Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1328-1334

SU(N) Flavor Dynamics
within a Generalized Heat Kernel Expansion

Brigitte HILLER T and Alexander A. OSIPOV 1t

¥ Centro de Fisica Tedrica, Departamento de Fisica da Universidade de Coimbra,
3004-516 Coimbra, Portugal
E-mail: brigitte@teor. fis.uc.pt, alexquest@teor.fis.uc.pt

¥ Laboratory of Nuclear Problems, JINR, 141980 Dubna, Russia

The asymptotic expansion of the one-loop effective action W = In det A is derived for the case
in which a non-degenerate mass matrix M = diag(m1, ma, . ..) is considered, generalizing the
standard method of Schwinger-DeWitt. The positively defined elliptic operator A = U+ M?
depends on the external classical fields taking values in the Lie algebra of the internal
symmetry group G. The first coefficients of the new asymptotic series are calculated and
their relationship with the Seeley—-DeWitt coefficients is clarified.

1 Introduction

The existence of fermion families of non-degenerate masses in the Standard Model calls for
a field-theoretical framework capable of incorporating in a chiral and gauge covariant way the
occurrence of different masses in loops. In QCD, underlying the non-degenerate mass matrix of
heavy (constituent) quarks, which results from spontaneous breakdown of chiral symmetry, is
a non-degenerate current quark matrix, which dictates the explicit symmetry breaking pattern of
the Lagrangian. Both, the covariant and the explicit symmetry breaking terms of the Lagrangian
must be preserved in a sensible calculational scheme. Furthermore, in the low-energy regime
of QCD, it is more natural to transform to mesonic/baryonic degrees of freedom, which can
be obtained by standard bosonization techniques. In this case the bosonization must of course
comply with all symmetry requirements of the original Lagrangian.

These issues have been dealt with in various ways, however the symmetries are not automa-
tically fulfilled. For instance [1], through the evaluation of Feynman amplitudes, the symmetry
requirements of the original Langrangian have to be checked aposteriori case for case. Per-
turbative approaches, where the difference in masses is considered to be the small expansion
parameter [2], must also be subject to a careful control of symmetries.

In the following we present a technique, which we developed to handle non-degenerate mass
matrices, fulfilling by construction all the symmetries of the Lagrangian. It is based on the
method of Schwinger-DeWitt [3,4], which is an extremely powerful tool when explicit covariance
of calculations of radiative corrections is needed at all intermediate steps. This is the case, for
example, for gauge theory [4], quantum gravity [5], chiral field theory [6]; for a recent review
see [7].

The main object of study in this formalism is the determinant of the positively defined
elliptic operator, which describes quadratic fluctuations of quantum fields in presence of some
background fields and contains in compact form the whole information about the one-loop
contribution of quantum fields. The proper time formalism of Schwinger allows to evaluate it.
The result is an asymptotic expansion of the effective action in powers of proper time with
Seeley—DeWitt coefficients a,, [4, 8], which accumulate the whole dependence on background
fields. A remarkable property is that every term of the expansion is invariant with respect to
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transformations of the internal symmetry group. This is a consequence of the general covariance
inherent to the formalism. At the present time the asymptotic coefficients a, are well known
up to and including n = 5 for a general operator of Laplace type. Details can be found, for
instance, in [6,9].

In the case of massive quantum fields with a degenerate mass matrix M = diag(m,m,...), it
is not difficult to derive from the proper time expansion an expansion in inverse powers of m?2,
since the mass dependence is easily factorized and a subsequent integration over proper time
leads to the desired result. The resulting asymptotic coefficients remain the same. If the mass
matrix is not degenerate, i.e. M = diag(mj,mo,...), than its total factorization is impossible
because of the noncommutativity of M with the rest of the elliptic operator. At the same time a
naive factorization by parts breaks the covariant character of the asymptotic series. The natural
question arises: is there any simple way to follow which leads to factorization, conserving at the
same time the explicit covariance of the expansion? Fortunately, there is such a method [10,11].
It leads to the generalization of the Seeley—DeWitt coefficients. Here we will not consider the
manifest chiral symmetry breaking effect. A careful analysis of this problem would lead us too
far away from the subject, leaving the present result for the covariantly transforming terms
without changes. We refer to [11] where the symmetry breaking terms have been considered
by breaking the SU(2) x SU(2) chiral symmetry of the Nambu-Jona-Lasinio model [12] by the
current quark mass matrix with m, # mq.

