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For the Boussinesq and Charny nonlinear diffusion equations we employ the known similarity
solutions and derive new ones using the Adomian decomposition method and separation of
variables. For a periodic water-drive regime with a heavier fluid sweeping a lighter one
from a porous formation we arrive at an explicit analytical expression for the interface and
describe the phenomena of “superpropagation” and “counterslumping” that date back to
tidal “superelevation” in coastal unconfined aquifers described by J.R. Philip. Similarly, for
a two-phase flow with a straight sharp interface separating two fluids of contrasting viscosity
the interface in a periodic drive regime propagates deeper than in a constant rate sweep.
Applications to groundwater hydrology and petroleum engineering are discussed.

1 Conceptual model

Two-phase flows in porous media are often modeled as two (i = 1, 2) continua separated by
a sharp interface between two zones in which phase saturations are constant [6]. The interface
moves and one phase displaces another either completely or to a residual content, which can
be always scaled out. If the fluids and skeleton are incompressible, formation is homogeneous,
movement is Darcian, then on each side of the interface the total head hi satisfies the Laplace
equation

∆hi(x, y, z, t) = 0, (1)

where x, y are the horizontal coordinates, z is the vertical coordinate, �Vi = −Ki∇hi is the
velocity vector, Ki = kρig/µi are phase conductivities, k is intrinsic permeability, ρi and µi

are fluid densities and viscosities, respectively. If capillary jump across the interface is ignored,
then pressure there is continuous as well as the normal component of �V . If the displacement is
not full, then k in each zone is not constant (as is postulated in the sharp interface model) but
a function of the degree of saturation and (1) does not hold.

Classical groundwater hydrology [6] ignores the second (air) phase and (1) is satisfied for the
water phase only. The corresponding free boundary problem is nonlinear owing to the kinematic
and dynamic boundary conditions along the water table (phreatic surface) that can result in
somewhat counterintuitive shapes, e.g. a wet zone hanging over a dry one [14]. In practice,
most unconfined aquifers extend laterally much more than vertically and the free surface slope
is gentle. It makes possible a hydraulic approximation or averaging of all flow parameters across
the aquifer that eliminates z from (1) and, if y is physically irrelevant (e.g. seepage from irrigation
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channels), the free boundary is implicitly incorporated into the governing Boussinesq equation

S
∂H

∂t
=

∂

∂x

[
KH

∂H

∂x

]
+ c(H, x, t), (2)

where H(x, t) is the thickness of the saturated zone (water table elevation above a horizontal
impermeable bedrock), c is the sink-source (evaporation-infiltration) term and S is specific yield.

2 Similarity solutions and decomposition

Barenblatt in 1952 [5] and Sokolov in 1956 [23] obtained a number of similarity solutions to
the nonlinear diffusion equation (2) at c = 0. Of particular interest is the instantaneous source
solution ABC (Fig. 1a, solid line), which has a finite support 2L(t), i.e. two symmetrical tips,
which propagate left- and right-ward due to gravitational slumping of a fixed volume of water
released as a spike in a dry aquifer.
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We demonstrated [13] that the Barenblatt and Sokolov concave parabolas are identical and
can be converted into a convex parabola satisfying (2) (Fig. 1a, dashed line). The two parabolas
behave differently, in particular, the convex parabola has a frozen tip O, i.e. the two branches
can be considered separately and we have localization or a finite size of the saturated zone even
at blow-up boundary conditions. The question arises whether the convex parabola can appear
in aquifers as a physically real initial condition to the transient equation (2). The answer is
yes. We integrated the steady governing equation (LHP in (2) is zero) with a constant reservoir
level (ED in Fig. 1a) and evaporation c = αh (α is a constant) and obtained just the convex
parabola. Note that this linear evaporation function is an expedient model advocated by some
groundwater hydrologists.

We now consider the hydraulic model for a nearly horizontal homogeneous unconfined aquifer
of length lx, bounded by two time-dependent boundary conditions, H1(t) and H2(t), respectively,
representing the seasonal fluctuations in river stage (Fig. 1b). With location of the origin, x = 0,
at the left boundary, and the datum at the bottom of the aquifer, (2) can be rewritten as

∂H

∂t
− ∂

∂x

[
KH

∂H

∂x

]
=

I

S
(3)

with boundary and initial conditions

H(0, t) = H1(t), H(lx, t) = H2(t), H(x, 0) = H0(x), (4)

where I is the mean daily recharge from rainfall; and H0(x) is the initial head across the
aquifer (Fig. 1b, dashed line). We solve (3), (4) by using one of the Adomian’s decomposition
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schemes [2–4]. Let us write (3) as

∂H

∂t
=

I

S
+

KH

S

∂2H

∂x2
+

K

S

(
∂H

∂x

)2

. (5)

Defining the operator Lt = ∂/∂t, and pre-multiplying (5) by the inverse operator L−1
t ,

H = H0 +
It

S
+ L−1

t N(H), N(H) =
K

S

[
H

∂2H

∂x2
+

(
∂H

∂x

)2
]

. (6)

Now define the series H =
∞∑

n=0
H∗

n, where the first term satisfies the recharge and the initial

condition, that is

H∗
0 = H0(x) +

It

S
. (7)

Subsequent terms in the series are given as

H∗
1 = L−1

t A0, H∗
2 = L−1

t A1, . . . , H∗
n+1 = L−1

t An. (8)

