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Quadratic singular Lagrangians are studied using the Hamilton–Jacobi theory of singular
systems. An example is studied.

1 Introduction

The standard approach to classical dynamics is to form a Lagrangian which is a function of n
generalized coordinates qi, n generalized velocities q̇i and parameter τ . The 2n variables qi, q̇i

form the tangent bundle TQ. The passage from TQ to the cotangent bundle T ∗Q is achieved
by introducing generalized momenta and a Hamiltonian. However, this procedure requires that
the rank of Hessian matrix

∂2L

∂q̇i∂q̇j

is n. The investigation of this type of Lagrangians (REGULAR) is a usual procedure. If the
rank is less than n, system is called SINGULAR.

The study of singular systems started with DIRAC. He obtained the equations of motion
of a singular system using consistency conditions and Poisson brackets. He classified the con-
straints. To quantize a singular system he introduced the Dirac bracket. Bergmann and his
collaborators stressed on the relation between invariance principles and constraints in field theo-
ries. In fact, their efforts were to construct a Hamiltonian approach of general relativity to
quantize the theory since the Einstein’s theory of gravitation is a singular theory to its general
covariance.

Singular field theories became the center of interest for physicists after the pioneering work of
Faddeev, who introduced the Feynman path integral quantization. Nowadays, singular systems
find a very wide range of applications in theoretical physics. An invariance under a global gauge
transformation implies a singular theory. Hence, starting from the electromagnetic theory, all
gauge theories have singular nature.

2 Hamilton–Jacobi theory of singular systems

The aim is to obtain a valid and consistent Hamilton–Jacobi theory of singular systems. Mathe-
matical method which is used is the Caratheodory’s equivalent Lagrangians method. The main
point of the method is to define the equivalent Lagrangian (variational principle) and then pass
to the phase space. This formulation leads us to a set of Hamilton–Jacobi partial differential
equations [1–4].

2.1 Construction of phase space

Let us consider a system which is described by the Lagrangian L (qi, q̇i, τ) such that the rank of
the Hessian is n − p, p ≤ n.
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Generalized momenta are defined as

pµ =
∂L

∂q̇µ
, µ = 1, 2, . . . , p,

pa =
∂L

∂q̇a
, a = 1, . . . , n − p. (1)

Since the rank of the Hessian is n − p, one may solve (1) for q̇a as

q̇a = wa (τ, qi, q̇µ, pa) .

So

pµ =
∂L

∂q̇µ

∣∣∣∣
q̇a=wa

= −Hµ (τ, qi, pa, q̇ν) .

Generalized momenta pµ are NOT independent. Although, it seems that Hµ are functions
of q̇ν , it is a task to show that they do not depend on q̇ν explicitly.

Definition 1.

H0 = −L (τ, qi, q̇ν , q̇a = wa) + pawa + q̇µpµ|pµ=−Hµ
.

Like Hµ, H0 is not an explicit function of q̇µ.
In fact,

∂H0

∂q̇ν
= − ∂L

∂q̇ν
− ∂L

∂q̇a

∂wa

∂q̇ν
+ pa

∂wa

∂q̇ν
pν = 0.

Therefore, the Hamilton–Jacobi function S (τ, qi) should satisfy the following set of Hamilton–
Jacobi Partial Differential Equations (HJPDE) simultaneously for an extremum of the action:

p0 + H0

(
τ, qν ; qa, pa =

∂S

∂qa
, p0 =

∂S

∂τ

)
= 0,

pµ + Hµ

(
τ, qν ; qa, pa =

∂S

∂qa
, p0 =

∂S

∂τ

)
= 0

or in a compact form

H ′
α

(
tp, pi =

∂S

∂qi
, p0 =

∂S

∂t

)
= 0,

where

H ′
α = pα + Hα, α = 0, 1, . . . , p.

2.2 The canonical equations

This method leads us to the following equations:

dqr =
∂H ′

α

∂pr
dtα, r = 0, 1, . . . , n, α = 0, 1, . . . , p,

dpr = −∂H ′
α

∂qr
dtα,

dS =
(
−H ′

α + pa
∂H ′

α

∂pa

)
dtα.

Simultaneous solutions of these equations determine S (tα, qa) uniquely if the initial conditions
are given.
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Example 1.

