On the Wave Functions of Ruijsenaars Model Related to q-Analogue of Symmetric Space GL(n)/SO(n)

Nikolai IORGOV
Bogolyubov Institute for Theoretical Physics, $14 b$ Metrologichna Str., 03143 Kyiv, Ukraine E-mail: iorgov@aep1.bitp.kiev.ua

Abstract

In [1], the wave functions of quantum trigonometric n-particle Ruijsenaars model are defined as matrix elements of operators of representations of Cartan subalgebra between vectors invariant with respect to q-deformation $U_{q}^{\prime}\left(\mathrm{so}_{n}\right)$ of Lie algebra so (n). It was shown there, that the wave functions defined in such a way are simultaneous eigenfunctions of commuting set of Macdonald-Ruijsenaars difference operators. Using this information, the expressions for wave functions in terms of Macdonald polynomials were found. In this contribution, these expressions are obtained in a direct manner by using explicit expressions for invariant vectors in representation spaces in terms of Gel'fand-Tsetlin basis.

1 Introduction

In [2], M. Noumi introduced the notion of the quantum analogue $\mathcal{F}_{q}(\mathrm{GL}(n) / \mathrm{SO}(n))$ of algebra of functions on the homogeneous space $\mathrm{GL}(n) / \mathrm{SO}(n)$ and zonal spherical functions on it. It turned out that these spherical functions when restricted to Cartan subalgebra are Macdonald polynomials, which are simultaneous eigenfunctions of commuting set of Macdonald-Ruijsenaars difference operators. These difference operators appear as the radial components of Casimir elements of $U_{q}\left(\mathrm{gl}_{n}\right)$. In [2], the radial components of the "quadratic" Casimir elements were derived. In [1] the radial components of the other basis Casimir elements of $U_{q}\left(\mathrm{gl}_{n}\right)$ were found. From the other side, Macdonald-Ruijsenaars difference operators (up to a change of variables) coincide with commuting Hamiltonians of quantum trigonometric n-particle Ruijsenaars model. In [1], the wave functions of Ruijsenaars model are defined as matrix elements $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\langle v| q^{\sum_{k=1}^{n} x_{k} \epsilon_{k}}|v\rangle$, where $q^{\epsilon_{k}}$ belongs to Cartan subalgebra, $\langle v|$ and $|v\rangle$ are invariant vectors with respect to q-deformation $U_{q}^{\prime}\left(\operatorname{so}_{n}\right)$ of Lie algebra so (n) introduced in [3]. It was shown that the wave functions defined in such a way are simultaneous eigenfunctions of commuting set of Macdonald-Ruijsenaars difference operators. Using this information, the expressions for wave functions in terms of Macdonald polynomials were found. In this contribution, these expressions are obtained in a direct manner by using explicit expressions for invariant vectors in representation spaces in terms of Gel'fand-Tsetlin basis. In order to express the obtained wave functions in terms of Macdonald polynomials we need the combinatorial formula [4] for such polynomials.

Quantum trigonometric Ruijsenaars model which we discuss in this paper is a q-analogue of quantum Sutherland model connected with symmetric space GL $(n) / \mathrm{SO}(n)$. Thus this paper can be considered in the spirit of [5], where different integrable systems are connected with analysis on symmetric spaces.

In [6], the authors used representation theory of $\mathrm{GL}(n)$ to obtain the wave functions for open Toda model and Sutherland model. Their Gel'fand-Tsetlin formulas are different from that which are used in this contribution. An important consequence of this difference is that the wave functions obtained in [6] are wave functions in some separated variables.

