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Symmetry of Stochastic Equations
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We discuss symmetries of Ito equations, and the relations of these with symmetries of the
associated Fokker–Planck equation.

Symmetry methods are by now recognized as one of the main tools to attack deterministic
differential equations (both ODEs and PDEs); see e.g. [3, 8, 15, 20, 21, 24, 25]. The situation is
quite different for what concerns stochastic differential equations [1,12,13,16,19]: here, symmetry
considerations are of course quite widely used by theoretical physicists (see e.g. [4,14,17] in the
context of KPZ theory), but a rigorous and general theory comparable to the one developed for
deterministic equation is still lacking, and the attention of the community working on symmetry
methods should maybe be called to this.

We would like to quote here early work by Misawa [18], mainly concerned with conservation
laws for stochastic systems, and later on the work by Arnold and Imkeller [1,2] for normal forms
of stochastic equations.

In the following I will report on some work I have done – to a large extent in collaboration with
N. Rodŕıguez Quintero – on symmetries of stochastic (Ito) equations, and how these compare
with the symmetries of the associated diffusion (Fokker–Planck) equations [5, 7, 22, 23]; further
details can be found in [9, 11].

It should be stressed that in this note an Ito equation will be seen as describing a one-particle
stochastic process only. The same equation does also describe N -particles processes, or a random
dynamical system [1], and in this case there will be further symmetries beyond those admitted
in the frame of the one-particle processes interpretation, as discussed in [9].

1 Projectable symmetries

We assume the reader to be fairly familiar with the concept of symmetry of a deterministic
differential equation, and the methods to characterize these; so we will just recall some formula
of use in the following, mainly to fix notation, identify the class of transformations we are going
to consider, and compare with the situation for stochastic equations.

Let us first consider the case of systems of first order ODEs in R
n,

ẋi − f i(x, t) = 0. (1)

The general form of Lie-point vector fields is in this case, writing ∂i = ∂/∂xi, X = τ(x, t)∂t +
ξi(x, t)∂i. Such a vector field, however, is somehow too general: indeed, we would like the change
on t not to depend on the value assumed by the solution x(t); this is particularly relevant when
we think of the ODE as describing not the motion of a single particle in R

n, but that of an
assembly of particles. We would thus like to keep the special role of time, i.e. require τ = τ(t);
in other words, we will consider

X0 = τ(t)∂t + ξi(x, t)∂i. (2)

A similar discussion holds for symmetries of PDEs, first or higher order. Here we will deal
only with scalar PDEs, i.e. equations for a single dependent variable u = u(x, t). In this case
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we would write in general X = τ(x, t, u)∂t + ξi(x, t, u)∂i + φ(x, t, u)∂u. On physical terms, it is
preferable to consider only transformations such that the independent variables are transformed
independently of the values assumed by the dependent ones, i.e. such that τ and the ξi do
not depend on u; also, here we are primarily interested in evolution equations, and in order to
guarantee that the time keeps its distinguished role we should also ask that τ does not depend
on x. Thus, in the end we want to consider transformations of the form

X = τ(t)
∂

∂t
+ ξi(x, t)

∂

∂xi
+ φ(x, t, u)

∂

∂u
. (3)

Definition 1. The vector fields – and in particular symmetry generators – of the form (2), (3)
will be called “fiber-preserving”, or simply projectable.

Let us now consider in particular a system of ODEs, which we write in the form (1). The
determining equations for the symmetry generators of this are easily determined (these should
be compared to the determining equations for stochastic differential equations discussed in the
next section). We will use, here and below, the notation

{f, ξ}i := (f j · ∂j)ξi − (ξj · ∂j)f i. (4)

Lemma 1. The projectable symmetries of (2) are given by vector fields X0 as above with coef-
ficients satisfying

∂t(ξi − τf i) + {f, ξ}i = 0. (5)

For given functions f i(x, t) the partial differential equations (5) always [20, 24] have non-
trivial solutions τ(t) and ξi(x, t); for example we can fix τ(t) and compute ξi(x, t). Although an
infinite number of symmetries of (5) exist, in general there is no constructive way to find them.

