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In [1], the wave functions of quantum trigonometric n-particle Ruijsenaars model are defined
as matrix elements of operators of representations of Cartan subalgebra between vectors
invariant with respect to q-deformation U ′

q(son) of Lie algebra so(n). It was shown there,
that the wave functions defined in such a way are simultaneous eigenfunctions of commuting
set of Macdonald–Ruijsenaars difference operators. Using this information, the expressions
for wave functions in terms of Macdonald polynomials were found. In this contribution,
these expressions are obtained in a direct manner by using explicit expressions for invariant
vectors in representation spaces in terms of Gel’fand–Tsetlin basis.

1 Introduction

In [2], M. Noumi introduced the notion of the quantum analogue Fq(GL(n)/SO(n)) of algebra
of functions on the homogeneous space GL(n)/SO(n) and zonal spherical functions on it. It
turned out that these spherical functions when restricted to Cartan subalgebra are Macdonald
polynomials, which are simultaneous eigenfunctions of commuting set of Macdonald–Ruijsenaars
difference operators. These difference operators appear as the radial components of Casimir
elements of Uq(gln). In [2], the radial components of the “quadratic” Casimir elements were
derived. In [1] the radial components of the other basis Casimir elements of Uq(gln) were found.
From the other side, Macdonald–Ruijsenaars difference operators (up to a change of variables)
coincide with commuting Hamiltonians of quantum trigonometric n-particle Ruijsenaars model.
In [1], the wave functions of Ruijsenaars model are defined as matrix elements Ψ(x1, x2, . . . , xn) =
〈v|q

∑n
k=1 xkεk |v〉, where qεk belongs to Cartan subalgebra, 〈v| and |v〉 are invariant vectors with

respect to q-deformation U ′
q(son) of Lie algebra so(n) introduced in [3]. It was shown that

the wave functions defined in such a way are simultaneous eigenfunctions of commuting set
of Macdonald–Ruijsenaars difference operators. Using this information, the expressions for
wave functions in terms of Macdonald polynomials were found. In this contribution, these
expressions are obtained in a direct manner by using explicit expressions for invariant vectors in
representation spaces in terms of Gel’fand–Tsetlin basis. In order to express the obtained wave
functions in terms of Macdonald polynomials we need the combinatorial formula [4] for such
polynomials.

Quantum trigonometric Ruijsenaars model which we discuss in this paper is a q-analogue of
quantum Sutherland model connected with symmetric space GL(n)/SO(n). Thus this paper can
be considered in the spirit of [5], where different integrable systems are connected with analysis
on symmetric spaces.

In [6], the authors used representation theory of GL(n) to obtain the wave functions for open
Toda model and Sutherland model. Their Gel’fand–Tsetlin formulas are different from that
which are used in this contribution. An important consequence of this difference is that the
wave functions obtained in [6] are wave functions in some separated variables.
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2 The quantum algebras Uq(gln)
and their finite-dimensional representations

By the definition [7], Drinfeld–Jimbo quantum algebra Uq(gln) is a unital associative algebra with
the generators ei, fi, i = 1, 2, . . . , n − 1, and generators qh, where h = x1ε1 + x2ε2 + · · · + xnεn,
xi ∈ R, are elements of a vector space with the basis εi, i = 1, 2, . . . , n. Defining relations
containing complex deformation parameter q �= 0,±1 are:

q0 = 1, qh1qh2 = qh1+h2 , qhei = qxi−xi+1eiq
h, qhfi = qxi+1−xifiq

h,

[ei, fj ] = δij
qεi−εi+1 − qεi+1−εi

q − q−1
,

[ei, ej ] = 0, |i − j| > 1, e2
i ej − (q + q−1)eiejei + eje

2
i = 0, |i − j| = 1,

[fi, fj ] = 0, |i − j| > 1, f2
i fj − (q + q−1)fifjfi + fjf

2
i = 0, |i − j| = 1.