2L = aij (τ, qk) q̇iq̇j + 2bi (τ, qk) q̇i − 2c (τ, qk) , i, j = 1, 2, 3,

where

aij =

∣∣∣∣∣∣
a1 0 0
0 −a2 a2

0 a2 −a2

∣∣∣∣∣∣ , a1 �= 0, a2 �= 0,

p1 = a1q̇1, p2 = a2 (q̇3 − q̇2) + b, p3 = a2 (q̇3 − q̇2) ,

w1 =
p1

a1
, w3 = q̇2 − p3

a2
, p2 = −p3 + b = −H2,

H0 = −L + p1w1 + p3w3 + (−p3 + b) q̇2 or

H0 =
1
2

(
p2
1

a1
− p2

3

a2

)
+ c.

The set of (HJPDE) is

∂S

∂τ
+ H0

(
qi, τ, p1 =

∂S

∂q1
, p3 =

∂S

∂q3

)
= 0,

∂S

∂q2
+ H2

(
qi, τ, p1 =

∂S

∂q1
, p3 =

∂S

∂q3

)
= 0.

Differential equations for the characteristics are:

dq1 =
p1

a1
dτ, dq3 = −p3

a2
dτ + dq2,

dpi =
[
1
2

(
p2
1

a2
1

∂a1

∂qi
− p2

3

a2
2

∂a2

∂qi

)
∂c

∂qi

]
dτ +

∂b

∂qi
dq2,

dp0 =
[
1
2

(
p2
1

a2
1

∂a1

∂qi
− p2

3

a2
2

∂a2

∂qi

)
∂c

∂τ

]
dτ +

∂b

∂τ
dq2.

3 Free particle

A particle of mass m is described by generalized coordinates xi (i = 1, . . . , n) as

2L(xi, ẋi) = −mcgij ẋ
iẋj , (2)

where the metric matrix elements are functions of xi. One can express the Hamiltonian in the
usual way if the rank of the Hessian matrix (metric matrix) is n. In fact, generalized momenta
are defined as

pi =
∂L

∂ẋi
= −mcgij ẋ

j .

This definition leads us to the expression

pi =
∂L

∂ẋi
= −mcgij ẋ

j .

Thus,

2H = −2L + 2piẋ
i = − 1

mc
gkmpkpm.
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Canonical equations

ẋi =
dxi

dτ
=

∂H

∂pi
,

ṗi =
dpi

dτ
= −∂H

∂xi

lead us to the geodesic equations on the Riemannian manifold identified with the metric gij .
Following calculations give the desired equations

ẋi = − 1
2mc

gijp
j ,

ṗk = − ∂H

∂xk
=

1
2mc

∂gij

∂xk
pipj .

Thus,

ẍi =
∂gij

∂xk
gjmẋkẋm − 1

2
∂glk

∂xj
gjigkmglnẋmẋn.

After some manupulation we get

ẍi + Γi
kmẋkẋm = 0, i = 1, . . . , n,

where

Γi
km = −1

2
gij

(
∂gjm

∂xk
+

∂gjk

∂xm
− ∂gmk

∂xj

)
.

Description of the Lagrangian (2) in terms of the metric gij gives the geodesic equations.
If the rank of the Hessian matrix is less than n, we have a singular system [5]. Now, the

question is whether the geometric approach is applicable or not. To achieve this aim we are going
to apply the Canonical formulation to a singular Lagrangian. Let us consider the Lagrangian

L =
1
2
(
ẋ2 + ẏ2 + ż2

)
+ λ̇1 (yż − zẏ) + λ̇2 (zẋ − xż) + λ̇3 (xẏ − yẋ) . (3)

Physically speaking, this is the Lagrangian which describes a particle such that all three
components of angular momentum are conserved. Here λ̇i (i = 1, 2, 3) are Lagrange multipliers.

One can express this Lagrangian as

L =
1
2
gij q̇

iq̇j , i = 1, . . . , 6,

where

q̇1 ≡ ẋ, q̇2 ≡ ẏ, q̇3 ≡ ż, q̇4 ≡ λ̇1, q̇5 ≡ λ̇2, q̇6 ≡ λ̇3

and the 6 × 6 symmetric matrix gij is

gij ≡




1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0
0 −z y 0 0 0
z 0 −x 0 0 0
−y x 0 0 0 0




≡ gji.
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One should notice that the rank of gij is five. Thus, one cannot apply the standard procedure.
To find a remedy, we express (3) as

L =
1
2

(
gνµq̇ν q̇µ + 2g6µλ̇3q̇µ

)
, µ, ν = 1, . . . , 5.

