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Quantum Mechanics is a successful model to describe physical phenomena. We show that
a simple set of postulates about the description of objects in Nature allows the derivation of
the principles of QM, transforming this theory into a deductive approach to Physics. The
main postulate is: Objects are described as energy distributions in Space–Time.

1 Quantum Mechanics from START

It is universally accepted that Quantum Mechanics is a successful model to describe physical
phenomena, in particular of the electronic structure of atoms, molecules and solids. As such it
has been reformulated in several different forms (see for example: Nine formulations of quantum
mechanics, Daniel F. Styer et al. [15]). The aim of the present paper is to show that a simple set
of postulates about the description of objects in Nature allows the derivation of the principles
of QM, transforming this theory into a deductive approach to Physics. In our approach the
main postulate is: Objects are described as energy distributions in Space–Time. The theory is
in fact a systematic mathematical analysis of this postulate and of other general considerations
about action, energy–momentum and the role of the theory as a useful description of Nature.

The paper also shows the fundamental and basic status of Density Functional Theory, also
contained in our approach.

The initial mathematical structure is a geometric (quadratic form based) union of space, time
and action. In physics bundles of trajectories are used to describe the objects of nature: distri-
bution of heights over a surface, a real object is described as a bundle of space-time trajectories,
here we use a description as a bundle of action valves in space-time (energy densities in space
following light-like lines).

The author is fully aware that the presentation is strongly guided by the knowledge of the
usual computational approach to study atoms, molecules and condensed matter electronic struc-
ture.

1.1 The quadratic form in physics

Formally our approach, a Space–Time–Action Relativity Theory: START [9, 10], represents
the physical world as a 5-D continuum with a quadratic form. Historically the initial use of
a quadratic form l2 = x2 + y2 + z2 to describe nature came with the now known as Pythagoras
Theorem, which even today is geometrically used in 3-D statics studies. At the beginning of
the XXth century the 4th dimension was added in the Minkowski s2 = (ct)2 − l2 space-time
formalism. For our purpose we consider also a distribution of an action variable w = κ(0)a,

κ(0) = d(0)

h = c
E(0)

, (a)2 =
∑
µ
a2

µ; µ = 0, 1, 2, 3 over space-time h being Planck’s constant and d(0)
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a system’s fundamental length. This is schematically shown in the next table

From Pythagoras to the XXIst Century
Quadratic Form Dim/diff. Op Group

l2 = x2 + y2 + z2 (�t) 3-D ∇,∇2 Statics, Galileo

s2 = (ct)2 − (x2 + y2 + z2) 4-D D,�2 Kinetics, Poincaré

S2 = (ct)2 − (
x2 + y2 + z2

) − w2 5-D K, Dynamics, START

In this geometrical setup we use a 5-D Relativity Principle “For physical systems all
trajectories are null for all observers”. Within the geometry, to obtain a comprehensive
theory, the development of the theory follows:

The Geometrical Structures of Physics

SPACE + TIME + ACTION
+

Fundamental Principles and Postulates (Carriers)
⇓

START Geometry
↙ ↓ ↘

General Relativity Quantum Mechanics Standard Model

In this program:

• Principles refer to primitive concepts and relations as, for example, the existence of a
unified geometry for space, time and action.

• Postulates, to complementary concepts as the geometrical union of the manifold of those
variables through the use of two constants universal c and κ0, generating the geometry we
have called START, a quadratic space.

• For a given observer the physical objects constituents of a system are the carriers, defined
as a distribution of energy over space E(c)(x, t) = ε(c)ρ(c)(x, t), where ε(c) is the energy per
equivalent carrier of type c.

• Two basic additional principles introduce the unit of action h in relation to the amount of
action that can be given or taken from a system (usually described as energy and angular
momentum being exchanged, this is tautologically the definition of a system) and to a
freedom of description of matter within START.

1.2 Hypothesis and principles in START

Physics is the science which describes the basic phenomena of Nature within the procedures of
the Scientific Method. The mathematization of the anthropocentric, primary, concepts of space,
time and the existence of the physical objects (action carriers), is a suitable point of departure
for creating intellectual structures which describe Nature.

We have introduced a set of principles [12, 9, 10]:

Relativity, complex Poincaré group and complex Lorentz transformations.

Existence, physical objects are represented by energy densities.