Taking into account (6), (7) the Adomian polynomials, An, in (8) for the nonlinear term, N ,
are defined as

A0 = N(H∗
0 ), A1 = H∗

1

dN(H∗
0 )

dH∗
0

, A2 = H∗
2

dN(H∗
0 )

dH∗
0

+
H∗2

1

2!
d2N(H∗

0 )
dH∗2

0

,

A3 = H∗
3

dN(H∗
0 )

dH∗
0

+ H∗
1H∗

2

d2N(H∗
0 )

dH∗2
0

+
H∗3

1

3!
d3N(H∗

0 )
dH∗3

0

, . . . . (9)

According to (9) the polynomials An are generated for each non-linearity so that A0 depends
only on H∗

0 , A1 depends only on H∗
0 and H∗

1 , A2 depends only on H∗
0 , H∗

1 , H∗
2 , etc. All of the

H∗
n components are calculable. It is now established that the series

∞∑
n=0

An for N(H) is equal

to a generalized Taylor series for N(H0), that
∞∑

n=0
H∗

n is a generalized Taylor series about the

function H∗
0 , and that the series terms approach zero as 1/(mn)!, if m is the order of the highest

linear differential operator. Since the series converges and does so very rapidly, the n-term

partial sum Φn =
n−1∑
i=0

H∗
i usually serves as an accurate enough and practical solution. Thus, the

second term in the series is

H1 =
K

S
L−1

t

[
H∗

0

∂2H∗
0

∂x2
+

(
∂H∗

0

∂x

)2
]

=
K

S
L−1

t

[(
H0(x) +

It

S

)
∂2H0

∂x2
+

(
∂H0(x)

∂x

)2
]

.(10)

Higher terms in the series are derived similarly to (10). The third term would require in-
formation on the third-order spatial derivative of the initial condition. Clearly H0(x) must be
sufficiently smooth for the calculation of its first and second-order spatial derivative. In prac-
tical applications a smooth surface should be fitted through the heads measured at individual
wells. The spatial derivatives are then calculated analytically or numerically. In most practi-
cal modeling applications [21, 22], the first few terms in the decomposition series constitute an
accurate solution. However it has been shown that decomposition series converge to the exact
closed-form solution. For example, it has been shown in [18] that decomposition series converge
to Sokolov’s [23] solution. For more comparisons see [16, 19, 20]. Applications to the hydrody-
namic model in porous media, that is the Laplace’s equation subject to a dynamic nonlinear free
surface are shown in [18]. Applications to the advective-dispersive equation subject to nonlinear
reactions are shown in [17].

Several works have been devoted to the convergence problem of decomposition series. See for
example the rigorous mathematical framework developed in [1, 7–11].
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3 Superpropagation

A fascinating “superelevation” property of (2) has been elucidated in [15]. He considered a BVP
with H(0, t) = H0 + a sinωt and H∞ = H0 and found that a cyclostationary excited reservoir
water level results in H whose time average value is higher than H0. In other words, the aquifer
is prone to accept water rather than to drain. This effect has been later validated experimentally
in coastal aquifers subject to tidal variations of the sea level [24]. Clearly, the linear diffusion
equation does not exhibit any “superelevation”.

We inspected other nonlinear sharp-front equations to find out whether the “superelevation”
property is generic. We considered the Charny [6] equation

∂H

∂t
+

∂

∂x

[
qH + H(H − 1)

∂H

∂x

]
= 0 (11)

which describes a sharp interface H(x, t) between two phases in a formation of a constant
thickness b = 1 with a transient drive of phase 1 displacing phase 2. The nonlinear diffusion
equation (11) is based on the same vertical averaging as the Boussinesq equation and invokes
additionally the assumption µ1 = µ2. However, ρ1 > ρ2 that is common in coastal aquifers
where denser sea water encroaches into the fresh water zone.

We found [12] a straight line solution, which holds for an arbitrary dimensionless flow rate q(t).
In particular, we detected the phenomenon of “counterslumping” when the trailing front B in
Fig. 2a slumps for a while against the main flow. For a cyclostationary excitation (11) the
interface propagates throughout one period deeper than at a regime with q = const. We called
this enhanced sweeping “superpropagation” in congruity with Philip’s “superelevation”. Note,
that we solved PDE (11) in a closed form.
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We tested for the same non-symmetrical effect the Green–Ampt model describing a one-phase
transient vertical infiltration. The governing equation is

m
dH

dt
= K

(
1 +

d + hc

H

)
, (12)

where H(t) is the depth of the infiltration front counted from the soil surface, d(t) is a given
ponding water level at the surface and hc is the constant invoking capillarity of the dry soil. By
computer algebra routines we solved equation (12) with a cyclostationary d and arrived at the
same conclusion that the wetting front propagates (on the time average) deeper than the front
with d = const.

Eventually, we examined a two-phase displacement in x-direction when two phases contrast
in viscosity only. The corresponding 1-D ODE according to [6] is

m
dH

dt
= k

pi − p0

µ1H + µ2(l − H)
, (13)
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where H(t) is the front location, l is the finite domain size, pi(t) and po(t) are the injection
and abstraction pressures (Fig. 2b). In (13) the densities of the two phases are identical that
excludes z. Integrating (13) for a cyclostationary pressure drop pi − po across the layer we
discovered the same effect of “superpropagation” as in all previous examples.
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