For further detail on symmetries of (deterministic) ODEs and PDEs, and applications, the
reader is referred to [3, 8, 15,20,21,24,25].

2 Stochastic differential equations

Let us turn to stochastic equations [1, 6, 12, 13,16,19], and let us consider an Ito equation1

dxi = f i(x, t) dt + σi
k(x, t) dwk, (6)

where f and σ are smooth functions, σ(x, t) is a nonzero matrix and the wk are independent
homogeneous standard Wiener processes, so that

〈|wi(t) − wj(s)|2〉 = δij(t − s).

The equation (6) should be seen as a map from the vector Wiener process w(t) = {w1(t), . . .,
wn(t)} to the stochastic process undergone by {x1(t), . . . , xn(t)}, and its meaning is precisely
that of defining the vector stochastic process x(t).

If we consider a function y = Φ(x), its evolution under the Ito equation (6) is described
(again in terms of a stochastic equation) by the Ito formula:

dyi =
∂Φi

∂xj
dxj +

1
2

∂2Φi

∂xj∂xk
dxjdxk

=
[
f j∂jΦi + (1/2)∂2

jmΦi(σσT )jm
]
dt +

[
(∂jΦi)σjk

]
dwk. (7)

1It is well known that any Ito equation is equivalent to a Stratonovich equation; for the Ito equation (6), the
associated Stratonovich equation is dxi = bi(x, t)dt + σi

k(x, t) ◦ dwk, with bi = f i − (1/2)[σ(∂σT /∂x)]. We will
stick to the Ito formulation in all of this note.
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The Fokker–Planck equation

∂tu = −∂i (f iu) +
1
2

∂2
ij

[
(σσT )iju

]
(8)

is associated to the Ito equation (6) and describes the evolution of the probability measure
ρ = u(x, t) under the stochastic process described by (6). Equations (6) and (8) contain the
same statistical information [1, 12, 13, 16, 19] as far as one-particle processes are concerned (but
not if we think of the Ito equation as describing a random dynamical system, see [1,9]), provided
σ satisfies the non-degeneracy condition

A :=
1
2
σ σT �= 0

which we will assume throughout this note.
We stress that we are interested in equation (8) as far as it describes the time evolution of

the probability measure ρ = u(x, t) under the stochastic process (6). It is obvious that for this
interpretation u(x, t) should be non-negative and subject to the condition∫ +∞

−∞
u(x, t) dx1 · · · dxn = 1. (9)

This is relevant in connection with the allowed transformations in the (x, t; u) space: only
transformations preserving this normalization do represent symmetries of the Fokker–Planck
equation compatible with its probabilistic interpretation2, and one should expect a correspon-
dence between symmetries of the Ito equation and this subclass – rather than all – of the
symmetries of the Fokker–Planck equation.

Another simple but relevant point which should be stressed is the following: different Ito
equations which have the same f but different matrices σ can provide the same term σσT and
thus the same Fokker–Planck equation.

A simple example is provided e.g. by σ orthogonal: in this case we have by definition σσT = I,
so that all the Ito equations with the same f and any orthogonal matrix σ give the same
Fokker–Planck equation3. Similarly, σ and σ̃ = σB, with B any orthogonal matrix, will give
the same Fokker–Planck equation (and conversely σ and σ̃ give the same Fokker–Planck – with
the same f – only if there is an orthogonal matrix B such that the above relation is satisfied.

Thus if we consider a continuous variation of σ, say σ+εγ, in the Ito equation, the associated
Fokker–Planck equation remains unchanged provided (σ+εγ)(σ+εγ)T = σσT , which at order ε
is simply

σγT + γσT = 0. (10)

3 Symmetries of stochastic ODEs

3.1 Spatial symmetries

We will at first consider symmetries not acting on the time variable t, i.e. X0 = ξi(x, t)∂i. Thus,
we consider a near-identity change of coordinates, passing from x to y via

xi → yi = xi + εξi(x, t). (11)
2In other words, we should set the FP equation in the function space F defined by (9), and thus accept only

transformations mapping F to itself.
3The one-point stochastic processes described by two different Ito equations having the same associated Fokker–

Planck equation have the same statistical properties (the probability measures evolve in the same way), but are
different: the same realization of the Wiener process w(t) leads to different sample paths.