Least Action, (null trajectories in START).
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Quantized Exchange of Action, defines systems or subsystems as those among a quanta
of action can be exchanged.

Choice of Descriptions, allows all useful physical models to be employed.

From this we derive, in this and in previous papers, some of, the fundamental structures of
Physics.

1.3 Derivation of the structure of Quantum Mechanics

The formal steps to be followed, schematically presented here, are

Steps Subject Formal Relation

1a define Action Density in Space-Time a(X) → E(x, t)

1b equivalent to Energy Density in Space E(x, t) =
(c)∑
E(c)(x, t)

2 using a Definition of (equivalent) Carriers E(c)(x, t) = ε(c)ρ(c)(x, t)

3 and the Energy-Momentum condition pµ
.= ∂µa(X)

4a imposing an Analyticity requirement ρ(c)(x, t) = Ψ†(x, t)Ψ(x, t)

4b also Least Action requirement: Ψ = 0 γ4�KΨ = 0 → i�∂Ψ = mcΨ

5 with a Gauging and Description Choice Ψ → Ψ exp(iφ(X))

That is matter is considered a (time-dependent) distribution of energy in space as a sum-
mation among carriers. Equivalent carriers in a system are attributed by definition the same
amount of energy per carrier. If a different amount of energy has to be attributed to two, other-
wise considered identical, carriers then they are not equivalent. Energy-momentum is defined
as the rate of change of action. The finiteness of the amount of matter and the corresponding
energy require that action and then the density obey analytical conditions, to fulfil this condi-
tion, as shown below (Keller and Weinberger [11]), the density has to be written as a product
of the corresponding pair of square integrable analytical functions. In order to obtain the least
action state we follow the Schrödinger procedure (Schrödinger 1926 [14]) to optimize the total
action variable functional, which produces the wave equation. Finally because of the analyticity
requirement the auxiliary amplitude functions are only defined up to general multivector phase
factor s:

φ =
multivectors A∑

φAγ
A scalar, vector, bivector, etc. then i�∂Ψ◦ = mcΨ◦ +

−−→−−→�VΨ◦.

The energy (action) carriers can be given specific names according to the mathematical
structure of the corresponding densities. The words simple and composite referring to one term
or several terms, the word decomposable to the fact that each of the terms is proportional to
one given density (as in the case of equivalent electrons in atomic, molecular, and solid state
structure). Because we can use for the description an average description, we can either define
the average carrier or an average description. In most cases we are in fact using the definition
of the carrier in a system through the introduction of some effective potential acting upon it.
Then, as this kind of carrier can not be studied in the absence of that potential, we should
really call that carrier a pseudo-carrier. This is summarized
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Classification of Carriers

Carrier Type Description Type
Elementary (Simple) ρC(x, t) = ρc(x, t)

Elementary (Composite) ρC(x, t) =
∑
c
Acρ

{c∈C}
c (x, t)

Decomposable ρC(x, t) = nDρD(x, t)

Average Carrier ρA(x, t) = 1
W

N∑
c=1

Acρc(x, t)

Description Average (ρ) ρC(x, t) = 1
W

N∑
c=1

1
τ

∫ λ=λ0+τ
λ=λ0

Ac(λ)ρc(x, t)dλ

Pseudo-Carriers {ρc(x, t)} → ρeff
C (x, t) [Veff ]

With corresponding definitions of averaging weights and auxiliary amplitude functions:

W =
N∑

c=1
Ac W =

N∑
c=1

1
τ

∫ λ=λ0+τ
λ=λ0

Ac(λ)dλ = 1

Ψ =
l∑

al

m∑
pm

s∏
φ
{l,m}
s φ

{l,m}
s =

∑
bn

β∏
φ

(n)
β

2 The density

We come back to the conditions to be obeyed by the analytical function ρc(x, t).
D1. ρc(x, t) is a real quantity ρc(x, t) ⊂ R.
D2. The density 0 ≤ ρc(x, t) <∞ in order to represent a finite amount of action.
D3. The derivatives of the density −∞ < ∂µρc(x, t) < +∞ in order to represent a finite

amount of energy–momentum.
D4. The integral of the density

∫
ΩC

ρc(x, t)dΩ = n in the n carriers’ volume Ωc.

