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We have found one-loop effects in general relativity which can be interpreted as quantum
corrections to the Schwarzschild metric. They induce quantum long-range corrections to
the Newton law and to gravitational relativistic effects: spin-orbit, spin-spin, and Lense–
Thirring interactions.

1 Introduction

It has been recognized long ago that quantum effects can generate long-range corrections in
general relativity. Those corrections due to the graviton polarization operator with photons and
massless neutrinos in the loop were calculated in [1–4]. The corresponding quantum correction
to the Newton potential between two bodies with masses m1 and m2 is

Uγν = −4 +Nν

15π
k2

�m1m2

c3r3
, (1)

where Nν is the number of massless two-component neutrinos, k is the Newton gravitational
constant (in the text below we put � = 1, c = 1).

The reason why the problem allows for a closed solution is as follows. The Fourier-transform
of 1/r3 is∫

dr
exp(−iqr)

r3
= −2π ln q2. (2)

This singularity in the momentum transfer q means that the correction discussed can be genera-
ted only by diagrams with two massless particles in the t-channel. The number of such diagrams
of second order in k is finite, and their logarithmic part in q2 can be calculated unambiguously.

The analogous diagrams with gravitons and ghosts in the loop (see Fig. 1; wavy and dashed
lines in it refer to gravitons and ghosts, respectively, double wavy lines refer to the background
gravitational field) were considered in [1, 5–7].

Clearly, other diagrams with two gravitons in the t-channel contribute as well to the discussed
correction ∼ 1/r3. Some of these contributions were addressed, along with diagrams 1a,b, in [8–
13]. However in these papers the set of considered diagrams was incomplete, and the results
for these diagrams were incorrect. For the first time the complete set of relevant diagrams was
pointed out in [14], however, only one of them was calculated therein correctly.

The problem of quantum correction to the Newton law, which is certainly interesting from
the theoretical point of view, was then addressed in our previous article [15]. In it all relevant
diagrams, except one (see Fig. 3b below), were calculated correctly.

In a recent paper [16] our criticisms are acknowledged, though implicitly. The diagram 3b is
calculated in [16] correctly, and the results for all other contributions agree with ours.

The content of our present work is as follows. We demonstrate in an elementary way that
the discussed corrections are the same both for scalar and (after averaging over spins) for spinor
particles. The fact was proven previously in [17] by direct calculation of loop diagrams.
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Figure 1. Graviton loops.

Then, using the background field technique [7], we construct effective amplitudes which de-
scribe quantum power corrections in general relativity. Since the derived corrections are universal
(i.e. the same for scalar and spinor particles), in the limit when one of the interacting particles
is heavy, these corrections can be interpreted as corrections to the Schwarzschild metric. (Our
results for the latter differ from the results of [17].) In this way we not only simplify the cal-
culation of the corrections to the Newton law, but obtain rather easily quantum corrections to
gravitational relativistic effects.

We have also cross-checked and confirmed the result for the corrections to the Newton law by
calculation in another technique (used previously in [14]) that with the gravitational variables
ψµν =

√−ggµν − ηµν in the harmonic gauge ∂µψ
µν = 0.

2 Effective amplitudes

Let us sketch first of all our proof of the fact that the corrections ∼ ln |q2| for spinor particles
coincide, after averaging over spins, with those for scalar ones. To this end, it is sufficient in fact
to consider tree diagrams, Fig. 2, which are building blocks of the logarithmic loops. Here and
below wavy lines denote gravitons again, and solid lines refer to scalar or spinor particles. We
average the spinor diagrams over the spins, and single out from the numerators of diagrams 2a,b,
both for scalar and spinor particles, the structures that cancel the denominators therein. Thus
obtained contact contributions combine with the initial contact diagram 2c into an effective
seagull which is the same both for spins 0 and 1/2. As to the true s- and u-pole contributions
in diagrams 2a,b, which are left after this procedure, they also coincide for scalar and spinor
particles with the adopted accuracy.
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� � �

Figure 2. Tree diagrams.