Symmetry of Stochastic Equations 101

Using the Ito formula, we easily check that at first order in ε, this transformation maps the Ito
equation (6) into a new Ito equation

dyi = f̃ i(y, t) dt + σ̃i
k(y, t)dwk, (12)

where we have explicitly

f̃ i = f i + ε [∂tξ
i + f j∂jξ

i − ξj∂jf
i + (1/2)(σσT )jk∂2

jkξ
i],

σ̃i
k = σi

k + ε [σj
k∂jξ

i − ξj∂jσ
i
k]. (13)

When (11) maps (6) into itself, i.e. when (12) coincides with (6) [up to terms o(ε)], we say that
X0 = ξi(x, t)∂i is a (Lie-point) spatial symmetry of (6). Thus, Lie-point spatial symmetries
of (6) are identified by the vanishing of terms O(ε) in (13). In the following statement, we use
the notations introduced above for A and {·, ·}.
Proposition 1. The (generators of) Lie-point spatial symmetries of the Ito equation (6) are
given by vector fields X0 = ξi(x, t)∂i

x with coefficients ξi satisfying the determining equations for
spatial symmetries of an Ito equation:

∂tξ
i + {f, ξ}i + (1/2)(σσT )jk∂2

jkξ
i = 0,

{σk, ξ}i = 0. (14)

These are n + n2 equations for the n + 1 functions ξi, τ ; thus for n > 1 they have some
solution only in very exceptional cases. This should not be surprising, as symmetry is a non-
generic property.

Note that if σ = σ(t) does not depend on the spatial variables, the second equation of (14)
reduces to σj

k∂jξ
i = 0, which in turns implies vanishing of the term (σσT )jk∂2

jkξ
i, which in this

case can be rewritten as σk
p∂k(σ

j
p∂jξ

i). Thus, (14) are in this case equivalent to the determining
equations for symmetries of the deterministic part of the Ito equation [see (5) and recall now we
are assuming τ = 0] with the additional condition σj

k∂jξ
i = 0.

3.2 Spatio-temporal symmetries

We could of course consider transformations acting also on t: in this case the t transformation
would also affect the processes w(t), and some extra care should be paid. We will not go over the
details (which consist in studying how w(t) is changed and include this in the change undergone
by σ), and just report the result obtained in [11], with the same notation as above.

Proposition 2. The projectable vector field X0 = τ(t)∂t+ξi(x, t)∂i
x is a symmetry generator for

the Ito equation (6) if and only if the coefficients {τ, ξ}i satisfy the full determining equations
for projectable symmetries of an Ito equation:

∂t

(
ξi − τf i

)
+ {f, ξ}i − Ajk∂2

jkξ
i = 0,

{σk, ξ}i − τ∂tσ
i
k − (1/2)σi

k∂tτ = 0. (15)

Note that the symmetries which are linear in x, i.e. such that ξi(t; x) = M i
j(t)x

j , are given by
the same equations as for symmetries of the deterministic part of the Ito equation (6), i.e. (5),
plus the additional condition M i

jσ
j
k = M j

pxp∂jσ
i
k + τ∂tσ

i
k + (1/2)σi

k∂tτ .
A relevant case in applications is the one where f i = f i(x) and σi

k = σi
k(t) or even σi

k =
const = Si

k; this correspond to an autonomous dynamical system subject to a noise which
depends only on t or even a constant noise. In this case (14) can be discussed quite completely.
Indeed, with σ independent of the spatial coordinates, the second of these reads 2σj

k∂jξ
i =



102 G. Gaeta

2τ∂tσ
i
k + σi

k∂tτ . As the r.h.s. depends only on t, by differentiating with respect to xm we get
the equation σj

k(∂
2ξi/∂xj∂xm) = 0: i.e., the (symmetric) matrix of second derivatives of ξi,

H i
jm must be such that σH i = H iσ = 0. Notice that in particular, if σi

k(t) = λ(i)(t)δi
k with all

λ(i) �≡ 0 (or however if σ−1 exists), this means that ξ can be at most linear in the x.