Theorem 1 (Keller and Weinberger 2002). If Ψ(x, t) is an analytical quadratic integrable
complex or multivector function, conditions D1, D2 and D3 are fulfilled identically if ρc(x, t) =
|Ψc(x, t)|2. Here |f |2 means the real quadratic form of any more general function f , even if f
itself is not necessarily a real function and we define: if |f |2 = f+f then ∂µ |f |2 = (∂µf

+)f +
f+(∂µf).

Proof. Reality condition D1 is fulfilled by the definition ρc(x, t) = |Ψc(x, t)|2, Carrier
Finiteness D2 by the requirement of quadratic integrability, Energy Finiteness D3 by the
definition ∂µ |f |2 = (∂µf

+)f + f+(∂µf) and the analytical properties of Ψ(x, t). �

It can be seen that the conditions D1, D2, D3 and normalization
∫
V ρc(x, t)dx = nc cor-

respond to the Ψ(x, t) being quadratic integrable Hilbert functions. In any Lagrangian type
formulation this last definition of ρ can be used as a condition introduced via a Lagrange mul-
tiplier.

2.1 The auxiliary amplitude function

There is an additional number of conditions that the auxiliary amplitude function will have to
fulfil in order to be adequate to describe different physical situations and systems as discussed
below. Besides conditions of purely mathematical origin there will be additional conditions
from physical considerations about the system to be described. There are two main ones.
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First the description of alternate possibilities φ
{l,m}
s =

i∑
aiϕ

(S)
i which are to be included

together in the formulation, alternatives which can be either of fundamental physical origin or
arising from the choice of describing a system with several alternatives without the selection
of only one set of alternatives. This first choice will immediately be related to concepts of
either statistics of probabilities in the measurement. That is if an actual measurement will be
performed, some statistical distributions would be found. Probabilistic in the sense that if an
actual measurement is performed one or one set of states would be found with an attached
probability. It is fundamental to distinguish between statistics referred to actual distributions
and probabilities referred to possible outcomes of a measurement. Second, the fact that many
systems are better described, or should in fact be described, as collections of “carriers” introduces
an additional condition which is also called “statistics”: the carriers can be equivalent or non-
equivalent and in the case of equivalent carriers the descriptions of some carriers of the system can
be the same as the description of others (the so-called Bose–Einstein statistics) or alternatively
should be all different (the so-called Fermi–Dirac statistics). In the case of the Fermi–Dirac
statistics the auxiliary amplitude function must mathematically be built from a combination
of at least as many, in the Hilbert function sense, orthogonal functions as there are equivalent
carriers to be described.

In the 77 years during which quantum mechanics has been under construction it has been
useful to introduce names related to the functions, as for example: basis functions, basis sets,
states, configurations, etc. and the every use day of these names can sometimes be felt as
corresponding to physical entities and not just to the elements of a mathematical description.
This is even more the case because the symmetries relating these mathematical elements and
other properties of the solutions of the differential equations obeyed by the functions are in
themselves useful to analyze experimental results.

2.2 The geometry of the auxiliary amplitude functions

In the case of a relativistic treatment of the optimization procedure to obtain the least action
state we have to include a geometrical Lorentz transformation R(x). This (as discussed in
Keller [7]) corresponds to a transformation of the energy-momentum 4-vector pµ followed by the
procedure of obtaining the components from the auxiliary amplitude functions, as follows

Algebraic Equation for the Amplitude Function (Keller 1991)

eµp
µ(x), x = eµx

µ pµ per unit ρ

eµp
µ(x) = p(0)e

(0)
0 (1) Lorentz Transf.

e
(0)
µ = R(x)eµR−1(x), R−1 = R† Lorentz Transf.
eµp

µ(x) = p(0)R(x)e0R−1(x) (2) Lorentz Transf.
eµp

µ(x)R(x) = p(0)R(x)e0 = m0cR(x)e0, R(x) on right
P+↑ = e0P+↑ = P+↑e0, P+↑ = P+↑ie1e2 Ref. Projectors
eµp

µR(x)P+↑ = m0cR(x)P+↑ie0e1e2, (3) Apply Projectors

Ψ(x) = A(x)R(x)P+↑ ∈ Ĉ1,3, (4) Square Root of ρ
−i�∂µeµΨ(x) = m0cΨ(x)ie0e1e2 = �∂4Ψ(x)e0e1e2 Ψ(x) in (3)
ρ = ρ(x) = A2(x), Define Density
ρ = j0 = Ψ(x)e0(Ψ(x))†, Carrier Density

The function Ψ(x) = ΨV (x) above explicitly contains then three main contributions: the
existence of the carriers’ field in AV (x); the observer’s description of the relative motion
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of the field in R(x) a (local) Lorentz transformation; and the reference to a preferred sign
of rest mass m0 and, writing R(x) = RV (x)R(0) spin (through R(0) and P+↑). The density
ρ(x) = j0(x) must be an acceptable density in the presence of the external potential V (x).