In the limit q → 1, algebra Uq(gln) becomes the universal enveloping algebra for Lie algebra gln.
For every set of n integers mn = (m1,n, m2,n, . . . , mn,n) such that

m1,n ≥ m2,n ≥ · · · ≥ mn,n,

there corresponds a simple finite-dimensional left module VL
mn

over the algebra Uq(gln). Its
explicit construction will be given in Gel’fand–Tsetlin formalism. Basis elements of this module
are labeled by the sets of integers mj = (m1,j , m2,j , . . . , mj,j), j = 1, . . . , n − 1, such that

mi,j+1 ≥ mi,j ≥ mi+1,j+1, i = 1, 2, . . . , j, j = 1, 2, . . . , n − 1.

It is useful to visualize them by the Gel’fand–Tsetlin tableaux

M =




m1,n m2,n · · · mn,n

m1,n−1 m2,n−1 · · · mn−1,n−1

· · · · · · · · ·
m1,1


 . (1)

To the tableau (1), there corresponds basis element denoted by |M〉.
The generators of Uq(gln) act on the Gel’fand–Tsetlin basis by the formulas [7]

qεj |M〉 = qaj |M〉, aj =
j∑

i=1

mi,j −
j−1∑
i=1

mi,j−1, 1 ≤ j ≤ n, (2)

ej |M〉 =
j∑

i=1

Ai
j(M)|M+i

j 〉, fj |M〉 =
j∑

i=1

Bi
j(M)|M−i

j 〉, 1 ≤ j ≤ n − 1. (3)

Here M±i
j is the Gel’fand–Tsetlin tableau obtained from the tableau (1) by replacement of mi,j

by mi,j ± 1, and

Ai
j(M) = −

j+1∏
s=1

[ls,j+1 − li,j ]∏
s �=i

[ls,j − li,j ]
, Bi

j(M) =

j−1∏
s=1

[ls,j−1 − li,j ]∏
s �=i

[ls,j − li,j ]
,

where

ls,j := ms,j − s, (4)
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and the numbers in square brackets denote q-numbers defined by

[m] =
qm − q−m

q − q−1
.

In complete analogy, it is possible to construct a simple finite-dimensional right module VR
mn

over the algebra Uq(gln) which is dual to the described above. The basis elements of this module
are also parameterized by the same set of Gel’fand–Tsetlin tableaux. The basis element denoted
by 〈M | which is dual to |M〉 corresponds to the tableau (1).

The generators of Uq(gln) act on these basis elements by the formulas

〈M |qεj = qaj 〈M |, aj =
j∑

i=1

mi,j −
j−1∑
i=1

mi,j−1, 1 ≤ j ≤ n, (5)

〈M |ej =
j∑

i=1

Ai
j(M

−i
j )〈M−i

j |, 〈M |fj =
j∑

i=1

Bi
j(M

+i
j )〈M+i

j |, 1 ≤ j ≤ n − 1. (6)

3 Some invariant elements in Uq(gln)-modules

In this section, we give explicit formulas for elements in left and right modules over Uq(gln)
which are annihilating by

θk = qεkfk − qqεk+1ek, k = 1, 2, . . . , n − 1.

In the limit q → 1, the elements θk become generators of the enveloping algebra for the Lie
algebra son embedded into gln. In fact, the elements q−εkθk generate [2] the non-standard
deformation U ′

q(son) of the enveloping algebra U(son) introduced by Gavrilik and Klimyk [3].
The following theorem is due to Noumi [2].

Theorem 1. The element |v〉 ∈ VL
mn

(resp. 〈v| ∈ VR
mn

) such that θk|v〉 = 0, (resp. 〈v|θk = 0),
k = 1, . . . , n − 1, exists if and only if (mi,n − mi+1,n) are even for i = 1, . . . , n − 1. If such
element |v〉 (resp. 〈v|) exists, it is unique up to a multiplier.

The elements |v〉 and 〈v| which are annihilating by θk are called invariant elements with
respect to action of θk. Now, for the case when conditions of theorem for mn are satisfied, we
present explicit formulas for such elements |v〉 and 〈v|. Let S be the set of all Gel’fand–Tsetlin
tableaux corresponding to mn and satisfying the additional conditions:

(mi,j+1 − mi,j) is even for all i = 1, 2, . . . , j, j = 1, 2, . . . , n − 1.