4 Symmetries of the Fokker–Planck equation

We will now discuss the determining equations for projectable symmetry generators of the
Fokker–Planck equation (8) in arbitrary spatial dimensions; general symmetries of the Fokker–
Planck equations (with some limitations on σ) in one and two space dimensions have been
completely classified [5, 7, 23].

It will be convenient to rewrite the Fokker–Planck equation as

ut + Aij ∂2
iju + Bi ∂iu + Cu = 0; (16)

the coefficients A, B, C depend on x and t only and are given explicitly by4

A = −(1/2)σσT , Bi = f i + 2∂jA
ij , C(x, t) = (∂i · f i) + ∂2

ijA
ij . (17)

We consider a projectable vector field of the form (3). Computing the second prolongation
of this and applying it to the equation, we obtain the determining equations for symmetries of
the Fokker–Planck equation.

It follows by general results on Lie-point symmetries of linear equations [8, 20], or by an
elementary explicit computation, that:

Lemma 2. The projectable symmetries of the Fokker–Planck equation (16) are given by vector
fields in the form (8) with φ = α(x, t) + β(x, t)u.

Again by linearity, we will have “trivial” symmetries Xα = α(x, t)∂u, with α(x, t) an arbitrary
solution to the FP equation itself; this is just expressing the linear superposition principle [20].
Note that in order to preserve the normalization (9), we should moreover require

∫
α(x, t)dx = 0,

which rules out nontrivial non-negative solutions.
We will thus from now on focus on other, i.e. “nontrivial”, symmetries only, and take

α(x, t) = 0.

Proposition 3. The nontrivial projectable symmetries of the Fokker–Planck equation (16) are
given by vector fields in the form (3) with φ = β(x, t)u, where τ , ξi, β satisfy the determining
equations

∂t(τAik) + (ξm∂mAik − Aim∂mξk − Amk∂mξi) = 0,

∂t(τBi) − [
ξi
t + Bm∂mξi − ξm∂mBi

]
+ (Aik∂kβ + Ami∂mβ) − Amk∂2

mkξ
i = 0,

∂t(τC) + βt + Aik∂2
ikβ + Bi∂iβ + ξm∂mC = 0. (18)

It should be stressed that in the computations leading to (18) we have not required preser-
vation of the normalization

∫
u dx = 1; when we require this, it turns out that

Lemma 3. The nontrivial projectable symmetries of the Fokker–Planck equation (16), in the
form (3) with φ = β(x, t)u, preserve the normalization (9) if and only if

β = −div(ξ). (19)

4Recall that our non-degeneracy assumption guarantees A �= 0.
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In other words, this lemma guarantees that if we are looking for the (nontrivial) symmetries
of a Fokker–Planck equation compatible with its probabilistic interpretation, we do not have to
deal with the general form (3) of the symmetry vector field, but we can use instead the ansatz

X = τ(t)∂t + ξi(x, t)∂i − [div(ξ)u]∂u; (20)

this substantially simplifies the analysis of symmetries.

5 Symmetries of the Ito versus symmetries
of the associated FP equation

We are specially interested in discussing how the symmetries of the partial differential equa-
tion (16) and those of the symmetries of the system of stochastic ODEs (6) are related.

