagonals.

The most important example of the operators of the form (11) is

H(p) := qpJ0/4(J+ + J−)qpJ0/4, p ∈ R.

For these operators the following theorem is true [8].

Theorem 1. If p > 1, then the operator H(p) is bounded and has a discrete simple spectrum.
Zero is a unique point of accumutation of the spectrum. If p < 1, then the closure H(p) of the
symmetric operator H(p) is not a self-adjoint operator and it has deficiency indices (1, 1), that
is, H(p) has a one-parameter family of self-adjoint extensions. These extensions have discrete
simple spectra. If p = 1, then H(p) has a continuous simple spectrum, which covers the interval
(−b, b), b = 2/(q−1/2 − q1/2).

4 Applications of Hamiltonian type operators

There are many applications of the operators (11). Below we exhibit only some of these appli-
cations.

4.1. Quantum mechanics in noncommutative world. A big interest in spectral analysis
of the operators for the positive discrete series of suq(1, 1) appears in the analysis on noncom-
mutative (quantum) spaces. The n-dimensional Manin space can serve as a simple example of
such a space. This space is defined by elements (quantum coordinates) x1, x2, . . . , xn, satisfying
the relations xixj = qxjxi for i < j. A certain q-deformation U ′

q(son) of the universal enveloping
algebra U(son) of the Lie algebra son (not coinciding with the Drinfeld–Jimbo quantum algebra
Uq(son)) acts on the Manin space (it replaces the action of the rotation group SO(n) on the
n-dimensional Euclidean space; for details see [2]).

The squared radius on the Manin space is given by the formula

Q = x1 + q−1x2
2 + · · · + q−n+1x2

n.
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A Laplace operator on it is defined as

∆q = qn−1∂2
1 + qn−2∂2

2 + · · · + ∂2
n

(the definition of the derivatives ∂i are given in [2] and [3]). The operators ∆q and Q̂ (the
operator of the multiplication by Q) are invariant with respect to the algebra U ′

q(son).
It is known [2] that ∆q and Q̂ generate the quantum algebra slq2(2). Moreover, J+ = cQ and

J− = c′∆q (where c and c′ are constants). In the usual Euclidean space, Hamiltonians of many
physical systems are constructed by means of a linear combination of the Laplace operators and
the radius. Similarly, Hamiltonians of physical systems in the Manin space are constructed as
combinations of the Laplace operator ∆q and the operator Q̂. Then we led to the fact that these
Hamiltonians are combinations of the operators J+ and J− (see [9]). However, we wish that
a Hamiltonian Hq in the Manin space tend to a corresponding Hamiltonian H in the Euclidean
space. In order to achieve this, we have to multiply the operator J+ + J− from the left and
from the right by the operator qpJ0 with an appropriate p. (This multiplication is explained by
the fact that q-deforming the classical algebra U(g), where g is a Lie algebra, into the quantum
algebra Uq(g), one performs twisting of the elements, corresponding to positive and negative
root elements.) Thus, we come to the consideration of Hamiltonians, which are operators of the
form (11).

4.2. Quantum optics. Hamiltonians of the type (11) appear in the quantum optics.
Examples of such Hamiltonians and further details can be found in [1].

4.3. q-Oscillators, based on suq(2) and suq(1, 1). This q-oscillator, which is different
from the q-oscillators of Biedenharn and Macfarlane, is introduced in [10]. It can be described as
follows. Let us take in a finite dimensional representation of the algebra suq(2) or in a discrete
series representation of the algebra suq(1, 1) the operators

B1 :=
1
2

qJ0/4[J+ + J−]qJ0/4, B2 :=
1
2i

qJ0/4[J+ − J−]qJ0/4.

Both operators B1 and B2 are symmetric and bounded. These operators satisfy the relations

[J0, B1] = iB2, [J0, B2] = iB1, [B1, B2] = f(J0, C), (12)

where f is some (explicitly known) function and C is the Casimir operator. Clearly, the operator
f(J0, C) is diagonal in the canonical basis.

Now we introduce a Hamiltonian, a position operator and a momentum operators by the
formulas

P := −B2, Q := B1, H = J0 − l +
1
2
,

where l is an index of the representation. Then if f l
n are basis elements of the representation

space, then for the Hamiltonian H we have

Hf l
n =

(
n +

1
2

)
f l

n.

It follows from (12) that the position and momentum operators satisfy the relations

[H, Q] = −iP, [H, P ] = iQ,

where [·, ·] is the usual commutator.
Thus, using the algebras suq(2) and suq(1, 1), we have obtained Hamiltonian systems of

quantum (not q-deformed) mechanics.
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4.4. q-Orthogonal polynomials. As will be explained in the next section, operators of
the form (11) are closely related to q-orthogonal polynomials. With the aid of these operators
we established a notion of duality of polynomials, orthogonal on some countable sets. By means
of this duality we derived new orthogonality relations for some instances of polynomials (see [11]
and [12]).