As mentioned the formal structure of quantum mechanics allows a statistical analysis of both
the structure of the density and the structure of the amplitude functions. This is as far as in
probability theory a normalized summation of probabilities corresponds to alternatives in the
outcome of the statistical study and a product of probabilities to sequential conditions in the
statistical analysis. The amplitude functions can then be written as sums of products:

“Probability” in the Derivation of Quantum Mechanics from START

ΨS =
L∑

l=1

al

{
m∑

p
(l)
m

n∏
s=1

φ
{l,m}
s

}
φ
{l,m}
s =

i∑
aiϕ

(S)
i

Sum of L Descriptions of n Carriers
ΨS = Linear Form of ρ (quadratic scalar)
|al|2 ⇒ weight of collective description

φ
{l,m}
s describes 1 carrier in S

|ai|2 ⇒ weight of basis description{
m∑

p
(l)
m

n∏
s=1

φ
{l,m}
s

}
=⇒ n carriers

3 KKW-DFT

We proceed now to the specific analysis corresponding to density functional theory [13]. The
result is that the theorems of Hohenberg and Kohn [2] and of the present author and collaborators
appear now as basic natural conditions in the logical structure of the theory [3–6]. Our initial
approach is not related with the replacement of the local study of the properties of the density
with those of an equivalent density of a gas of carriers (free electron gas for example).

From the considerations above we describe each and any of the n carriers obeying Fermi–
Dirac statistics through an auxiliary amplitude function ψi = φ

{l,m}
s (describing carriers in the

system S) where 〈ψiψj〉 = δij , then

ψi =
∑

λ

aλ
i ϕλ,

∑
λ

∣∣aλ
i

∣∣2 = l for all i = 1, . . . , n, where
∑

i

∣∣aλ
i

∣∣2 = wλ,

and the weight of every spin–orbital∑
λ

wλ = n number of electrons, such that
∣∣aλ

i

∣∣2 =
∣∣aλ

j

∣∣2, i, j = 1, . . . , w,

according to the requirement that the density descriptions of all carriers are equivalent. That is(
aλ

i

)∗
aλ

j + aλ
i

(
aλ

j

)∗ = 2wλδij and
∫

1
2

(
ϕ∗

λϕµ + ϕλϕ
∗
µ

)
dv = δλµ,

consequently all ϕλ should be solutions of the same differential equation corresponding to dif-
ferent eigenvalues. Also we define∫

ρ dvol = n, ρ =
∑

i

|ψi|2 =
∑

i

ρi = nρi = nρ(1), ρi = ρj = ρ(1) all i, j.

With these definitions we can compute the carrier–carrier interaction energy as the sum εc-c =
εcoul + εxc, where

εcoul =
(n− 1)

2

∫∫
ρ(2)ρ(1)

e2

r12
dv2dv1, εxc =

∑
s

n

2

∫∫
ρs

(xc)(2)ρs
(xc)(1)

e2

r12
dv2dv1,

ρs
xc(x) =

1
2

∑
λµ

1
2

[(
aλ

i

)∗
aµ

i ϕ
∗
λ(x)ϕµ(x) + aλ

i (aµ
i )∗ ϕλ(x)ϕ̈∗

µ(x)
]s
,

where the super-index s stands for spin.
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3.1 The Pauli exclusion principle, exchange and correlation

The above formulation of density functional theory includes the crucial concept of carrier statis-
tics in its formulation for a set of carriers, the one corresponding to what, in the standard
literature, is called fermions. This is, a type of carriers for which, although being indistinguish-
able, a “exclusion principle” applies stating that “not two identical carriers can be described the
same”. That is what is usually called the Exclusion Principle after Wolfgang Pauli’s formulation
in 1923. For these type of carriers even if the density per carrier is the same as far as they are
indistinguishable, for each carrier there should be a description, through the auxiliary amplitude
function, which must be explicitly different.