In order to do this, we should express the coefficients A, B, C in terms of f and σ; indeed
A = −(1/2)σσT , Bi = f i + 2∂kA

ik, and C = ∂if
i + ∂2

ikA
ik. With the latter two of these and

with some manipulations, see [11], (18) reads

∂t(τAik) +
(
ξm∂mAik − Aim∂mξk − Akm∂mξi

)
= 0,[

∂t(ξi − τf i) + {f, ξ}i − Amk∂2
mkξ

i
]
− 2

[
Aik∂kβ + Aim∂2

mkξ
k
]

= 0,[
∂t + f i∂i − Aik∂2

ik

]
[β + ∂mξm] = 0. (21)

It is convenient to introduce the shorthand notations

Γk
j = σm

j ∂mξk − ξm∂mσk
j − τ∂tσ

k
j − (1/2)σk

j ∂tτ,

Λi = −
[
∂t(ξi − τf i) + {f, ξ}i − Amk∂2

mkξ
i
]
. (22)

With these, (21) is rewritten as

σi
jΓ

k
sδ

js + σk
j Γi

sδ
js = 0,

Λi + 2
[
Aik∂kβ + Aim∂2

mkξ
k
]

= 0,[
∂t + f i∂i − Aik∂2

ik

]
[β + ∂mξm] = 0. (23)

It should be stressed that with the notation just introduced, the determining equations (15)
for symmetries of the Ito equation (6) read simply

Λi = 0, Γi
j = 0. (24)

With this notation, the comparison of symmetries for the Ito and the associated Fokker–
Planck equation is quite a simple matter.

5.1 From the Ito to the FP symmetries

We will first investigate if symmetries of an Ito equation result in symmetries of the associated
Fokker–Planck equation.

We first note that for Γ = 0, the first of (23) is satisfied. As for the second of (23), when
Λi = 0 this reduces to

Aik∂kβ = −Aim∂2
mkξ

k. (25)
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Obviously β is not present in symmetries of the Ito equation, so we can choose it as to satisfy
the third of (23) and (25): for this it suffices to choose

β = −∂mξm + c0 = −div(ξ) + c0. (26)

We know from Lemma 2 that actually we have to take c0 = 0, and that this is actually the only
choice of β providing us with a normalization-preserving symmetry of the FP. Our findings are
summarized as follows:

Proposition 4. Let X0 = τ∂t + ξi∂i be a symmetry of the Ito equation (6). Then X0 extends
to a unique normalization preserving symmetry X := X0 − [(divξ)u]∂u of the associated Fokker–
Planck equation.

5.2 From the FP to the Ito symmetries

Let us now consider the converse question, i.e. if and when a symmetry of the FP equation
associated to an Ito equation can be projected to a symmetry of the Ito equation itself.

As the probabilistic interpretation of the FP requires the normalization condition (9), we
expect only symmetries identified by Lemma 3 can provide symmetries of related Ito equations.

Moreover, as recalled above, there are transformations which map an Ito equation into a dif-
ferent one with the same statistical properties and thus the same associated FP equation: these
would be symmetries of the FP but not of the Ito equation. Thus, not all the symmetries of the
FP should be expected to produce symmetries of the Ito equation.

By Lemma 3, we assume β = −div(ξ); this guarantees that the third of (23) holds, and also
that the second of (23) reduces to Λi = 0. Hence we only have to discuss the relation between
the first of (23) and the second of (24). These two equations can be rewritten, respectively, as

σΓT + ΓσT = 0 and Γ = 0. (27)

The second of these implies the first, but the converse is not true: hence there is not a complete
equivalence.

This just corresponds to a given FP equation corresponding to different Ito equations: the
transformations with Γ �= 0 but σΓT + ΓσT = 0 will be precisely those which map an Ito
equation E0 into a different Ito equation E1 which has the same Fokker–Planck associated
equation, see (10).

Proposition 5. Let X = τ(t)∂t + ξi(x, t)∂i − [(divξ)u]∂u be a symmetry of the Fokker–Planck
equation associated to the Ito equation (6). Then X maps the Ito equation into a (generally, dif-
ferent) Ito equation with the same statistical properties; X is a symmetry of the Ito equation (6)
if and only if Γ defined in (22) satisfies Γi

k = 0.

We may note that from the above system (24), restricting to the case where f(t, x) = f(x)
and σ(t, x) = σ(x), we recover the results of Cicogna and Vitali [5] for the one-dimensional
setting. From (22) it is also possible to recover the results of Shtelen and Stogny [23] for the
two-dimensional Kramers equation, as well as the results of Finkel [7] for certain two-dimensional
FP equations.

