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We survey and investigate some computational aspects of the Fourier–Mukai transform.

1 Introduction

Let f(x) be a function f : Z/nZ → C, n ∈ N. Then its Fourier transform from the time domain
into its frequency domain is given by the discrete Fourier transform

f̂(ω) =
n−1∑
x=0

f(x) exp
(
2πi

ωx

n

)
.

Here ωx is the perfect pairing (in the case the scalar product) on the product of the time
and of the frequency domains. It is well-known also that the solution of a linear differential
equation with constant coefficients is related by the Fourier transform to a solution of the
polynomial equation. The Fourier–Mukai transform is a strong generalization of mentioned and
some another approaches. Let A be an Abelian variety, Â its dual Abelian variety and P the
Poincaré divisor on A × Â. Let Db(A) and Db(Â) be derived categories of bounded complexes
of sheaves on A and Â respectively. A Fourier–Mukai transform was defined by Mukai as an
exact equivalence

FM : Db(Â) → Db(A)

between derived categories of above mentioned bounded complexes [1, 2]. For this transform
analogies of the Fourier Inversion Theorem and the Parseval Theorem are valid. Works by
B. Bartocci, U. Bruzzo, D. Ruipérez [3] and A. Maciocia [4] generalized this approach to another
classes of sheaves and varieties. Now by a Fourier–Mukai transform

FM : Db(Y ) → Db(X)

an exact equivalence between bounded derived categories of coherent sheaves on two smooth
projective varieties X and Y is understood. It is known that the derived categories of coherent
sheaves on some projective varieties are equivalent to the derived categories of representations
of n-vertices quivers. For instance, the derived category of coherent sheaves on P2 is equivalent
to the derived category of representations of 3-vertices quivers with relations [5]. There is a very
interesting connection between Fourier–Mukai transforms and mirror symmetry [8]. A quiver
can be interpreted as a directed graph [6, 7]. We investigate some computational aspects of
Fourier–Mukai transforms. This paper is a continuation of [9, 10].

The organization of the article is as follows. In Section 2 we recall from the computational
point of view some facts about Abelian varieties. In Section 3 we very shortly consider param-
eterization of Abelian varieties and some moduli spaces. In Section 4 we recall follow to Mukai
the definition of the Fourier–Mukai transform. In Section 5 we present our computer algebraic
method for computation of cutsets of some quivers and its implementation.
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2 Abelian varieties

Let Cg be a complex vector space of the dimension g and Λ a lattice in Cg with a bases
{a1, . . . ,a2g}. For a lattice vector a = (a1, . . . , a2g) ∈ Λ its length is denoted by |a|. The
factor Cg/Λ = A is the commutative compact topological group (complex torus). Recall the
case g = 1.

Example 1 (Elliptic curves). Let Λ = {a, b}, a, b ∈ C, a/b /∈ R. Then E = C/Λ is an
elliptic curve. In the case every such lattice defines an elliptic curve. What is the simplest
representation of Λ?

Lemma 1 (Basis reduction in Λ). In any such lattice Λ there exists (under the rotations)
one and only one basis with conditions:

(i) |b| ≥ |a|;
(ii) length of the projection b on a ≤ 1

2 |a|;
(iii) the angle (a, b) < π/2 (acute angle).
So we can reduce a basis of Λ to the form Λ = {1, τ}, where Im τ > 0, −1

2 ≤ Re τ ≤ 1
2 ,

|τ | ≥ 1.

Let

h =
∣∣∣∣

a b
c d

∣∣∣∣ , det h = 1, a, b, c, d ∈ Z.

Two lattices Λ = {1, τ}, Λ′ = {1, τ ′} are equivalent if τ ′ = aτ+b
cτ+d . In the case there is a birational

isomorphism between elliptic curves E = C/Λ and E′ = C/Λ′.

If g > 1 then there are groups A = Cg/Λ which are not Abelian varieties [11]. The complex
torus A is an Abelian variety if and only if there exist R-bilinear antisymmetric form F (x, y)
such that the form F (x, ix) is a positive definite Hermitian form that takes integer values at
points of Λ. The form F (x, y) is called the polarization on Λ and a pair (Λ, F ) is called the
polarized Abelian variety. For computational purposes a good idea is to reduce the bases of
the lattice to a some simple form. The bases reduction of Λ in the case g = 1 is well-known
(Example 1).

On basis reduction in lattices (the case g > 1). Let a lattice Λ = {a1, . . . ,a2g},
ai = (ai1, . . . , ai1) have coordinates with the condition aij ∈ Q.

There are Minimum Basis problem, Shortest Lattice Vector problem and LLL Lattice Reduc-
tion [12, 13].