2 The quantum algebras $U_{q}\left(\mathrm{gl}_{n}\right)$ and their finite-dimensional representations

By the definition [7], Drinfeld-Jimbo quantum algebra $U_{q}\left(\mathrm{gl}_{n}\right)$ is a unital associative algebra with the generators $e_{i}, f_{i}, i=1,2, \ldots, n-1$, and generators q^{h}, where $h=x_{1} \epsilon_{1}+x_{2} \epsilon_{2}+\cdots+x_{n} \epsilon_{n}$, $x_{i} \in \mathbb{R}$, are elements of a vector space with the basis $\epsilon_{i}, i=1,2, \ldots, n$. Defining relations containing complex deformation parameter $q \neq 0, \pm 1$ are:

$$
\begin{aligned}
& q^{0}=1, \quad q^{h_{1}} q^{h_{2}}=q^{h_{1}+h_{2}}, \quad q^{h} e_{i}=q^{x_{i}-x_{i+1}} e_{i} q^{h}, \quad q^{h} f_{i}=q^{x_{i+1}-x_{i}} f_{i} q^{h}, \\
& {\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{q^{\epsilon_{i}-\epsilon_{i+1}}-q^{\epsilon_{i+1}-\epsilon_{i}}}{q-q^{-1}},} \\
& {\left[e_{i}, e_{j}\right]=0, \quad|i-j|>1, \quad e_{i}^{2} e_{j}-\left(q+q^{-1}\right) e_{i} e_{j} e_{i}+e_{j} e_{i}^{2}=0, \quad|i-j|=1,} \\
& {\left[f_{i}, f_{j}\right]=0, \quad|i-j|>1, \quad f_{i}^{2} f_{j}-\left(q+q^{-1}\right) f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0, \quad|i-j|=1 .}
\end{aligned}
$$

In the limit $q \rightarrow 1$, algebra $U_{q}\left(\mathrm{gl}_{n}\right)$ becomes the universal enveloping algebra for Lie algebra gl_{n}.
For every set of n integers $\boldsymbol{m}_{n}=\left(m_{1, n}, m_{2, n}, \ldots, m_{n, n}\right)$ such that

$$
m_{1, n} \geq m_{2, n} \geq \cdots \geq m_{n, n}
$$

there corresponds a simple finite-dimensional left module $\mathcal{V}_{\boldsymbol{m}_{n}}^{\mathrm{L}}$ over the algebra $U_{q}\left(\mathrm{gl}_{n}\right)$. Its explicit construction will be given in Gel'fand-Tsetlin formalism. Basis elements of this module are labeled by the sets of integers $\boldsymbol{m}_{j}=\left(m_{1, j}, m_{2, j}, \ldots, m_{j, j}\right), j=1, \ldots, n-1$, such that

$$
m_{i, j+1} \geq m_{i, j} \geq m_{i+1, j+1}, \quad i=1,2, \ldots, j, \quad j=1,2, \ldots, n-1 .
$$

It is useful to visualize them by the Gel'fand-Tsetlin tableaux

$$
M=\left(\begin{array}{ccccccc}
m_{1, n} & & m_{2, n} & & \cdots & & m_{n, n} \tag{1}\\
& m_{1, n-1} & & m_{2, n-1} & \cdots & m_{n-1, n-1} & \\
& & \cdots & \cdots & \cdots & &
\end{array}\right) .
$$

To the tableau (1), there corresponds basis element denoted by $|M\rangle$.
The generators of $U_{q}\left(\mathrm{gl}_{n}\right)$ act on the Gel'fand-Tsetlin basis by the formulas [7]

$$
\begin{align*}
& q^{\epsilon_{j}}|M\rangle=q^{a_{j}}|M\rangle, \quad a_{j}=\sum_{i=1}^{j} m_{i, j}-\sum_{i=1}^{j-1} m_{i, j-1}, \quad 1 \leq j \leq n, \tag{2}\\
& e_{j}|M\rangle=\sum_{i=1}^{j} A_{j}^{i}(M)\left|M_{j}^{+i}\right\rangle, \quad f_{j}|M\rangle=\sum_{i=1}^{j} B_{j}^{i}(M)\left|M_{j}^{-i}\right\rangle, \quad 1 \leq j \leq n-1 . \tag{3}
\end{align*}
$$