5.3 Examples

Example 1. As the first example, we consider the case f(t, x) = 0, σ(t, x) = σ0 = const �= 0,
i.e. the equation

dx = σ0 dw(t) (28)
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which represents a free particle subject to constant noise. The corresponding Fokker–Planck
equation is simply the heat equation ut = (σ2

0/2)uxx. The symmetries of the heat equation
(other than the trivial ones vα = α(x, t)∂u with αt = αxx) are well-known to be [20,24]

v1 = ∂t, v2 = ∂x, v3 = u∂u, v4 = σ2
0t∂x − σ0xu∂u,

v5 = 2t∂t + x∂x, v6 = t2∂t + xt∂x − (1/2)(t + x2/σ2
0)u∂u.

Of these, v1, v2 and v5 (which do not act on u) are also symmetries of the Ito equation (28), as
is easily checked using (14). Notice that (19) is satisfied for these, and is not satisfied for v3, v4

and v6. The vector fields v1, v2 and v5 do actually span the symmetry algebra of (28).

Example 2. As an example in two space dimensions [with coordinates (x1, x2) = (x, y)], we
choose

dx = y dt,

dy = −k2y dt +
√

2k2 dw(t) (29)

with k2 a positive constant.
The corresponding Fokker–Planck equation is the Kramers equation

ut = k2uyy − yux + k2yuy + k2u; (30)

the symmetries of this were studied in [23] and, apart from the trivial ones vα, are

v1 = ∂t, v2 = ∂x, v3 = e−k2t [k−2∂x − ∂y], v4 = u∂u,

v5 = t∂x + ∂y − (1/2)(y + k2x)u∂u, v6 = ek2t [k−2∂x + ∂y − yu∂u].

Here v1, v2 and v3 satisfy (19), while for v4, v5 and v6 this is violated. According to our definition,
the symmetries of the equations (29) are again v1, v2 and v3, as easily checked.

Example 3. We consider now an example where the correspondence between normalization-
preserving symmetries of the FP equation and symmetries of the Ito equation is not complete,
i.e. the two-dimensional Ito system (with zero drift)

dx1 = cos(t)dw1 − sin(t)dw2,

dx2 = sin(t)dw1 + cos(t)dw2; (31)

the corresponding Fokker–Planck equation is now just the two dimensional heat equation ut =
(1/2)�u.

It is now immediate to check that the vector field X0 = ∂t is a symmetry of the FP equation,
but not a symmetry of (31). Obviously, the case of any orthogonal σ with ∂tσ

i
k �≡ 0 will be

exactly the same.

Example 4. Consider n uncoupled equations for equal “Langevin harmonic oscillators” subject
to independent stochastic noises [16, 22]; this system is described by the Ito system

dxi = −xi dt +
√

2si dwi, i = 1, 2, . . . , n (32)

(no sum on i) where we assume all the si are strictly positive; the corresponding Fokker–Planck
equation is

∂tu =
n∑

i=1

[si∂
2
iiu + xi∂iu + u].
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In this case we get the symmetries (i = 1, 2, . . . , n)

v1 = ∂t, v2 = e−2t

[
∂t −

n∑
i=1

xi∂i + nu∂u

]
, vqi = e−t∂i.

Example 5. Finally, we consider now the n-dimensional nonlinear case

dxi = −(1 − λ‖x‖2)xi dt + dwi, (33)

where ‖x‖ is the norm of the vector x and λ �= 0. By inserting f i = −xi(1−λ‖x‖2) and σi
j = δij

in (24) we obtain, from the second of these, ξi = hi(t) + (τt/2)xi. Inserting this into the first
of (24) and isolating the coefficients of different powers of x, we get that the only symmetry is
given by v = ∂t.

Note that we got no rotation symmetry; this is because within the class of transformations
we are considering we can rotate the vector x, but not the vector Wiener process w(t); transfor-
mations allowing to rotate w(t) as well will be considered in the next section.