Then

|v〉 =
∑
M∈S

α(M)|M〉, 〈v| =
∑
M∈S

β(M)〈M |, (7)

where

α(M) =
n∏

k=2

αk, β(M) =
n∏

k=2

βk, (8)

αk = qγk
∏

1≤i<j≤k

[li,k−1 − lj−1,k−1]!![li,k−1 − lj,k − 2]!!
[li,k − lj,k − 2]!![li,k − lj−1,k−1]!!

, (9)

βk = q−γk
∏

1≤i<j≤k

[li,k − lj,k − 1]!![li,k − lj−1,k−1 − 1]!!
[li,k−1 − lj−1,k−1 − 1]!![li,k−1 − lj,k − 1]!!

, (10)
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γk =
1
2

∑
1≤i<j≤k

(li,k − li,k−1)(lj−1,k−1 − lj,k − 2). (11)

We used the notations (4) and

[s]!! := [s][s − 2] · · · [2] (or [1]), [0]!! = [−1]!! = 1.

These expressions for elements |v〉 and 〈v| were obtained by straightforward calculation using
action formulas (2)–(3) and (5)–(6).

4 Macdonald polynomials

Macdonald polynomials constitute a linear basis in the space of symmetric polynomials of X =
{X±1

1 , X±1
2 , . . ., X±1

n } with coefficients being rational functions in two formal variables q and t.
Each Macdonald polynomial Pλ(X; q, t) is labeled by the set of n integers λ = (λ1, λ2, . . . , λn)
such that

λ1 ≥ λ2 ≥ · · · ≥ λn.

We introduce a partial ordering among such sets. For two such sets λ and µ, we put

λ � µ ⇔
{

λ1 + λ2 + · · · + λn = µ1 + µ2 + · · · + µn and
λ1 + λ2 + · · · + λr ≥ µ1 + µ2 + · · · + µr, r = 1, 2, . . . , n − 1.

The set λ defines a monomial Xλ = Xλ1
1 · · ·Xλn

n . The monomial symmetric function mλ(X)
is the sum of all distinct monomials obtainable from Xλ by permutations of X’s. In particular,
if λ such that λi = 1 for i ≤ r and λj = 0 for j > r, we have mλ(X) = er(X), the r-th
elementary symmetric polynomial.

To present the definition of Macdonald polynomials we need a commuting family of q-dif-
ference operators

Mr = t−r(n−r)/2
∑

I⊂{1,2,...,n}
|I|=r

∏
i∈I
j �∈I

tXi − Xj

Xi − Xj

∏
i∈I

τi, r = 1, . . . , n,

where τi represents the q-shift operator with respect to the variable Xi. Namely, τi is the
automorphism of algebra of polynomials of X±1

1 , X±1
2 , . . ., X±1

n uniquely defined by τi(Xj) =
qδijXj . Macdonald proved [4] the following

Theorem 2. There exists a unique linear basis {Pλ(X)} in the space of symmetric polynomials
of X±1

1 , X±1
2 , . . ., X±1

n satisfying the following two conditions:

• For each λ, Pλ can be presented as

Pλ(X) = mλ(X) +
∑
µ≺λ

uλµmµ(X),

where uλµ are some rational functions of q and t.

• For each λ, Pλ(X) is a joint eigenfunction of Mr, r = 1, 2, . . . , n:

MrPλ(X) = er(qλ1tρ1 , . . . , qλntρn)Pλ(X),

where ρi = (n − 2i + 1)/2.
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We give now some explicit formulas for Macdonald polynomials. For the set λ labeling Pλ,
it corresponds Gel’fand–Tsetlin tableaux (like (1))

Λ =




λ1,n λ2,n · · · λn,n

λ1,n−1 λ2,n−1 · · · λn−1,n−1

· · · · · · · · ·
λ1,1


 ,

where λi,n = λi, i = 1, . . . , n, and λi,j , i = 1, . . . , j, j = 1, . . . , n − 1, are integers satisfying

λi,j+1 ≥ λi,j ≥ λi+1,j+1, i = 1, 2, . . . , j, j = 1, 2, . . . , n − 1.