Here $M_{j}^{ \pm i}$ is the Gel'fand-Tsetlin tableau obtained from the tableau (1) by replacement of $m_{i, j}$ by $m_{i, j} \pm 1$, and

$$
A_{j}^{i}(M)=-\frac{\prod_{s=1}^{j+1}\left[l_{s, j+1}-l_{i, j}\right]}{\prod_{s \neq i}\left[l_{s, j}-l_{i, j}\right]}, \quad B_{j}^{i}(M)=\frac{\prod_{s=1}^{j-1}\left[l_{s, j-1}-l_{i, j}\right]}{\prod_{s \neq i}\left[l_{s, j}-l_{i, j}\right]},
$$

where

$$
\begin{equation*}
l_{s, j}:=m_{s, j}-s \tag{4}
\end{equation*}
$$

and the numbers in square brackets denote q-numbers defined by

$$
[m]=\frac{q^{m}-q^{-m}}{q-q^{-1}} .
$$

In complete analogy, it is possible to construct a simple finite-dimensional right module $\mathcal{V}_{\boldsymbol{m}_{n}}^{\mathrm{R}}$ over the algebra $U_{q}\left(\mathrm{gl}_{n}\right)$ which is dual to the described above. The basis elements of this module are also parameterized by the same set of Gel'fand-Tsetlin tableaux. The basis element denoted by $\langle M|$ which is dual to $|M\rangle$ corresponds to the tableau (1).

The generators of $U_{q}\left(\mathrm{gl}_{n}\right)$ act on these basis elements by the formulas

$$
\begin{align*}
& \langle M| q^{\epsilon_{j}}=q^{a_{j}}\langle M|, \quad a_{j}=\sum_{i=1}^{j} m_{i, j}-\sum_{i=1}^{j-1} m_{i, j-1}, \quad 1 \leq j \leq n, \tag{5}\\
& \langle M| e_{j}=\sum_{i=1}^{j} A_{j}^{i}\left(M_{j}^{-i}\right)\left\langle M_{j}^{-i}\right|, \quad\langle M| f_{j}=\sum_{i=1}^{j} B_{j}^{i}\left(M_{j}^{+i}\right)\left\langle M_{j}^{+i}\right|, \quad 1 \leq j \leq n-1 . \tag{6}
\end{align*}
$$

3 Some invariant elements in $U_{q}\left(\mathrm{gl}_{n}\right)$-modules

In this section, we give explicit formulas for elements in left and right modules over $U_{q}\left(\mathrm{gl}_{n}\right)$ which are annihilating by

$$
\theta_{k}=q^{\epsilon_{k}} f_{k}-q q^{\epsilon_{k+1}} e_{k}, \quad k=1,2, \ldots, n-1 .
$$

In the limit $q \rightarrow 1$, the elements θ_{k} become generators of the enveloping algebra for the Lie algebra so_{n} embedded into gl_{n}. In fact, the elements $q^{-\epsilon_{k}} \theta_{k}$ generate [2] the non-standard deformation $U_{q}^{\prime}\left(\mathrm{so}_{n}\right)$ of the enveloping algebra $U\left(\mathrm{so}_{n}\right)$ introduced by Gavrilik and Klimyk [3].

The following theorem is due to Noumi [2].
Theorem 1. The element $|v\rangle \in \mathcal{V}_{\boldsymbol{m}_{n}}^{\mathrm{L}}$ (resp. $\langle v| \in \mathcal{V}_{\boldsymbol{m}_{n}}^{\mathrm{R}}$) such that $\theta_{k}|v\rangle=0$, (resp. $\langle v| \theta_{k}=0$), $k=1, \ldots, n-1$, exists if and only if $\left(m_{i, n}-m_{i+1, n}\right)$ are even for $i=1, \ldots, n-1$. If such element $|v\rangle$ (resp. $\langle v|$) exists, it is unique up to a multiplier.