• Otherwise stated in the case of fermion carriers the formulation of the exclusion principle
can not simply be the textbook type: “two equivalent fermion carriers can not occupy the
same state” without specifying that nevertheless they are equivalent. Then the concept
“different states” in fact has to refer to different mathematical descriptions of “physically
equivalent states”. This is in fact present even in the accepted formulation of quantum me-
chanics where a symmetrization is always performed which renders the carriers equivalent.
For example the so-called Hartree–Fock scheme, which after Slater can be synthetically
described to that corresponding to a single determinant wave function, is in fact an explicit
form of introducing the equivalence of the carriers as a weighted sum of descriptions where
every carrier is in turn described as occupying each one of the available “states”. The
systematic continuation of the Hartree–Fock scheme through the so called Configuration
Interaction is introduced as a weighted sum of Slater determinants, assuring thus that each
term describes each carrier as equivalent to the other ones. Then the correct formulation
of the Pauli exclusion principle states:

• The description of each carrier of any pair of equivalent carriers should be different.

In short for fermion carriers the density distribution of each carrier has to be the same but
the auxiliary function for each carrier must be different (and is not necessary different for boson
carriers).

In our formulation as above this auxiliary condition demands that the auxiliary function for
each of the n carriers, a sum over m ≥ n descriptions, contains a set of mutually orthogonal
coefficients for each description λ where each coefficient squares to the same real number wλ/n.
In our formulation m > n corresponds to what is called Configuration Interaction.

3.1.1 Exchange distribution density

The considerations for the case of fermion carriers define an additional new kind of distribution
function: When the real square of the auxiliary function is taken, to obtain the carrier distribu-
tion ρ, a sum of cross terms ρλλ′(x) is also obtained. Each individual term ρλλ′(x) integrate to
zero, also their sum.

This sum ρ(X) =
∑
λλ′

ρλλ′(x) defines anyhow a new kind of distribution density where two

auxiliary description functions are multiplied together, which we will call Exchange Distribution
Density. Below these terms contribute to the evaluation of the pair wise interaction energy which
corresponds to what is usually denoted as exchange and correlation energy. Then the additional
contributions can be summed into two different terms, first, from the usual concept of exchange
energy, a sum over n terms with coefficient 1/n and the rest of the terms corresponding to the
usual concept of correlation contribution.

Then our formulation includes all customary descriptions of the energy contributions in an
explicit form.
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3.1.2 The START formulation of the exchange and correlation density functionals
and local potentials

The existence of the exchange distribution density allows the direct formulation of the density
functional for the exchange–correlation energy and of, through derivation with respect to the
density, the local exchange–correlation potentials.

The exchange–correlation energy, as stated above, consists of two parts: the pair wise in-

teraction terms arising from the exchange distribution density (here
s∑

stands for the two spin
values)

εxc =
s∑ ∫∫

ρxc(2)ρxc(1)
e2

r12
dv2dv1 =

∫∫
ρxc(2)χ(1)ρ(1)

e2

r12
dv2dv1,

and the self-coulomb part which is, in view or the equivalence of all electrons, the fraction −1/n
of the Coulomb interaction energy arising from the density–density pair-wise interaction (this
term is already included above as part of the definition of the correct density–density Coulomb
interaction energy)

∆εself-coul = −1
2

∫∫
ρ(2)ρ(1)

e2

r12
dv2dv1,

if a comparison is made with the usual approach the two terms above should be added. From
these terms the local potential from the exchange–correlation part is directly obtained through
a direct functional derivative:

V s
xc(1) =

∫
ρxc(2)χ(1)

e2

r12
dv2,

where the new variable, exchange ratio nχ(x) = 2ρs
xc(x)/ρ(x), the ratio of the (per spin) ex-

change density to the total (per spin) local electron density, has been introduced. The equations
to solve for the auxiliary functions (central charge Ze atomic-like calculation) are

− 1
2m

∇2ψi +
[
−Ze

2

r1
−

(n
2
− 1

)∫
ρxc(2)χ(1)

e2

r12
dv2 + (n− 1)

∫
ρ(2)

e2

r12
dv2

]
ψi = εiψi, (1)

and the calculation of the total electronic energy

E =
∑

i

εi − 1
2

[
(n− 1)

∫∫
ρ(2)ρ(1)

e2

r12
dv2dv1 −

(n
2
− 1

) ∫∫
ρxc(2)χ(1)ρ(1)

e2

r12
dv2dv1

]
.