5 Relation to moment problem and q-orthogonal polynomials

There exists close relationship between the following directions, which we use for studying Hamil-
tonian type operators (see [13] and [14]):

(i) the theory of symmetric operators L, representable by a Jacobi matrix;

(ii) the theory of orthogonal polynomials;

(iii) the theory of classical moment problem.

Let us describe this relationship. Let L be a closed symmetric operator on a Hilbert space H.
Let e1, e2, . . . be a basis in H such that

Len = anen+1 + bnen + an−1en−1.

Let |x〉 =
∞∑

n=0
pn(x)en be an eigenvector of L with the eigenvalue x, that is, L|x〉 = x|x〉. Then

L|x〉 =
∞∑

n=0

(pn(x)anen+1 + pn(x)bnen + pn(x)an−1en−1) = x

∞∑
n=0

pn(x)en.

Equating coefficients of the vector en, one comes to a recurrence relation for the coefficients pn(x):

anpn+1(x) + bnpn(x) + an−1pn−1(x) = xpn(x).

Since p−1(x) = 0, then setting p0(x) ≡ 1, we see that this relation completely determines the
coefficients pn(x). Moreover, pn(x) are polynomials in x of degree n. If coefficients an and bn are
real, then all coefficients of the polynomials pn(x) are real and they are orthogonal with respect
to some positive measure µ(x). If the operator L is self-adjoint, then this measure is uniquely
determined and∫

pm(x)pn(x)dµ(x) = δmn,

where the integration is taken over some subset (possibly discrete) of R. Moreover, the spectrum
of the operator L is simple and coincide with the set, on which the polynomials are orthogonal.
The measure µ(x) determines the spectral measure for the operator L (for details see [14],
Chapter VII).

If a closed symmetric operator L is not self-adjoint, then the measure µ(x) is not determined
uniquely. Moreover, in this case there exist infinitely many measures, with respect to which the
polynomials are orthogonal. Among these measures there are so-called extremal measures (that
is, such that a set of polynomials {pn(x)} is complete in the Hilbert space L2 with respect to
the corresponding measure). These measures determine self-adjoint extensions of the symmetric
operator L.

On the other side, with the polynomials pn(x), n = 0, 1, 2, . . ., the classical moment problem
is associated [13]. Namely, with these polynomials (that is, with the coefficients an and bn of
the corresponding recurrence relation) positive numbers cn, n = 0, 1, 2, . . ., are related, which
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enter into the classical moment problem. The definition of classical moment problem consists
in the following. There is a set of positive numbers cn, n = 0, 1, 2, . . .. We are looking for
a measure µ(x), such that∫

xndµ(x) = cn, n = 0, 1, 2, . . . , (13)

where the integration is taken over some fixed subset of R. There are two principal questions:

(i) Does exist a measure µ(x), such that relations (13) are satisfied?

(ii) If such a measure exists, is it determined uniquely?

The answer to the first question is positive, if the numbers cn, n = 0, 1, 2, . . ., are those, which
correspond to a particular family of orthogonal polynomials. Moreover, a measure µ(x) then
coincides with the measure, with respect to which these polynomials are orthogonal.

If a measure in (13) is determined uniquely, then we say that we deal with determined moment
problem. It is the case when the region of integration is bounded. If there are many measures,
with respect to which relations (13) hold, then we say that we deal with indetermined moment
problem. In this case there exist infinitely many measures µ(x) for which (13) take place. In
the second case the corresponding polynomials are orthogonal with respect to all these measures
and the corresponding symmetric operator L is not self-adjoint.

Thus, we see that one can study the operator L by investigating the corresponding sets of
orthogonal polynomials and their moment problems. We do that here for Hamiltonian type
operators.