We suppose that Λ runs over all the possible Gel’fand–Tsetlin tableaux corresponding to the
fixed λ. Next theorem is a reformulation in terms of Gel’fand–Tsetlin tableaux of combinatorial
formula [4] for Macdonald polynomials. We need the notation:

(a; q)s := (1 − a)(1 − aq) · · · (1 − aqs−1).

Theorem 3. The expression for Macdonald polynomial Pλ has form

Pλ(X1, X2, . . . , Xn; q, t) =
∑
Λ

ϕ(Λ; q, t)XΛ, (12)

where

XΛ =
n∏

k=1

Xak
k , ak =

k∑
i=1

λi,k −
k−1∑
i=1

λi,k−1,

ϕ(Λ; q, t) =
n∏

k=2

ϕk(λk−1, λk; q, t), λk = (λ1,k, λ2,k, . . . , λk,k),

ϕk(λk−1, λk; q, t) =
∏

1≤i<j≤k

(tj−i; q)λi,k−λj−1,k−1

(tj−i−1q; q)λi,k−λj−1,k−1

· (tj−i−1q; q)λi,k−λj,k

(tj−i; q)λi,k−λj,k

× (tj−i; q)λi,k−1−λj,k

(tj−i−1q; q)λi,k−1−λj,k

· (tj−i−1q; q)λi,k−1−λj−1,k−1

(tj−i; q)λi,k−1−λj−1,k−1

=
∏

1≤i<j≤k

(qtj−i−1qλi,k−λj−1,k−1 ; q)λj−1,k−1−λj,k

(tj−iqλi,k−λj−1,k−1 ; q)λj−1,k−1−λj,k

× (tj−iqλi,k−1−λj−1,k−1 ; q)λj−1,k−1−λj,k

(qtj−i−1qλi,k−1−λj−1,k−1 ; q)λj−1,k−1−λj,k

. (13)

Proof. From [4], it follows that

ϕ(Λ; q, t) =
n∏

k=2

bλk
(Ck)

bλk

bλk−1

bλk−1
(Ck)

=
1

bλn

n∏
k=1

bλk
(Ck)

bλk−1
(Ck)

.

Combinatorial definition of bλk
and bλk

(Cj) is given in [4]. This combinatorics rewritten in
terms of Gel’fand–Tsetlin tableaux gives

bλk
(Ck)

bλk

=
∏

1≤i<j≤k

(tj−i; q)λi,k−λj−1,k−1

(tj−i−1q; q)λi,k−λj−1,k−1

· (tj−i−1q; q)λi,k−λj,k

(tj−i; q)λi,k−λj,k

,

bλk−1

bλk−1
(Ck)

=
∏

1≤i<j≤k

(tj−i; q)λi,k−1−λj,k

(tj−i−1q; q)λi,k−1−λj,k

· (tj−i−1q; q)λi,k−1−λj−1,k−1

(tj−i; q)λi,k−1−λj−1,k−1

. �
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5 Wave functions of Ruijsenaars model

In [1], the wave function for Schrödinger equation for quantum n-particle Ruijsenaars model was
defined as

Ψmn(x1, x2, . . . , xn) := 〈v|qh|v〉 = 〈v|q
∑n

k=1 xkεk |v〉,

where the invariant elements 〈v| and |v〉 are defined in Section 3 (conditions when they exist
are also given there). Here we give a direct proof that Ψmn(x1, x2, . . . , xn) can be expressed in
terms of Macdonald polynomials.