As the auxiliary functions corresponding to descriptions of equivalent carriers are a unitary
linear transformation (aµ

i ) of a basis set {ϕµ}, the same equation (1) can be used to solve for
the basis functions ϕµ. Also the eigenvalues εi (the same for the ψi) can be given in terms of
the eigenvalues ε′µ of the ϕµ as εi =

∑
µ
‖aµ

i ‖2
ε.

For systems with a small number of electrons the dominant factor is ((n − 1)/n) in the
electron-electron Coulomb interaction. It is basic for the calculation of the hydrogen atom, it
is dominant in the calculation of the Helium atom where each of the two electrons interacts
which the other but not with itself, and progressively less important for larger systems where
the exchange density and the, to it related, exchange interaction grows.

In the case of the calculation of the Beryllium atom, for example, ((n− 1)/n) = 3/4 and the
exchange density (dotted line), shown in the Fig. 11, is now as important as the basis functions
densities. In the same figure (dashed line) the per electron auxiliary function and its components
(1s and 2s thin solid lines) are shown as well as the corresponding electron density (dashed line).
The relevant energies for Ne, for example, in this case are:

1Figures in colour will be available only in electronic version.
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Energy Contribution (Ne atom) energy (Hartree units)
electron-nuclear −310.0951
electron-electron coulomb 59.20975 (+6.5788)
electron-electron exchange correlation
including self-coulomb

−13.2254
−6.5788

kinetic energy 128.766
total energy (exp. −128.94) −128.766.

0

1

2

3

4

 F(r)

2 4 6 8RADIUS

Figure 1. Beryllium atom exchange density.

The calculation is simple. The same procedure and code to obtain the total density can be
used to obtain the exchange density from the same auxiliary functions. The same procedure to
obtain the electron–electron coulomb potential and energy is used to obtain the (local) exchange
potential and exchange energy. The self-consistent algorithm remains the same. The entire
procedure is at least as feasible as the currently employed density functional procedures for
actual calculations. In the case of a solid the factor f = lim

n→∞((n − 1)/n) = 1 is irrelevant and
the summation over pairs of basis functions becomes the starting point for the correct description
of exchange and correlation. In condensed matter calculation of the double summation over pairs
of auxiliary functions should be replaced by actual double integrals.

Acknowledgements

I would like to thank Mrs. Irma Vigil de Aragon for her technical assistance.

[1] Flores J.A. and Keller J., Differential equations for the square root of the electronic density in symmetry-
constrained density-functional theory, Phys. Rev. A, 1992, V.45, N 9, 6259–6262.

[2] Hohenberg P. and Kohn W., Inhomogeneous electron gas, Phys. Rev. B, 1964, V.136, 864–871.

[3] Keller J., On the formulation of the Hohenberg–Kohn Sham theory, Int. J. Quantum Chem. Symp., 1986,
V.20, 767.

[4] Keller J. and Ludeña E., Density functional theory formalism, Int. J. Quantum Chem. Symp., 1987, V.21,
171.

[5] Keller J., The formulation and use of density functional theory, J. Mol. Struct., 1988, V.166, 51–58.

[6] Keller J., Keller A. and Flores J.A., La busqueda de una ecuacion para la (raiz cuadrada de la) densidad
electronica, Acta Chimica Theoretica Latina, 1990, V.18, N 4, 175–186.

[7] Keller J., Spinors and multivectors as a unified tool for space-time geometry and for elementary particle
physics, Int. J. of Theor. Phys., 1991, V.30, N 2, 137–184.



820 J. Keller

[8] Keller J., The geometric content of the electron theory II, Advances in Applied Clifford Algebras, 1999, V.9,
N 2, 309–395.

[9] Keller J., The theory of the electron. A theory of matter from START, in the series Fundamental Theories
of Physics, Vol. 115, Kluwer Acad Publ., 2001; http://www.wkap.nl/prod/b/0-7923-6819-3G.

[10] Keller J., General relativity from START, in Clifford Analysis and Related Topics, Editors K. Gürlebeck,
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