6 Spectrum and eigenfunctions of Hamiltonians H(ϕ)

This section deals with eigenfunctions ξl
λ(x; ϕ) and eigenvalues of a one-parameter family of the

self-adjoint operators

H(ϕ) :=
1
2
(q1/4J+ + q−1/4J−) qJ0/2 +

cos ϕ

q−1/2 − q1/2
qJ0 (14)

of the representation T+
l of the algebra suq(1, 1): H(ϕ) ξl

λ(x; ϕ) = λ ξl
λ(x; ϕ). Using the relations

(8)–(10) we find that

H(ϕ)f(x) = c(x−1 − 2q(2l+1)/4 cos ϕ + ql+1/2x)f(qx) − c(x−1 + q1/2−lx)f(x),

where c = (q(2l−1)/4)/2(q1/2 − q−1/2). By using this expression we find (details are given in [15])
that the eigenfunctions of H(ϕ) are

ξl
λ(x; ϕ) =

(axeiϕ; q)∞(axe−iϕ; q)∞
(bxei(θ−ϕ); q)∞(bxei(ϕ−θ); q)∞

, λ =
cos(θ − ϕ)

q−1/2 − q1/2
,

where a = q(2l+1)/4 and b = q(1−2l)/4. A relation between the eigenfunctions ξl
λ(x; ϕ) and the

basis functions f l
n(x) is now an easy consequence of the generating function

(aeiϕt; q)∞(ae−iϕt; q)∞
(ei(θ−ϕ)t; q)∞(ei(ϕ−θ)t; q)∞

=
∞∑
0

Pn (cos(θ − ϕ); a|q) tn

for the q-Meixner–Pollaczek polynomials Pn(y; a|q), defined (see [16], section 3.9) as

Pn(cos(θ + ϕ); a|q) = a−n e−inϕ (a2; q)n

(q; q)n
3φ2

(
q−n, aei(θ+2ϕ), ae−iθ a2, 0 ; q, q

)
.
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Thus

ξl
λ(x; ϕ) =

∞∑
n=0

q(1−2l)n/4

cν
n

Pn(cos(θ − ϕ); ql|q)f l
n(x).

To find a spectrum of the operator H(ϕ), we note that the q-Meixner–Pollaczek polynomials
Pn(cos(θ−ϕ)) ≡ Pn

(
cos(θ − ϕ); ql|q) are orthogonal and the orthogonality relation has the form

1
2π

∫ π

−π
Pm(cos(θ − ϕ))Pn(cos(θ − ϕ))wϕ(cos(θ − ϕ))dθ =

(q2l; q)n

(q; q)n
δmn,

where

wϕ(cos(θ − ϕ)) = (q; q)∞(q2l; q)∞

∣∣∣∣∣
(e2i(θ−ϕ)); q)∞

ql(ei(θ−ϕ)); q)∞(qleiθ; q)∞

∣∣∣∣∣
2

(see formula (3.9.2) in [16]). This orthogonality relation can be written as∫ b

a

(q; q)n

(q2l; q)n
Pm(λ(q−1/2 − q1/2))Pn(λ(q−1/2 − q1/2)))ŵ(λ)dλ = δmn,

where

ŵ(λ) =
wϕ(λ(q−1/2 − q1/2))(q−1/2 − q1/2)

sin(ϕ − θ)
, a =

− cos(π + ϕ)
q−1/2 − q1/2

, b =
cos(π − ϕ)
q−1/2 − q1/2

. (15)

Therefore, we may formulate the following theorem:

Theorem 2. The operator H(ϕ) has continuous and simple spectrum, which completely covers
the interval (a, b), where a and b are given by (15).

Continuity of the spectrum means that the eigenfunctions ξl
λ(x; ϕ) do not belong to the

Hilbert space Hl. They belong to the space of functionals on the linear space Ll, which can be
considered as a space of generalized functions on Ll.

7 A limit to the classical case

The classical limit (that is, the limit q → 1) has sense only for the operator

H(π/2) =
1
2
(q1/4J+ + q−1/4J−)qJ3/2.

When q → 1 the operator H(π/2) tends to the operator J
(cl)
1 : lim

q→1
H(π/2) = J

(cl)
1 . In this limit

the basis elements (3) turn into the basis elements gl
n(x) of the representation space for the Lie

algebra su(1, 1) and the eigenfunctions ξl
λ(x; π/2) of H(π/2) into the eigenfunctions

ξl
λ(x) := (1 + ix)−l−iλ(1 − ix)−l+iλ

of the operator J
(cl)
1 . They are related to the eigenfunctions of the operator J

(cl)
0 as

ξl
λ(x) =

∞∑
n=0

(
n!

(2l)n

)1/2

P (l)
n (λ; π/2) f l

n(x) ≡
∞∑

n=0

P (l)
n (λ; π/2) xn ,

where P
(l)
n (λ; π/2) are the classical Meixner–Pollazcek polynomials, defined by the formula

P (l)
n (x; ϕ) :=

(2l)n

n!
einϕ

2F1(−n, ν + ix; 2l; 1 − e−2iϕ), l > 0, 0 < ϕ < π.