The method of a solution of the Minimum basis problem is based on the theory of successive
minima, developed by Minkowski [12]. By this method we try to find short linear indepen-
dent vectors one after one. The solution of the Shortest Lattice Vector problem is based on
Minkowski’s theorem on convex body [12]. Probably both the methods are NP -hard.

In some applications the concept “reduces” means something like “nearly orthogonal”. The
L3 algorithm [14] accept as input any basis a1, . . . ,a2g of Λ, and it computes a reduced basis
b1, . . . , b2g of Λ. In general, a lattice may have more then one reduced basis. The ordering
of the basis vectors is not arbitrary. The algorithm has a very good theoretical complexity
(polynomial-time in the length of the input parameters).

3 Parameterization of Abelian varieties and moduli spaces

Let (Λ, F ) be a polarized Abelian variety. Denote by M tr the transposition of a matrix M.
There is a canonical form of Abelian varieties. In the form the lattice of the Abelian variety has
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the representation

Ω = (Eg, Z),

where Eg is the identity matrix and Z = X + iY is a complex g × g matrix with conditions:
a) Z = Ztr, X = Xtr, Y = Y tr (X, Y are reals); b) Y > 0 is the matrix of a positive quadratic

form. The set {Z} = Hg of the matrices is called the Siegel upper half-space. Let J =
∣∣∣∣

0 Eg

−Eg 0

∣∣∣∣
be the symplectic matrix. Let M =

∣∣∣∣
a b
c d

∣∣∣∣, M ∈ GL(2g, Z), M trJM = J , be the modular group.

The modular group acts on Hg by the formula

Z ′ = (aZ + b)(cZ + d)−1

(here a, b, c, d are g × g matrices with integer coefficients). If matrices X and Y have integer
coefficients, then all data with the exception of complex unit are defined over Z. Therefore they
and their factors mod p for prime p are well-adapted for computers. Moduli spaces [15,16] are
used for specification and investigation of classes of objects which could be algebraic curves (or,
more generally, schemes), sheaves, vector bundles, morphisms and others. Parameter varieties
is a class of moduli spaces. These varieties is a very convenient tool for computer algebra
investigation of objects that are parameterized by the parameter varieties. If we investigate
a class of algebraic varieties over integers, then the first step of the investigation in many
cases is the analysis of the varieties over prime finite fields. We have used the approach for
investigation of rational points on families of hyperelliptic curves [17]. Expansion of the group
law of an Abelian variety near 0 defines a formal group of the dimension one in the case of
elliptic curves [18] and of the dimension g > 1 for g−dimensional Abelian varieties [19]. Results
about formal group over finite fields and over ρ-adic fields [20] can be useful for investigation
of the groups over Z. The paper [21] demonstrates computational advantages of the localization
under computation of cohomologies.

Let A, B be two Abelian varieties of the dimension g over a field k, k(A), k(B) their fields of
functions, λ : A → B some surjective morphism with a finite kernel (an isogeny of the varieties).
Any isogeny λ : A → B defines a field extension [k(A) : k(B)]. The degree of the extension
is called the degree of the isogeny. The polarization F defines an isogeny of degree d2. Follow
to [22] it is possible to construct for a prime finite field Fp the moduli space Xg,d ⊗ Fp of all
Abelian varieties of dimension g with a polarization F of degree d2.

4 Elements of category theory and the Fourier–Mukai transform

4.1 Equivalence of categories

Let C be a category [23], Ob C its class of objects, and for a, b ∈ Ob C, C(a, b) the class of
morphisms (arrows) from a to b. An arrow u : a → b is the equivalence in C if there is an arrow
u′ : b → a such that u′u = 1a and uu′ = 1b. A functor F from a category C to a category K
is a function which maps Ob (C) → Ob (K), and which for each pair a, b of objects of C maps
C(a, b) → C(F(a),F(b)), while satisfying the two conditions: F ida = idFa for every a ∈ Ob (C),
F(fg) = F(f)F(g).

Let Funct (C,D) be the category of functors from C to D with natural transformations as
morphisms. An equivalence in Funct (C,D) is the equivalence between categories C and D. The
following theorem is a particular case of the theorem from [23].

Theorem 1. A functor F : C → D is the equivalence if, and only if
a) F is fully faithful, and
b) any Y ∈ ObD is isomorphic to an object of the form F(X) for an object X ∈ Ob C.
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4.2 The Fourier–Mukai transform

Let A be an Abelian variety and Â the dual Abelian variety which is by definition a moduli
space of line bundles of degree zero on A [11]. The Poincaré bundle P is a line bundle of degree
zero on the product A × Â, defined in such a way that for all a ∈ Â the restriction of P on
A × {a} is isomorphic to the line bundle corresponding to the point a ∈ Â. This line bundle is
also called the universal bundle. Let

πA : A × Â → A,

πÂ : Â × A → Â,

and CA be the category of OA−modules over A, M ∈ Ob CA,

Ŝ(M) = πÂ,∗(P ⊗ π∗
AM).