The elements $|v\rangle$ and $\langle v|$ which are annihilating by θ_{k} are called invariant elements with respect to action of θ_{k}. Now, for the case when conditions of theorem for \boldsymbol{m}_{n} are satisfied, we present explicit formulas for such elements $|v\rangle$ and $\langle v|$. Let \mathcal{S} be the set of all Gel'fand-Tsetlin tableaux corresponding to \boldsymbol{m}_{n} and satisfying the additional conditions:

$$
\left(m_{i, j+1}-m_{i, j}\right) \quad \text { is even for all } \quad i=1,2, \ldots, j, \quad j=1,2, \ldots, n-1 .
$$

Then

$$
\begin{equation*}
|v\rangle=\sum_{M \in \mathcal{S}} \alpha(M)|M\rangle, \quad\langle v|=\sum_{M \in \mathcal{S}} \beta(M)\langle M|, \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha(M)=\prod_{k=2}^{n} \alpha_{k}, \quad \beta(M)=\prod_{k=2}^{n} \beta_{k}, \tag{8}\\
& \alpha_{k}=q^{\gamma_{k}} \prod_{1 \leq i<j \leq k} \frac{\left[l_{i, k-1}-l_{j-1, k-1}\right]!!\left[l_{i, k-1}-l_{j, k}-2\right]!!}{\left[l_{i, k}-l_{j, k}-2\right]!!\left[l_{i, k}-l_{j-1, k-1}\right]!!}, \tag{9}\\
& \beta_{k}=q^{-\gamma_{k}} \prod_{1 \leq i<j \leq k} \frac{\left[l_{i, k}-l_{j, k}-1\right]!!\left[l_{i, k}-l_{j-1, k-1}-1\right]!!}{\left[l_{i, k-1}-l_{j-1, k-1}-1\right]!!\left[l_{i, k-1}-l_{j, k}-1\right]!!}, \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\gamma_{k}=\frac{1}{2} \sum_{1 \leq i<j \leq k}\left(l_{i, k}-l_{i, k-1}\right)\left(l_{j-1, k-1}-l_{j, k}-2\right) \tag{11}
\end{equation*}
$$

We used the notations (4) and

$$
[s]!!:=[s][s-2] \cdots[2](\text { or }[1]), \quad[0]!!=[-1]!!=1
$$

These expressions for elements $|v\rangle$ and $\langle v|$ were obtained by straightforward calculation using action formulas (2)-(3) and (5)-(6).

4 Macdonald polynomials

Macdonald polynomials constitute a linear basis in the space of symmetric polynomials of $X=$ $\left\{X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right\}$ with coefficients being rational functions in two formal variables q and t. Each Macdonald polynomial $P_{\boldsymbol{\lambda}}(X ; q, t)$ is labeled by the set of n integers $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ such that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

We introduce a partial ordering among such sets. For two such sets $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$, we put

$$
\boldsymbol{\lambda} \succeq \boldsymbol{\mu} \Leftrightarrow\left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\mu_{1}+\mu_{2}+\cdots+\mu_{n} \quad \text { and } \\
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{r}, \quad r=1,2, \ldots, n-1
\end{array}\right.
$$

The set $\boldsymbol{\lambda}$ defines a monomial $X^{\boldsymbol{\lambda}}=X_{1}^{\lambda_{1}} \cdots X_{n}^{\lambda_{n}}$. The monomial symmetric function $m_{\boldsymbol{\lambda}}(X)$ is the sum of all distinct monomials obtainable from $X^{\boldsymbol{\lambda}}$ by permutations of X^{\prime} 's. In particular, if $\boldsymbol{\lambda}$ such that $\lambda_{i}=1$ for $i \leq r$ and $\lambda_{j}=0$ for $j>r$, we have $m_{\boldsymbol{\lambda}}(X)=e_{r}(X)$, the r-th elementary symmetric polynomial.