The Meixner–Pollazcek polynomials in the expression for ξl
λ(x) are a limit case of the corre-

sponding q-Meixner–Pollazcek polynomials (see [16], section 5.9).
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8 A limit to the q-oscillator algebra

Let us consider the operator I := 2H(0) from Section 6. It acts upon the canonical basis f l
k,

k = 0, 1, 2, . . ., as

If l
k = akf

l
k+1 + ak−1f

l
k−1 +

qk+l

q−1/2 − q1/2
f l

k, ak =
(1 − qk+1)1/2(1 − qk+2l+2)1/2

q−1/2 − q1/2
.

Clearly, the operator I depends on the index l of the representation T+
l . Taking the limit

l → +∞, we obtain the operator Q = lim
l→+∞

(q−1 − 1)1/2I such that

Qfk =
(

1 − qk+1

1 − q

)1/2

fk+1 +
(

1 − qk

1 − q

)1/2

fk−1.

Here fk is a vector, which must be a limit of the vectors f l
k as l → +∞. However, such limit

does not exist. In order to have a well-defined limit of basis vectors we change a basis. To this
end, we take in Hl another scalar product. Namely, we take in Ll the basis consisting of the
monomials

f̃ l
n(x) = bl

nxn, n = 0, 1, 2, . . . , bl
0 = 1, bl

n =
(q2l; q)1/2

k

(q; q)1/2
k

.

One can take in Ll the scalar product such that these vectors constitute an orthonormal basis
and close Ll with respect to this scalar product. The closure of this space will be denoted by Ĥl.
Then the operator I is realized by the formula

I =
1 − qJ0+l

q−1/2 − q1/2
x +

1 − qJ0−l

q−1/2 − q1/2
x−1 +

qJ0

q−1/2 − q1/2

and we have

If̃ l
k(x) = akf̃

l
k+1(x) + ak−1f̃

l
k−1(x) +

ql+k

q−1/2 − q1/2
f̃ l

k,

where ak are the same as above.
Repeating the reasoning of Section 6, we obtain that the eigenfunctions of the operator I in

the space Ĥl are

ξ̃l
λ(x) =

(qlx; q)∞(qlx; q)∞
(xeiθ; q)∞(xe−iθ; q)∞

, λ =
2 cos θ

q−1/2 − q1/2
,

and these eigenfunctions are decomposed in terms of the basis {f̃ l
n(x)} as

ξ̃l
λ(x) =

∞∑
n=0

1
bl
n

Pn(λ(q−1/2 − q1/2); ql|q)f̃ l
k(x).

Due to the orthogonality relation for q-Meixner–Pollazcek polynomials, spectrum of the opera-
tor I is simple and coincides with the interval (−a, a), a = 2q1/4(1 − q)−1/2.

Now we take the limit l → +∞. Then the basis vectors f̃ l
n(x) turn into the basis vectors

en(x) = (q; q)−1/2
n xn, n = 0, 1, 2, . . . .
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The operator Q = lim
l→+∞

(q−1 − 1)1/2I has the form

Qen(x) =
(

1 − qn+1

1 − q

)1/2

en+1(x) +
(

1 − qn

1 − q

)1/2

en−1(x) ≡ (a+ + a−)en(x),

where

a+en(x) =
(

1 − qn+1

1 − q

)1/2

en+1(x), a−en(x) =
(

1 − qn

1 − q

)1/2

en−1(x).

The operator qJ0+lf̃ l
k(x) = qkf̃ l

k(x) of the representation T+
l of suq(1, 1) turns in the limit as

l → +∞ into the operator

qNen(x) = qnen(x).

It is easy to see that the operators a+, a− and qN satisfy the relations

a−a+ − qa+a− = 1, qNa+ = qa+qN , qNa− = q−1a−qN ,

that is, they generate the well-known q-oscillator algebra introduced by Biedenharn and Mac-
farlane. Clearly, Q = a+ + a− is the position operator for this q-oscillator.

The limit l → +∞ turns the eigenfunctions ξ̃l
λ(x) into eigenfunctions of the operator Q having

the form

ξ̃λ(x) =
1

(xeiθ; q)∞(xe−iθ; q)∞
, λ =

2 cos θ

(1 − q)1/2
.

We have Qξ̃λ(x) = λξ̃λ(x) and a spectrum of the operator Q is simple and coincides with the
interval (−b, b), b = 2/(1 − q)1/2.

9 Hamiltonian with bounded discrete spectrum

In this section we consider the operator

H1 = q3J0/4(J+ + J−)q3J0/4 −
(
[J0 − l]q ql/2 + [J0 + l]q q−l/2

)
q3J0/2,

(note that this operator depends on the index l of the representation T+
l ). It acts on the basis

elements (3) by the formula

H1 f l
k = ak+1f

l
k+1 + akf

l
k−1 − q3(l+k)/2dkf

l
k,

where

ak = q3(l+k)/2−3/4
√

[k]q [2l + k − 1]q, dk = [k]q q(l−1)/2 + [2l + k]q q−(l−1)/2.