In order to determine the Hamiltonian, let us define the generalized momenta as

pµ =
∂L

∂q̇µ
= gνµq̇ν + g6µλ̇3, (4)

pλ3 =
∂L

∂λ̇3

= g6σ q̇σ

= g6σ

[
g−1
σµpµ − g−1

σµa6µλ̇3

]

= g66pµ − g66 ≡ 0.

Since the rank of gij is five, the submatrix gµν is invertible. Thus, using (4) we get

q̇σ = g−1
σµpµ − g−1

σµa6µλ̇3, σ = 1, . . . , 5. (5)

Now, we can define the Hamiltonian H0 as

H0 = −L + pµq̇µ + pλ3 λ̇3. (6)

Substituting (5) in (6), one obtains

H0 =
1
2
g−1
µρ pµpρ, µ, ρ = 1, . . . , 5

which is independent of λ̇3. We expect this result due to the singular nature of the Lagrangian.
We have two Hamiltonians to describe the system

H ′
0 = p0 +

1
2
g−1
µρ pµpρ ≡ 0, (7)

H ′ = pλ3 ≡ 0. (8)

Canonical equations read as

dqµ =
∂H ′

α

∂pµ
dtα, dpµ = −∂H ′

α

∂qµ
dtα, α = 0, 6, dt0 ≡ dt, dtα ≡ dλ3.

More explicitly

dqµ = g−1
µρ pρdt, µ = 1, . . . , 5,

dq6 ≡ dλ3,

dpν = −1
2

(
∂g−1

µρ

∂qν

)
pµpρdt,

dpλ3 = 0, dp0 = 0. (9)

The theory forces us to check the consistency conditions i.e. to check whether the variations
of the constraints (7) and (8) are zero or not. Equation (9) guarantees that the variation of H ′

is zero. Besides,

dH ′
0 = dp0 +

1
2
{
d
(
g−1
µρ

)
pµpρ + g−1

µρ dpµpρ + g−1
µρ pµdpρ

}
.
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Using the equations of motion we get

dH ′
0 =

1
2

{
∂g−1

µρ

∂qσ
dqσpµpρ + g−1

µρ

(
−1

2

∂g−1
αβ

∂qµ
pαpβdt

)
pρ + g−1

µρ pµ

(
−1

2

∂g−1
αβ

∂qρ
pαpβdt

)}
≡ 0.

Thus, the system is integrable.
Up to this point we have followed the standard canonical formulation of a constrained system.

Now, we will propose the geodesic equations

q̈µ =
1
2
(
g−1
)
µν

(
∂gνσ

∂qρ
+

∂gνρ

∂qσ
− ∂gσρ

∂qν

)
q̇σ q̇ρ (10)

as equivalent to the equations of motion. In other words, we will show that solutions of (10)
satisfy the equations of motion. In fact, equations (10) give

ẍ =
x

x2 + y2 + z2

[
2λ̇2 (zẋ − xż) + 2λ̇1 (yż − zẏ)

]
,

ÿ =
y

x2 + y2 + z2

[
2λ̇1 (yż − zẏ) + 2λ̇2 (zẋ − xż)

]
,

z̈ =
z

x2 + y2 + z2

[
2λ̇2 (zẋ − xż) + 2λ̇1 (yż − zẏ)

]
,

λ̈1 =
1

x2 + y2 + z2

[
−2λ̇1

(
x2ż + z2ż

z
+ yẏ

)
+ 2λ̇2y

(
zẋ − xż

z

)]
,

λ̈2 =
1

x2 + y2 + z2

[
2xλ̇1

(
zẏ − yż

z

)
− 2λ̇2

(
y2ż + z2ż

z
+ xẋ

)]
.

One should notice that

ẍ

x
=

ÿ

y
=

z̈

z
.

Therefore, equating these ratios to a negative constant k we get the periodic solutions

x(t) = c1 sin
√
|k|t + c2 cos

√
|k|t,

y(t) = c3 sin
√
|k|t + c4 cos

√
|k|t,

z(t) = c5 sin
√
|k|t + c6 cos

√
|k|t.

These solutions also satisfy the equations of motion.
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