To present the definition of Macdonald polynomials we need a commuting family of q-difference operators

$$
M_{r}=t^{-r(n-r) / 2} \sum_{\substack{I \subset\{1,2, \ldots, n\} \\|I|=r}} \prod_{\substack{i \in I \\ j \notin I}} \frac{t X_{i}-X_{j}}{X_{i}-X_{j}} \prod_{i \in I} \tau_{i}, \quad r=1, \ldots, n
$$

where τ_{i} represents the q-shift operator with respect to the variable X_{i}. Namely, τ_{i} is the automorphism of algebra of polynomials of $X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}$ uniquely defined by $\tau_{i}\left(X_{j}\right)=$ $q^{\delta_{i j}} X_{j}$. Macdonald proved [4] the following
Theorem 2. There exists a unique linear basis $\left\{P_{\boldsymbol{\lambda}}(X)\right\}$ in the space of symmetric polynomials of $X_{1}^{ \pm 1}, X_{2}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}$ satisfying the following two conditions:

- For each $\boldsymbol{\lambda}, P_{\boldsymbol{\lambda}}$ can be presented as

$$
P_{\boldsymbol{\lambda}}(X)=m_{\boldsymbol{\lambda}}(X)+\sum_{\boldsymbol{\mu} \prec \boldsymbol{\lambda}} u_{\boldsymbol{\lambda} \boldsymbol{\mu}} m_{\boldsymbol{\mu}}(X)
$$

where $u_{\boldsymbol{\lambda} \boldsymbol{\mu}}$ are some rational functions of q and t.

- For each $\boldsymbol{\lambda}, P_{\boldsymbol{\lambda}}(X)$ is a joint eigenfunction of $M_{r}, r=1,2, \ldots, n$:

$$
M_{r} P_{\boldsymbol{\lambda}}(X)=e_{r}\left(q^{\lambda_{1}} t^{\rho_{1}}, \ldots, q^{\lambda_{n}} t^{\rho_{n}}\right) P_{\boldsymbol{\lambda}}(X)
$$

where $\rho_{i}=(n-2 i+1) / 2$.

We give now some explicit formulas for Macdonald polynomials. For the set $\boldsymbol{\lambda}$ labeling $P_{\boldsymbol{\lambda}}$, it corresponds Gel'fand-Tsetlin tableaux (like (1))

$$
\Lambda=\left(\begin{array}{ccccccc}
\lambda_{1, n} & & \lambda_{2, n} & & \cdots & & \lambda_{n, n} \\
& \lambda_{1, n-1} & & \lambda_{2, n-1} & \cdots & \lambda_{n-1, n-1} & \\
& & \cdots & \cdots & \cdots & &
\end{array}\right)
$$

where $\lambda_{i, n}=\lambda_{i}, i=1, \ldots, n$, and $\lambda_{i, j}, i=1, \ldots, j, j=1, \ldots, n-1$, are integers satisfying

$$
\lambda_{i, j+1} \geq \lambda_{i, j} \geq \lambda_{i+1, j+1}, \quad i=1,2, \ldots, j, \quad j=1,2, \ldots, n-1 .
$$

We suppose that Λ runs over all the possible Gel'fand-Tsetlin tableaux corresponding to the fixed $\boldsymbol{\lambda}$. Next theorem is a reformulation in terms of Gel'fand-Tsetlin tableaux of combinatorial formula [4] for Macdonald polynomials. We need the notation:

$$
(a ; q)_{s}:=(1-a)(1-a q) \cdots\left(1-a q^{s-1}\right) .
$$

Theorem 3. The expression for Macdonald polynomial $P_{\boldsymbol{\lambda}}$ has form