By using this action it is easy to check that the H1 is a bounded self-adjoint operator. Eigen-
functions of the operator H1, H1χ

l
λ(x) = λ χl

λ(x), can be represented in the form

χl
λ(x) =

∞∑
k=0

Pk(λ)f l
k(x).

It is not hard to prove that

Pk(λ) =
(

(q2l; q)k

(q; q)k

)1/2

q−lkpk(qy; q2l−1|q), qy = (1 − q−1)λ,
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where pk(qy; q2l−1|q) = 2φ1(q−k, 0; q2l; q; qy+1) are the so-called little q-Laguerre (Wall) poly-
nomials (see, for example, [16], section 3.20).

Due to the orthogonality relation

(q2l; q)∞
∞∑

k=0

q2lk

(q; q)k
pm(qk; q2l−1|q) pn(qk; q2l−1|q) =

q2ln(q; q)n

(q2l; q)n
δmn

for little q-Laguerre polynomials (see formula (3.20.2) in [16]), a spectrum of the operator H1

coincides with the set of points qn/(1− q−1), n = 0, 1, 2, . . .. This means that the eigenfunctions

χl
λn

(x; q) ≡ Ξl
n(x), n = 0, 1, 2, . . . , λn =

qn

1 − q−1
,

constitute a basis in the representation space. We thus proved the following theorem.

Theorem 3. The operator H1 has a simple discrete spectrum, which consists of the points
qn/(1 − q−1), n = 0, 1, 2, . . .. The corresponding eigenfunctions Ξl

n(x) constitute an orthogonal
basis in the space Hl.

10 Hamiltonian related to big q-Laguerre polynomials

In this section we are interested in the operator

H2 := αqJ0/4(
√

1 − bqJ0−lJ+q(J0−l)/2 + q(J0−l)/2J−
√

1 − bqJ0−l)qJ0/4 − β1q
2J0 + β2q

J0−l

of the representation T+
l , where b < 0 and

α = (−b)1/2ql(1 − q), β1 = b(1 + q), β2 = bq + q2l(b + 1).

Since the bounded operator qJ0 is diagonal in the canonical basis (3) without zero diagonal
elements, the operator H2 is well defined.

We have the following expression for the symmetric operator H2 in the canonical basis (3):

H2 f l
n = (−ab)1/2q(n+2)/2

[√
(1 − qn+1)(1 − aqn+1)(1 − bqn+1)f l

n+1

+ q−1/2
√

(1 − qn)(1 − aqn)(1 − bqn)f l
n−1

]
− [abq2n+1(1 + q) − qn+1(a + ab + b)]f l

n,

where a = q2l−1. Since q < 1 the operator H2 is bounded. Therefore, one can close this operator,
so we assume that H2 is a closed (and, consequently, defined on the whole space Hl) operator.
Since H2 is symmetric, its closure is a self-adjoint operator.

For eigenfunctions ξλ(x) of the operator H2, H2ξλ(x) = λξλ(x), we have the expression

ξλ(x) =
∞∑

n=0

(−ab)−n/2q−n(n+3)/4

(
(aq, bq; q)n

(q; q)n

)1/2

Pn(λ; a, b; q)f l
n(x),

where Pn(λ; a, b; q) are big q-Laguerre polynomials, defined by the formula

Pn(λ; a, b; q) := 3φ2(q−n, 0, λ; aq, bq; q, q) = (q−n/b; q)−1
n 2φ1(q−n, aq/λ; aq; q, λ/b).

The orthogonality relation for these polynomials is known to be of the form
∞∑

n=0

(qn+1; q)∞(aqn+1/b; q)∞
(aqn+1; q)∞

qnPm(aqn+1; a, b; q)Pm′(aqn+1; a, b; q)

− b

a

∞∑
n=0

(qn+1; q)∞(bqn+1/a; q)∞
(bqn+1; q)∞

qnPm(bqn+1; a, b; q)Pm′(bqn+1; a, b; q)

=
(q, b/a, aq/b; q)∞

(aq, bq; q)∞
(q; q)m

(aq, bq; q)m
(−ab)mqm(m+3)/2δmm′ .

Therefore, we arrive to the following assertion:
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Theorem 4. The spectrum of the operator H2 coincides with the set of points aqn+1, bqn+1,
n = 0, 1, 2, . . .. The spectrum is simple and has only one accumulation point at 0.
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