From (2) and (7)–(8), it follows

Ψmn(x1, x2, . . . , xn) = 〈v|q
∑n

k=1 xkεk |v〉 =
∑
M∈S

n∏
k=2

αkβk ·
n∏

k=1

qxk(
∑k

i=1 mi,k−
∑k−1

i=1 mi,k−1),

where αk and βk are given by (9)–(11). We make change of variables λi,j = (mi,j − mn,n)/2 for
all possible i and j. Since M ∈ S, all the λi,j are non-negative integers. For αkβk we have

αkβk =
∏

1≤i<j≤k

[li,k − lj,k − 1]!![li,k − lj−1,k−1 − 1]!![li,k−1 − lj,k − 2]!![li,k−1 − lj−1,k−1]!!
[li,k − lj−1,k−1]!![li,k − lj,k − 2]!![li,k−1 − lj−1,k−1 − 1]!![li,k−1 − lj,k − 1]!!

=
∏

1≤i<j≤k

[2λi,k − 2λj,k − i + j − 1]!!
[2λi,k − 2λj−1,k−1 − i + j − 1]!!

· [2λi,k − 2λj−1,k−1 − i + j − 2]!!
[2λi,k − 2λj,k − i + j − 2]!!

× [2λi,k−1 − 2λj,k − i + j − 2]!!
[2λi,k−1 − 2λj−1,k−1 − i + j − 2]!!

· [2λi,k−1 − 2λj−1,k−1 − i + j − 1]!!
[2λi,k−1 − 2λj,k − i + j − 1]!!

=
∏

1≤i<j≤k

[2λi,k − 2λj,k − i + j − 1][2λi,k − 2λj,k − i + j − 3] · · · [2λi,k − 2λj−1,k−1 − i + j + 1]
[2λi,k − 2λj,k − i + j − 2][2λi,k − 2λj,k − i + j − 4] · · · [2λi,k − 2λj−1,k−1 − i + j]

× [2λi,k−1 − 2λj,k − i + j − 2][2λi,k−1 − 2λj,k − i + j − 4] · · · [2λi,k−1 − 2λj−1,k−1 − i + j]
[2λi,k−1 − 2λj,k − i + j − 1][2λi,k−1 − 2λj,k − i + j − 3] · · · [2λi,k−1 − 2λj−1,k−1 − i + j + 1]

=
∏

1≤i<j≤k

(q4q2(j−i−1)q4(λi,k−λj−1,k−1); q4)λj−1,k−1−λj,k

(q2(j−i)q4(λi,k−λj−1,k−1); q4)λj−1,k−1−λj,k

× (q2(j−i)q4(λi,k−1−λj−1,k−1); q4)λj−1,k−1−λj,k

(q4q2(j−i−1)q4(λi,k−1−λj−1,k−1); q4)λj−1,k−1−λj,k

= ϕk(λk−1, λk; q4, q2),

where the definition (13) for ϕk(λk−1, λk; q, t) is used. Thus

Ψmn(x1, x2, . . . , xn) =
∑
Λ

ϕ(Λ; q, t)
n∏

k=1

qxk(mn,n+2(
∑k

i=1 λi,k−
∑k−1

i=1 λi,k−1))

= q(x1+···+xn)mn,n
∑
Λ

ϕ(Λ; q, t)
n∏

k=1

q2xk(
∑k

i=1 λi,k−
∑k−1

i=1 λi,k−1).

Comparing with (12) we obtain

Ψmn(x1, x2, . . . , xn) = q(x1+···+xn)mn,nPλ(q2x1 , q2x2 , . . . , q2xn ; q4, q2).

This wave function satisfies equations

ĤrΨmn(x1, x2, . . . , xn) = E
(r)
Λ Ψmn(x1, x2, . . . , xn), r = 1, 2, . . . , n, (14)
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where Ĥr is r-th Hamiltonian of Ruijsenaars model:

Ĥr = qr(r−1)
∑

I⊂{1,2,...,n}
|I|=r




∏
i∈I
j �∈I

q2q2xi − q2xj

q2xi − q2xj


 e2

∑
i∈I ∂xi ,

E
(r)
mn = er(q2m1,n+2n−2, q2m2,n+2n−4, . . . , qmn,n).

This statement is easily follows from Theorem 2. Note, the equation (14) at r = 1 is precisely
Schrödinger equation for quantum trigonometric n-particle Ruijsenaars model.
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