2 Integral representation for the one-loop contribution

The logarithm of a formal determinant describes the low order radiative corrections to the
classical theory. Let fermion fields play the role of virtual quanta producing those corrections
and the scalar and pseudoscalar mesons be external background fields. In this case the real part
of the corresponding effective action can be represented as a proper time integral

o dt

-p@,A?)Tr(e—fD*D). (1)

1
Iwn:—mmamzi/ a
0

Here the Dirac operator D depends on the background fields, which are collected in the Hermitian
second-order differential elliptic operator DTD = M? + B = —9> + Y 4+ M? in the term Y. We
use the Euclidian metric to define the effective action W[Y]. To make the integral over ¢
convergent at the lower limit, the regulator p(¢, A?) has been added in (1). All our conclusions
are independent of the form of this function, which includes the ultraviolet cut off A, in the
sense that the generalized Seeley—DeWitt coefficients do not depend on the regulator.

Let us assume that we are dealing with chiral field theory, which possesses the global
U(N¢)r x U(Ny¢)g symmetry if the fermion fields are massless. The typical example is quan-
tum chromodynamics, excluding the U4 (1) anomaly. It is known that the vacuum state of low
energy QCD is noninvariant with respect to the action of the chiral group and the whole system
makes a phase transition to the state with massive quarks. If one takes into account that the
explicit chiral symmetry breaking takes place in QCD through the mass terms of current quarks
one can conclude that not equal current quark masses will lead also to not equal constituent
quark masses. In order to study this system at large distances we will need the expansion of the
effective action in inverse powers of the non degenerate mass matrix

Ny
M= ME;,  (Ei)jr=0i0u, EiE;=04E;. (2)
i=1
The orthonormal basis F; belongs to the flavor space where the chiral group acts on quarks and
background fields in accordance with their transformation properties.
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The heat kernel Tr [exp(—tDTD)] can be represented [3] as a matrix element of an operator
acting in the abstract (unphysical) Hilbert space:

Tr <e_tDTD> = /d4:c tr (x]e_tDTD|x>. (3)

The plane wave basis |p) significantly simplifies our calculations and leads to the integral repre-

sentation
4
/d4 / ’p / 9 ot A2)e ptr( —t<M2+A>) 1. (4)
0

Here A = B — 2ipd/+/t, and the trace is calculated in flavor space.

3 Asymptotic Schwinger—-DeWitt expansion

Before proceeding with our calculations this is the right place to say several words about the
standard asymptotic Schwinger-DeWitt expansion. If the mass matrix M has the degenerate
form, than [M, A] = 0 and we find

tr (e—t(/\/l?—I—A)) — e—thtr( —tA —tm tr (Z tnan> _ (5)

Here a,, are the Seeley—DeWitt coefficients which depend on background fields and their deriva-
tives. The integration over momentum and proper time in (4) can be readily done and we obtain
the well known result

WIY] / s ZJn L (m?) tr (an), (6)

where integrals .J,,(m?) are given by

© at
Jn(mQ):/O o€ t 2p(t,A2). (7)

Independently on the type of regularization the following property is fulfilled

) = (=505 ) o o). 5)

Choosing p(t,A?) =1 — (1 + tA2)e_tA2, which corresponds to two subtractions, one finds

Jo(m?) = A* —m?In (1 + 2—2) : (9)

We see that functions J,(m?), starting from n > 1, have the asymptotic behavior J,,(m?) ~
m~2(v=1) at large values of m?, i.e. we obtain the inverse mass expansion. To warrant the
convergence of the series it is necessary not only that the mass m be different from zero, but also
that the background fields change slowly at distances of the order of the Compton wavelength
(1/m) of the fermion field. If these criteria are not fulfilled then the creation of real pairs gets
essential and this expansion is not useful for calculations.

The remarkable property of the considered expansion is the gauge covariance of the Seeley—
DeWitt coefficients.
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4 Non-degenerate mass case

Let us return back to the formula (4) and show the way how to develop the above-mentioned
tool for the case [M, A] # 0. As a first step let us use the formula

tr (e—t(M2+A)> ( —tM2 ) (10)

to factorize an exponent with the non commuting mass matrix M. Here

1+Z )" fa(t, A)

n(t, A) —/0 dsl/o d82~--/0 dsnA(s1)A(s2) -+ A(sn), (11)

where A(s) = esM* Ae=M? Tt is true, that

Ny
i Aq2 tm 1
tr [ M p (g, A)] =D a5 Dt (An Ay Ay, (12)
11,22,...0n, perm

where A; = F;A by definition, a second summation means that n possible cyclic permutations
of operators inside the trace must be done. The coefficients ¢; 4, i, (t) are totally symmetric
with respect to permutations of indices and are calculated easily [11], for instance

—tm? —tm?