6 W-symmetries

We will now consider symmetries involving not only the spatial and time variables (x, t), but
also the vector Wiener processes w(t) entering in the n-dimensional Ito equation (6). We will
specifically consider infinitesimal transformations of the form

xi → yi = xi + εξi(x, t),
t → s = t + ετ(t),

wi → zi = wi + εµi(w, t). (34)

We also call symmetry generators of this form, “W-symmetries”.
Note that this is not the most general possible form of a transformation for the variables

involved in (1); some words on this restriction are in order here.
The restriction on τ and ξ is the same as considered above. Moreover, we only allow “internal”

transformations of w, i.e. they cannot depend on x(t). As we think of the stochastic process w(t)
to be independent of the evolution of the x(t), we like its transformation not to depend on the
latter. Finally, we have allowed the transformation on the spatial coordinates x(t) to depend
on x and t, but not on the w; this means that we do not want to consider transformations of the
spatial coordinates which depend on the realization of the stochastic process w(t). This again
is somewhat a natural requirement in physical terms5.

In order to compute how (34) acts on the Ito equation (6), we use the Ito formula (7). More-
over, due to the form of (34), we can adopt a “two-steps procedure”, see [9]: the transformations
of the (x, t) variables and of the stochastic process w(t) do not interfere with each other. It turns
out that some strong limitation on the functions µi arise.

Lemma 4. The infinitesimal transformation w → z = w + εµ(w, t) maps the vector Wiener
process w(t) into a vector Wiener process z(t) if and only if µ = Bw, with B a real antisymmetric
matrix. Equivalently, if and only if z = Mw with M orthogonal.

Note that as B is antisymmetric matrix, it vanishes in dimension one: for one-dimensional
Ito equations we have no new symmetries with respect to those discussed above.

5It should be however stressed that in this way we are also discarding the transformations needed to obtain
normal forms of stochastic differential equations, see [1, 2] and references therein.
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Proposition 6. Under the infinitesimal transformation (34), with B a real antisymmetric mat-
rix, the Ito equation (6) is changed into a (generally, different) Ito equation. The Ito equation (6)
is invariant under (34) if and only if τ , ξ, µ satisfy the determining equations for W-symmetries:

∂tξ
i + {f, ξ}i − ∂t(τf i) + Ajk∂2

jkξ
i = 0,

{σk, ξ}i − τ∂tσ
i
k − (1/2)(∂tτ)σi

k − σi
pB

p
k = 0. (35)

If we just consider a transformation w → z = Mw, with M orthogonal as required by
Lemma 4, the Fokker–Planck equations associated to the Ito equation and to the transformed
one will be the same. Thus all the discussion conducted in Section 5 about the relations betwen
symmetries of an Ito equation and of the associated FP equation also applies to transformations
of the form (34)6.

Example 6. Let us consider again the two-dimensional Ito equation (29). If we look at the
second set of determining equations and single out the one for i = 2 and k = 1, we have
immediately that B = 0, i.e. in this case we have no new symmetry by allowing transformation
of w.

Example 7. Let us consider again the two-dimensional Ito system (31) We will write ξ1 = α,
ξ2 = β, and B12 = −B21 = b. The most general solution to the determining equations turns out
to be

α = [τt/2 − sin(2t)τ ]x + [b + cos(2t)τ ]y + α0(t),
β = −[b + τ ]x + [τt/2]y + β0(t).

By setting τ = α0 = β0 = 0, we obtain a new symmetry, corresponding to α = by and β = −bx
with b arbitrary, i.e. given by

X =
(

y
∂

∂x
− x

∂

∂y

)
+

(
w2 ∂

∂w1
− w1 ∂

∂w2

)
.

Note this is nothing else than a simultaneous (and identical) rotation in the (x, y) and in the
(w1, w2) planes.

Example 8. We will now consider again the case of n uncoupled equal “Langevin harmonic
oscillators”, see (32) above.