We start the discussion of the loops with the vacuum polarization diagrams, Fig. 1. The
effective Lagrangian corresponding to the sum of these loops, derived in [7], can be rewritten
for our purpose as [8]

Lrr = − 1
1920π2

ln |q2| (42RµνR
µν +R2

)
; (3)

here Rµν is the Ricci tensor, R = Rµ
µ is the scalar curvature. We are interested at the moment

in the situation when at least one of the particles is considered in the static limit. In this case
|q2| → q2, and in the coordinate representation we obtain

Lrr =
1

3840π3r3
(
42RµνR

µν +R2
)
. (4)
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Figure 3. Vertex diagrams.
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Figure 4.

The next set of diagrams, Fig. 3, refers to the vertex part. The corresponding effective
operator is

Lrt = − k

8π2r3
(3RµνT

µν − 2RT ) , T = Tµ
µ . (5)

Here Tµν is the energy-momentum tensor (EMT) averaged over spin.
At last diagrams of Fig. 4. Their sum is

Ltt =
k2

πr3
T 2. (6)

In fact, the box diagrams in Fig. 4 not only contribute to amplitude (6). They also generate
a more complicated amplitude which cannot be reduced to a product of energy-momentum
tensors. We will come back to this irreducible amplitude later.

In virtue of the Einstein equations

Rµν = 8πk
(
Tµν − 1

2
gµνT

)
, (7)

the three Lagrangians (4), (5), (6) can be conveniently combined into

Ltot = − k2

60πr3
(
138TµνT

µν − 31T 2
)
. (8)

3 Quantum corrections to metrics

Now quantum corrections to some gravitational effects can be most easily derived as follows.
Let us split the total EMT Tµν into those of a static central body and of a light probe one, T o

µν

and tµν , respectively. Then, by variation the resulting expression in tµν we obtain a tensor which
can be interpreted as a quantum correction h(q)

µν to the metric created by the central body:

h(q)
µν =

k2

15πr3
(
138T o

µν − 31gµνT
o
)
. (9)

It follows immediately from this expression that

h
(q)
00 =

107
15

k2M

πr3
, (10)

where M is the mass of the central body.
The calculation of the space components h(q)

mn demands in fact some modification of for-
mula (9). The point is that we work with the gauge condition hµ

ν; µ − (1/2)hµ
µ; ν = 0 for the

graviton field. It is only natural to demand that the resulting effective field h(q)
mn should satisfy

the same condition which simplifies now to h
(q)µ

ν, µ − (1/2)h(q)µ
µ, ν = 0. Thus obtained space

metric is

h(q)
mn =

k2M

πr3

{
31
15
δmn − 76

15

[
rmrn
r2

+ ln
(
r

r0

)(
δmn − 3

rmrn
r2

)]}
. (11)
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Technically, the expression in square brackets in (10) originates from the terms containing
structures of the type ∂µT

µν . Generally speaking, they arise when calculating Lagrangians (5),
(6), and (8), but are omitted therein since they vanish on-mass-shell. Thus these terms are absent
in (9). But they can be restored by rewriting the net result (8) with the Einstein equations (7)
as

Ltot = − 1
3840π3r3

(
138RµνR

µν − 31R2
)
, (12)

and then attaching energy-momentum tensors to the double wavy lines. The presence of ln(r/r0),
where r0 is some normalization point, is quite natural here if one recalls lnq2 in the momentum
representation. Fortunately, this term in square brackets does not influence physical effects.

Our results (10), (11) differ from the corresponding ones of [17]. The main reason is that the
contributions of diagrams 4 to metric are omitted in [17]. This omission does not look logical
to us: on-mass-shell one cannot tell these diagrams from others (see (8), (12)). Besides, the
Fourier-transformation of (qmqn/q2 ln q2) is performed in [17] incorrectly, with a wrong result
(rmrn/r2 only) for the term in the square brackets in (11).