_ 2 € i — € J
ci(t) = e ', cij(t) = Tji7
2 e—tm? e—tm? e_tmk
Cijk(t) = = + + ;
ik () 2\ Ajilp  ApiAi;  Apljg
3| e—tm? eitmi e—tmi e—tml2
Cijkl = + + . (13)
IAVIAVEVANY AijAlekj DA Ay A AjAy

=2
Here A;j = m;

— m? In the case of coincidence of indices one can get that ¢; = ¢;; = ¢y, 5.
Therefore the heat kernel is represented as a sum, every term of which contains the coefficient
¢ij...(t), multiplyed by the corresponding trace from the product of operators A;. The following
integration over t replaces the t-dependent part in these terms by the integrals Jl(m?) and we
finally will face the following problem: every term of this expansion will not be invariant with
respect to the transformations of the chiral group, although the total effective action W[Y] will
possess this property. One needs the algorithm which automatically groups the terms in chiral
invariant blocks. This problem has been solved in the papers [11] on the basis of recurrence

relations

n

Jy (m3) = J; :Z J [ (m) = (=1 Jin (m3)] (14)

n:l

There it has been shown that the essence of the problem is confined to the correct choosing of
the factorized combination, built from the functions J; (m?), namely, the effective action WY
must be represented in the form

d*z & .
wWly] :/WZL&—I tr(bi), L= ZJ (15)
i=0
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In this case the background fields are automatically combined in the covariant coefficients b;.
For example, for Ny = 3 the first four coefficients are

bp =1 b = Y. by = Y—2 A12 —A3Y + ——= (A3 + Ag3) AgY,
9 ) 2 \/7
by = —Y—3 — i(aY) - —Alz (Asp 4+ Asz) A3Y
3! 12 12

A13(Ag1 + Agz) + Az (A + Az)| XY
12\[[ 13(A21 23) 23(A12 13)] As

1
+ —— (Asg1 + A3x) AgY 2 + Ao \3Y2. 16
4\/§( 31 32) 8 1 2113 ( )

Several comments are in order here. First of all it is obvious that in the limiting case of equal
masses mjp = mg = -+ = My, our result coincides with the standard Schwinger—-DeWitt expan-
sion. If the masses are not equal, the series (15) is a generalization of the well-known result (6).
Instead of the asymptotic Seeley—DeWitt coefficients a,, come the coefficients b,,. Indeed one can
check that if the operator DT D transforms in the adjoint representation 6(DTD) = iw, DT D],
then b,, are also covariant, i.e. 6b,, = i|w, b,|, where w = a+ 750 are the parameters of the global
infinitesimal chiral transformations. It also should be mentioned that, rigorously speaking, the
obtained expansion is not an exact inverse mass expansion. Although the integrals I; for [ > 1
possess the necessary form for asymptotic behavior I, 1(m?) ~ m; 2l the coefficients b; depend
on the differences of masses, which may influence the character of the expansion. However gen-
eral symmetry requirements are a more serious and stringent argument in favor of the obtained
series as compared to the result of the thorough study [2] based only on the idea of a 1/m?
expansion.

5 Relation between coefficients b,, and a,,

The problem of the calculation of the generalized heat kernel coefficients is a more complicated
mathematical problem than the calculation of the standard Seeley—DeWitt coefficients. How-
ever one can significantly simplify this problem [13], if from the very beginning one uses the
transformation properties of the coefficients b,. Indeed, let us return back to the formula (5)
and extend it to the case [M,Y] # 0, omitting for simplicity all terms with derivatives in A.
It is remarkable that already at this stage one can take into account the two main conclusions
which we have found in the previous section: the form of the factorized part depending on the
mass and gauge covariance of coefficients b,,. The first aim can be reached through the definition

M? _ M2 _ <M2>7 (17)

the second one through putting

n

(M2 +Y)" =S (-D)FCE(MP)" by (18)
k=0
Since the left side of equation (18) transforms covariantly, i.e. (M2 + Y)Q =Q! (/\;12 + Y)Q

and on the right side the term (M?) is invariant with respect to the chiral transformations (2,
it is obvious, that by (Y}, M2?) = Q~1p, (Y, M?)Q. To see how these definitions work let us
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consider the exponent in the heat kernel (5)

o—HMPHY) _ M) i (=" (M2 47"

o n!
M2 M2 S ﬁb M N ﬁb 19
iy S (st 30, (19
n=0 n=0
Since
Ny . Ny
—tM?2 —tm? —tm?
= 7 E = — g 2
(e™7) ;e (Es) Nf;e ; (20)

the following integration over ¢ leads us to the known result (15), and the coefficients b, can
be found using the definition (18). The same definition allows us to relate b, with the linear
combination of the standard Seeley-DeWitt coefficients a;(Y’), where the replacement ¥ —
Y + M? should be done [13]

_ . ﬁnfi ] N —2
bn—;—(n_i)!al()f Y + M?). (21)

The parameters 3; depend only on the masses of fermion fields. To establish the form of this
dependence it is sufficient to calculate b, in the simplest case, when in the elliptic operator
under consideration all terms with derivatives are omitted. This problem is much simpler to
solve than the calculation of the coefficients b, from the very beginning.
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