$$
\begin{equation*}
P_{\boldsymbol{\lambda}}\left(X_{1}, X_{2}, \ldots, X_{n} ; q, t\right)=\sum_{\Lambda} \varphi(\Lambda ; q, t) X^{\Lambda}, \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& X^{\Lambda}=\prod_{k=1}^{n} X_{k}^{a_{k}}, \quad a_{k}=\sum_{i=1}^{k} \lambda_{i, k}-\sum_{i=1}^{k-1} \lambda_{i, k-1}, \\
& \varphi(\Lambda ; q, t)=\prod_{k=2}^{n} \varphi_{k}\left(\boldsymbol{\lambda}_{k-1}, \boldsymbol{\lambda}_{k} ; q, t\right), \quad \boldsymbol{\lambda}_{k}=\left(\lambda_{1, k}, \lambda_{2, k}, \ldots, \lambda_{k, k}\right), \\
& \varphi_{k}\left(\boldsymbol{\lambda}_{k-1}, \boldsymbol{\lambda}_{k} ; q, t\right)=\prod_{1 \leq i<j \leq k} \frac{\left(t^{j-i} ; q\right)_{\lambda_{i, k}-\lambda_{j-1, k-1}}}{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k}-\lambda_{j-1, k-1}}} \cdot \frac{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k}-\lambda_{j, k}}}{\left(t^{j-i} ; q\right)_{\lambda_{i, k}-\lambda_{j, k}}} \\
& \\
& \quad \times \frac{\left(t^{j-i} ; q\right)_{\lambda_{i, k-1}-\lambda_{j, k}}}{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k-1}-\lambda_{j, k}}} \cdot \frac{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k-1}-\lambda_{j-1, k-1}}}{\left(t^{j-i} ; q\right)_{\lambda_{i, k-1}-\lambda_{j-1, k-1}}} \\
& =\prod_{1 \leq i<j \leq k} \frac{\left(q t^{j-i-1} q^{\lambda_{i, k}-\lambda_{j-1, k-1}} ; q\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}{\left(t^{j-i} q^{\left.\lambda_{i, k}-\lambda_{j-1, k-1} ; q\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}\right.} \tag{13}\\
& \quad \times \frac{\left(t^{j-i} q^{\lambda_{i, k-1}-\lambda_{j-1, k-1}} ; q\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}{\left(q t^{j-i-1} q^{\lambda_{i, k-1}-\lambda_{j-1, k-1}} ; q\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}} .
\end{align*}
$$

Proof. From [4], it follows that

$$
\varphi(\Lambda ; q, t)=\prod_{k=2}^{n} \frac{b_{\boldsymbol{\lambda}_{k}}\left(C_{k}\right)}{b_{\boldsymbol{\lambda}_{k}}} \frac{b_{\boldsymbol{\lambda}_{k-1}}}{b_{\boldsymbol{\lambda}_{k-1}}\left(C_{k}\right)}=\frac{1}{b_{\boldsymbol{\lambda}_{n}}} \prod_{k=1}^{n} \frac{b_{\boldsymbol{\lambda}_{k}}\left(C_{k}\right)}{b_{\boldsymbol{\lambda}_{k-1}}\left(C_{k}\right)} .
$$

Combinatorial definition of $b_{\boldsymbol{\lambda}_{k}}$ and $b_{\boldsymbol{\lambda}_{k}}\left(C_{j}\right)$ is given in [4]. This combinatorics rewritten in terms of Gel'fand-Tsetlin tableaux gives

$$
\begin{aligned}
& \frac{b_{\boldsymbol{\lambda}_{k}}\left(C_{k}\right)}{b_{\boldsymbol{\lambda}_{k}}}=\prod_{1 \leq i<j \leq k} \frac{\left(t^{j-i} ; q\right)_{\lambda_{i, k}-\lambda_{j-1, k-1}}}{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k}-\lambda_{j-1, k-1}}} \cdot \frac{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k}-\lambda_{j, k}}}{\left(t^{j-i} ; q\right)_{\lambda_{i, k}-\lambda_{j, k}}}, \\
& \frac{b_{\boldsymbol{\lambda}_{k-1}}}{b_{\boldsymbol{\lambda}_{k-1}}\left(C_{k}\right)}=\prod_{1 \leq i<j \leq k} \frac{\left(t^{j-i} ; q\right)_{\lambda_{i, k-1}-\lambda_{j, k}}}{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k-1}-\lambda_{j, k}}} \cdot \frac{\left(t^{j-i-1} q ; q\right)_{\lambda_{i, k-1}-\lambda_{j-1, k-1}}}{\left(t^{j-i} ; q\right)_{\lambda_{i, k-1}-\lambda_{j-1, k-1}}} .
\end{aligned}
$$

5 Wave functions of Ruijsenaars model

In [1], the wave function for Schrödinger equation for quantum n-particle Ruijsenaars model was defined as

$$
\Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\langle v| q^{h}|v\rangle=\langle v| q^{\sum_{k=1}^{n} x_{k} \epsilon_{k}}|v\rangle
$$

where the invariant elements $\langle v|$ and $|v\rangle$ are defined in Section 3 (conditions when they exist are also given there). Here we give a direct proof that $\Psi_{m_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be expressed in terms of Macdonald polynomials.