If we discard symmetries with B = 0 (i.e. those obtained above), we are still left with
a nontrivial possibility, i.e. B an arbitrary (real, antisymmetric) constant matrix and ξi = Ci

kx
k,

where Ci
k = (si/sk)Bi

k (no sum on i, k here).
The meaning of this result is obvious: we can act on this system by an arbitrary SO(n)

rotation in the w space and a related rotation in the x space.
If we assume s1 = s2 = · · · = sn = s, we have indeed C = B and the rotations in w and x

spaces do just coincide. For general s1, . . . , sn, the (si/sk) factors relating the C and B matrices
are also easily understood: we could rescale each of the xi by a factor

√
2si, xi =

√
2siy

i

(no sum on i), arriving at the manifestly rotationally invariant n-dimensional Ito equation
dyi = −yidt + dwi.

Example 9. Let us consider again (33). We easily check that it is rotationally invariant with
a W-symmetry: take τ = 0 and ξi = Bi

kx
k, so that

{ξ, f}i = {Bx, (1 − λ||x||2)x} = −2λxi
(
xjBj

kx
k
)

= 0,

the last equality following from B = −BT . That is, (33) is indeed symmetric under simultaneous
identical rotations of the x and w vectors.

6Needless to say, for more general transformations, for which the transformations of the (x, t) variables and of
the vector Wiener process w(t) do interfere with each other, this would not be the case.
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7 Discrete symmetries

We will now briefly consider, for the sake of completeness, discrete symmetries of stochastic
differential equations. Similarly to what happens in the deterministic case (see e.g. [10]), the
resulting determining equations are in general too difficult to be attacked except for very simple
classes of transformations (e.g. reflections, or however linear ones). On the other side, they can
be used to check if a given discrete transformation is a symmetry of a given stochastic differential
equation; and/or to determine the stochastic differential equations which admit a given discrete
transformation as a symmetry.

We consider again an Ito equation of the form (6); here we will not consider transformations
acting on the t coordinate, and will thus limit to consider the change of coordinates in the x
and w spaces given by

yi = φi(x, t), wk(t) = Rk
p(t)z

p(t). (36)

As required by Lemma 4, we take R ∈ O(n). We write as usual A = −(1/2)σσT .
With the Ito formula we have at once that y obeys the Ito equation

dyi =
[

∂φi

∂xj
f j − Ajk ∂2φi

∂xj∂xk
+

∂φi

∂t

]
dt +

[
∂φi

∂xj
σj

pR
p
k

]
dzk. (37)

Proposition 7. The transformation (34) is a symmetry of the Ito equation (6) if and only if φ,
R satisfy the determining equations for discrete symmetries of an Ito equation:

∂φi(x, t)
∂xj

f j(x, t) + Ajk(x, t)
∂2φi(x, t)
∂xj∂xk

+
∂φi(x, t)

∂t
= f i (φ(x, t), t) ,

∂φi(x, t)
∂xj

σj
p(x, t)Rp

k = σi
k (φ(x, t), t) . (38)

Example 10. The simplest case of discrete transformation is provided by φi(x, t) = −xi, R =
±I. In these cases, (38) reduce to

f i(x, t) = −f i(−x, t), σ(x, t) = ∓σ(−x, t). (39)

Example 11. For the n independent “Langevin oscillators”, see (32), it is immediate to check
that (39) is satisfied (for R = −I). More generally, (38) read now (no sum over i, sum over j
when repeated)

a(j)
∂φi

∂xj
−

s2
(j)

2
∂2φi

∂xj∂xj
= a(i)φ

i, s(j)
∂φi

∂xj
Rj

k = s(i)δ
i
k. (40)

Example 12. For equations with σi
k(x, t) = s0δ

i
k (with s0 a real constant), the second of (38)

always reduces to (∂φi/∂xj) = (R−1)i
j . But this implies φ must be a linear function of the x,

φi(x, t) = Li
j(t)x

j with L ∈ O(n) an orthogonal matrix (L = R−1). Thus in this case we are
always reduced to the simple equation Li

j f j(x, t) = f i(Lx, t).
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