4 Quantum corrections to gravitational effects

We start with the correction to the Newton law. In line with (10), we should take into account
here the above mentioned contribution of the box diagrams 4, which cannot be reduced to metric.
In the static limit for both particles this irreducible contribution is [15, 16,19]

−23
3
k2Mm

πr3
. (13)

The net correction to the Newton law is

U q(r) = −41
10

k2Mm

πr3
. (14)

Let us go over now to the quantum correction to the interaction of the orbital angular
momentum l of a light particle with its own spin s, i.e. to the common gravitational spin-orbit
interaction. It is most easily obtained with the general expression for the frequency ω of the
spin precession in a gravitational field derived in [18]. For a nonrelativistic particle in a weak
static centrally-symmetric field this expression simplifies to

ωi =
1
2
εimn(γmnkvk + γ0n0vm). (15)

Here

γmnk =
1
2

(∂mhnk − ∂nhmk), γ0n0 = −1
2
∂nh00

are the Ricci rotation coefficients, v is the particle velocity (the present sign convention for ω is
opposite to that of [18]). A simple calculation results in

U q
ls(r) = −169

20
k2

πr5
M

m
(ls). (16)

Now let us derive the quantum correction to the classical velocity-dependent gravitational
interaction. We start with the amplitude (8) written in the momentum representation:

Ltot =
k2

30
ln |q2| (138TµνT

µν − 31T 2
)
. (17)
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As distinct from the previous corrections, here we go beyond the static approximation, and
expand ln |q2| = ln(q2 − ω2) to first order in ω2. Then (in spirit of [20] where this trick was
applied to the calculation of the classical velocity-dependent c−2 correction to the Newton law)
we rewrite ωT00 as qnT0n, neglect terms of 4th and higher orders in c−2, and come back to the
coordinate representation. The resulting velocity-dependent quantum correction is

U q
vv(r) = −k

2m1m2

60πr3
[445(v1v2) + 321(nv1)(nv2)], n =

r

r
. (18)

With formula (18) we derive (in spirit of [21], § 106, Problem 4) the quantum correction to the
interaction of the orbital momentum l of a light particle with the internal angular momentum
(spin) s of a compound central body, i.e. to the Lense–Thirring effect. The result is

U q
LT(r) = −69

5
k2

πr5
(ls). (19)

In the same way one obtains with (18) the correction to the spin-spin interaction of two
compound bodies:

U q
ss(r) =

69
10

k2

πr5
[3(s1s2) − 5(ns1)(ns2)]. (20)

The quantum correction to the classical velocity-dependent gravitational interaction is gen-
erated also by the irreducible parts of the box diagrams (a sort of relativistic analogue of (13)).
To derive it, we expand the corresponding expressions for those diagrams to first order in the
small parameter (p1p2 −m1m2)/m1m2 (but not to zeroth order, as it was the case with (13)).
Thus obtained net result can be written in the momentum representation as

−k2m1m2 ln
(
q2 − ω2

)2
3

(
23 +

524
5

p1p2 −m1m2

m1m2

)
. (21)

Now we expand again ln(q2 − ω2) to first order in ω2, and use the obvious identity

ωp0 ≈ ωm ≈ mvq.

At last, going over into the coordinate representation (and omitting the zeroth-order contri-
bution (13)), we arrive at the following result for the irreducible contribution to the quantum
velocity-dependent correction:

U q, irr
vv (r) =

k2m1m2

10πr3
[311(v1v2) + 115(nv1)(nv2)]. (22)

From (22) we obtain now the irreducible contributions to the quantum corrections to the
Lense–Thirring and spin-spin interactions, respectively:

U q, irr
LT (r) =

262
5

k2

πr5
(ls), (23)

U q, irr
ss (r) = −131

5
k2

πr5
[3(s1s2) − 5(ns1)(ns2)]. (24)
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