From (2) and (7)-(8), it follows

$$
\Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\langle v| q^{\sum_{k=1}^{n} x_{k} \epsilon_{k}}|v\rangle=\sum_{M \in \mathcal{S}} \prod_{k=2}^{n} \alpha_{k} \beta_{k} \cdot \prod_{k=1}^{n} q^{x_{k}\left(\sum_{i=1}^{k} m_{i, k}-\sum_{i=1}^{k-1} m_{i, k-1}\right)}
$$

where α_{k} and β_{k} are given by (9)-(11). We make change of variables $\lambda_{i, j}=\left(m_{i, j}-m_{n, n}\right) / 2$ for all possible i and j. Since $M \in \mathcal{S}$, all the $\lambda_{i, j}$ are non-negative integers. For $\alpha_{k} \beta_{k}$ we have

$$
\begin{aligned}
& \alpha_{k} \beta_{k}=\prod_{1 \leq i<j \leq k} \frac{\left[l_{i, k}-l_{j, k}-1\right]!!\left[l_{i, k}-l_{j-1, k-1}-1\right]!!\left[l_{i, k-1}-l_{j, k}-2\right]!!\left[l_{i, k-1}-l_{j-1, k-1}\right]!!}{\left[l_{j-1, k-1}\right]!!\left[l_{i, k}-l_{j, k}-2\right]!!\left[l_{i, k-1}-l_{j-1, k-1}-1\right]!!\left[l_{i, k-1}-l_{j, k}-1\right]!!} \\
& =\prod_{1 \leq i<j \leq k} \frac{\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-1\right]!!}{\left[2 \lambda_{i, k}-2 \lambda_{j-1, k-1}-i+j-1\right]!!} \cdot \frac{\left[2 \lambda_{i, k}-2 \lambda_{j-1, k-1}-i+j-2\right]!!}{\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-2\right]!!} \\
& \times \frac{\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-2\right]!!}{\left[2 \lambda_{i, k-1}-2 \lambda_{j-1, k-1}-i+j-2\right]!!} \cdot \frac{\left[2 \lambda_{i, k-1}-2 \lambda_{j-1, k-1}-i+j-1\right]!!}{\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-1\right]!!} \\
& =\prod_{1 \leq i<j \leq k} \frac{\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-1\right]\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-3\right] \cdots\left[2 \lambda_{i, k}-2 \lambda_{j-1, k-1}-i+j+1\right]}{\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-2\right]\left[2 \lambda_{i, k}-2 \lambda_{j, k}-i+j-4\right] \cdots\left[2 \lambda_{i, k}-2 \lambda_{j-1, k-1}-i+j\right]} \\
& \times \frac{\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-2\right]\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-4\right] \cdots\left[2 \lambda_{i, k-1}-2 \lambda_{j-1, k-1}-i+j\right]}{\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-1\right]\left[2 \lambda_{i, k-1}-2 \lambda_{j, k}-i+j-3\right] \cdots\left[2 \lambda_{i, k-1}-2 \lambda_{j-1, k-1}-i+j+1\right]} \\
& =\prod_{1 \leq i<j \leq k} \frac{\left(q^{4} q^{2(j-i-1)} q^{4\left(\lambda_{i, k}-\lambda_{j-1, k-1}\right)} ; q^{4}\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}^{\left(q^{2(j-i)} q^{4\left(\lambda_{i, k}-\lambda_{j-1, k-1}\right)} ; q^{4}\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}}{\times \frac{\left(q^{2(j-i)} q^{4\left(\lambda_{i, k-1}-\lambda_{j-1, k-1}\right)} ; q^{4}\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}{\left(q^{4} q^{2(j-i-1)} q^{4\left(\lambda_{i, k-1}-\lambda_{j-1, k-1}\right)} ; q^{4}\right)_{\lambda_{j-1, k-1}-\lambda_{j, k}}}=\varphi_{k}\left(\boldsymbol{\lambda}_{k-1}, \boldsymbol{\lambda}_{k} ; q^{4}, q^{2}\right),}
\end{aligned}
$$