Then, by definition, the Fourier–Mukai transform FM is the derived functor RŜ of the functor Ŝ.
Let D(A), D(Â) be bounded derived categories of coherent sheaves on A and Â respectively.

Theorem 2 (Mukai). The derived functor FM = RŜ induces an equivalence of categories
between two derived categories D(Â) and D(A).

5 Cutset method and its implementation

A quiver can be interpreted as a directed graph. Here we consider quivers without multiple edges
and loops. The solution of some problems requires to cut all cycles or construct a spanning-
tree of a directed graph. Rooted graph G is the graph that each node of G is reachable from
a node r ∈ G. By the cutset of a graph we shall understand an appropriated subset of nodes
(called cutpoints) such that any cycle of the graph contains at least one cutpoint. DFS is
the abbreviation of Depth First Search method. During DFS we are numbering nodes and
label (mark) edges. By Tarjan [24] the DFS method has linear complexity. The main function
Cutsetdg of the package CUTSETDG computes Cutset (a subset of vertices which cut all cycles
in the graph) of arbitrary rooted directed graph. It uses 3 functions: Adjarcn, Cutpoints and
Unicut. For this program the author developed rather simple and efficient algorithm that is
based on DFS-method. The function is the base for Cutset methods for systems of procedures.
The package is implemented by the Allegro Common Lisp language [25,26].

Note 1. It is not difficult to modify the Cutset algorithm for processing directed graphs with
multiple edges.

Package CUTSETDG
Title: Cutset of a rooted directed graph
Summary: This package implements computation of a cutset of a rooted directed graph. The graph have
to defined by adjacency list.
Author: Nikolaj M. Glazunov
Example of Call: (Cutsetdg ’a) where “a” is a root of exploring graph.
The Common Lisp text of the package CUTSETDG

;; Allegro CL 3.0.2
;;

(DEFUN Cutsetdg (startnode)

;; startnode is a root of exploring graph
;; DFS - Depth First Search method for connected graph
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;; st - stack
;; v - exploring node
;; sv - son of the exploring node
;; inl - inverse edges list
;; df - DFS-numbering of the node (property)
;; Outarcs - adjacency list of Output arcs of the node (property)
;; 1, 2 - lables

(SETF (GET startnode ’df ) 1) ;DFS-numbering is equal 1
(SETF (GET startnode ’Outarcs)

(Adjarcn (LIST startnode))) ;;startnode obtained the a-list
;; property Outarcn (Output arcs of the
;; node)

(PROG ( st v sv inl cuts)
(PUSH startnode st)

1 (SETQ v (CAR st)) ;;explored node received value from stack of nodes
2 (COND ((NOT (EQ NIL (GET v ’Outarcs)))

(SETQ sv (CAAR (GET v ’Outarcs)))
(COND ((EQ NIL (GET sv ’df))

(SETF (GET sv ’df) (+ 1 (GET v ’df)))
;; modification of the edge of son’s adj-list
(SETF (GET sv ’Outarcs)

(Adjarcn (LIST sv))) ;; node sv obtained the adj-list property
;; Outarcs (adjacency Outarcs)

(SETF (GET v ’Outarcs) (REMOVE (LIST sv v) (GET v ’Outarcs)
:TEST ’EQUAL))

(PUSH sv st)
(GO 1)

)
(T

(COND ((AND (> (GET v ’df) (GET sv ’df))
(NOT (EQUAL v sv)))

(SETQ inl (CONS (CAR (GET v ’Outarcs)) inl))
(SETF (GET v ’Outarcs) (REMOVE (LIST sv v) (GET v ’Outarcs)

:TEST ’EQUAL))
(GO 2)
)

(T
(SETF (GET v ’Outarcs) (REMOVE (LIST sv v) (GET v ’Outarcs)

:TEST ’EQUAL))
(GO 2)
)

)
)

)
)

(T
(POP st)

(COND ((NOT (NULL st))
(GO 1)

)
(T ;; end

(SETQ cuts (Unicut (Cutpoints inl)))
(RETURN cuts)
)

)
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))
)

)
(DEFUN Adjarcn (PATH)

(MAPCAN #’(LAMBDA (E)
(COND ((MEMBER (CAR E) (CDR E)) NIL)

(T (LIST E))))
(MAPCAR #’(LAMBDA (E)

(CONS E PATH))
(CAR (GET (CAR PATH) ’NEIGHBORS)))))

(DEFUN Cutpoints (inl)
(MAPCAR ’CAR inl))

(DEFUN Unicut (cpl)
(COND ((NULL cpl) NIL)

(T (CONS (CAR cpl)
(Unicut (REMOVE (CAR cpl) cpl)))

)
)
)
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