where the definition (13) for $\varphi_{k}\left(\boldsymbol{\lambda}_{k-1}, \boldsymbol{\lambda}_{k} ; q, t\right)$ is used. Thus

$$
\begin{aligned}
\Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{\Lambda} \varphi(\Lambda ; q, t) \prod_{k=1}^{n} q^{x_{k}\left(m_{n, n}+2\left(\sum_{i=1}^{k} \lambda_{i, k}-\sum_{i=1}^{k-1} \lambda_{i, k-1}\right)\right)} \\
& =q^{\left(x_{1}+\cdots+x_{n}\right) m_{n, n}} \sum_{\Lambda} \varphi(\Lambda ; q, t) \prod_{k=1}^{n} q^{2 x_{k}\left(\sum_{i=1}^{k} \lambda_{i, k}-\sum_{i=1}^{k-1} \lambda_{i, k-1}\right)} .
\end{aligned}
$$

Comparing with (12) we obtain

$$
\Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=q^{\left(x_{1}+\cdots+x_{n}\right) m_{n, n}} P_{\boldsymbol{\lambda}}\left(q^{2 x_{1}}, q^{2 x_{2}}, \ldots, q^{2 x_{n}} ; q^{4}, q^{2}\right)
$$

This wave function satisfies equations

$$
\begin{equation*}
\hat{H}_{r} \Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=E_{\Lambda}^{(r)} \Psi_{\boldsymbol{m}_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad r=1,2, \ldots, n \tag{14}
\end{equation*}
$$

where \hat{H}_{r} is r-th Hamiltonian of Ruijsenaars model:

$$
\begin{aligned}
& \hat{H}_{r}=q^{r(r-1)} \sum_{\substack{I \subset\{1,2, \ldots, n\} \\
|I|=r}}\left(\prod_{\substack{i \in I \\
j \notin I}} \frac{q^{2} q^{2 x_{i}}-q^{2 x_{j}}}{q^{2 x_{i}}-q^{2 x_{j}}}\right) e^{2 \sum_{i \in I} \partial_{x_{i}}}, \\
& E_{\boldsymbol{m}_{n}}^{(r)}=e_{r}\left(q^{2 m_{1, n}+2 n-2}, q^{2 m_{2, n}+2 n-4}, \ldots, q^{m_{n, n}}\right) .
\end{aligned}
$$

This statement is easily follows from Theorem 2 . Note, the equation (14) at $r=1$ is precisely Schrödinger equation for quantum trigonometric n-particle Ruijsenaars model.

Acknowledgements

The author was partially supported by INTAS Grant No. 2000-334.
[1] Iorgov N., On the quantum Ruijsenaars model, some quantum homogeneous spaces and Hecke algebras, Int. J. Mod. Phys., 2004, to appear.
[2] Noumi M., Macdonald's symmetric polynomials as zonal spherical functions on quantum homogeneous spaces, Adv. Math., 1996, V.123, 16-77.
[3] Gavrilik A.M. and Klimyk A.U., q-Deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys., 1991, V.21, 215-220.
[4] Macdonald I.G., A new class of symmetric functions, Actes 20^{e} Séminaire Lotharingien, Publ. I.R.M.A. Strasbourg, 1988, 372/S-20, 131-171.
[5] Olshanetsky M. and Perelomov A., Quantum integrable systems related to Lie algebras, Phys. Rep., 1983, V.94, 313-304.
[6] Gerasimov A., Kharchev S. and Lebedev D., Representation theory and the quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model, math.QA/0204206.
[7] Klimyk A. and Schmüdgen K., Quantum groups and their representations, Berlin, Springer, 1997.

