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Koutras has proposed some methods to construct reducible proper conformal Killing tensors
and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal
Killing vectors exist in a given space. We give the completely general result demonstrating
that this severe restriction of orthogonality is unnecessary. In addition we correct and
extend some results concerning Killing tensors constructed from a single conformal Killing
vector. We give as an example a Kimura metric and demonstrate how it is possible to
construct a larger class of reducible proper conformal Killing tensors and Killing tensors than
permitted by the Koutras algorithms. In addition, from our new result that all conformal
Killing tensors are reducible in conformally flat spaces, we have a method of constructing
all conformal Killing tensors and hence all the Killing tensors (which will in general be
irreducible) of conformally flat spaces using their conformal Killing vectors.

1 Introduction

In this paper we shall consider an indirect method of constructing irreducible Killing tensors via
conformal Killing vectors which has been proposed by Koutras [5], and also used recently by
Amery and Maharaj [1]. However, in these two papers the underlying principle is not completely
transparent nor are the algorithms obtained the most general; this is partly due to a distraction
caused by the trace-free requirement in the definitions of conformal Killing tensors which is used
in these two papers. Also in a paper by O’Connor and Prince [6] there has been an independent
related discussion, but in the narrower context of a particular metric. We shall show that the
arguments in these papers can be made more general than in the original presentations; in
particular, we shall show that our more general approach enables us to obtain more conformal
Killing tensors and hence more irreducible Killing tensors than those which can be obtained by
the algorithms in [5,1]. We extend a result of Weir [8] for flat spaces to conformally flat spaces
and obtain the maximum number of conformal Killing tensors, which shows that they are all
reducible in conformally flat spaces.

We begin with some notation and known results for Killing vectors and Killing tensors of
order 2.

A Killing vector § satisfies §(q.) = 0.

A Killing tensor of order 2is a symmetric tensor Ky, such that K(gp,) = 0.

Reducible Killing tensors are built from Killing vectors £; and the metric gqp

N N
Kap = aogas + Y > ars&1(a€ )
I1=1J=I

where a¢ and ayy for J > I are constants.
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All other Killing tensors are called irreducible (degenerate, trivial).

e Physically the interest in Killing tensors is due to their connection with quadratic first
integrals of geodesic motion and separability of classical partial differential equations.

e Irreducible Killing tensors yield quadratic first integrals which are not simply linear com-
binations of products of the linear first integrals associated with the Killing vectors.

e The maximum number of linearly independent Killing tensors in an n-dimensional Rie-
mannian space is n(n + 1)(n + 2)/12.

e The existence of this maximum number is a necessary and sufficient condition for spaces
of constant curvature.

e In n-dimensional spaces of constant curvature all Killing tensors are reducible (built from
Killing vectors and the metric).

We have analogous notation and results for conformal Killing vectors and conformal Killing
tensors of order 2.

A conformal Killing vector x satisfies X(a;p) = Vgab-

A conformal Killing tensor of order 2is a symmetric tensor Qqp such that Q(ap.c) = q(agbe)-

Reducible conformal Killing tensors are built from conformal Killing vectors x; and a scalar
times the metric gqp

M M
Qab =Y _ > ars(X1(aX|sjp) + Aab-
T=1J=I

All other conformal Killing tensors are called irreducible.
A trace-free conformal Killing tensor of order 2is a symmetric trace-free tensor Py, such that
P';i =0 and P(ab;c) = P(aYbc)

Reducible trace-free conformal Killing tensors are built from conformal Killing vectors x; and
a scalar times the metric g4

M M 1
Pur= 323 ons (i — i)
I=1J=I

All other trace-free conformal Killing tensors are called irreducible.

e Proper conformal Killing tensors do not generate quadratic first integrals for geodesic
motion in general, but they do so for null geodesics.

e Irreducible proper conformal Killing tensors yield quadratic first integrals which are not
simply linear combinations of products of the linear first integrals associated with the
proper conformal Killing vectors.

e The maximum number of trace-free conformal Killing tensors in an n-dimensional Rie-
mannian space is (n — 1)(n +2)(n + 3)(n +4)/12, [8].

2 To find all Killing tensors in conformally flat spaces

It is well known that, if x® is a conformal Killing vector of the metric g, with conformal factor ¥,
then it is also a conformal Killing vector of the conformally related metric g, = e??gqp with
conformal factor ¥ = ¥ + Q .x°. We now obtain the analogous result for conformal Killing
tensors:
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Theorem 1. If Q% is a conformal Killing tensor satisfying V@Qb) = ¢lag")  then Q% is
also a conformal Killing tensor of the conformally related metric g, = ega. Q% satisfies
v(ach) — q(agbc), where §° = ¢* + 2deQda'

Proof. The proof is straightforward involving an evaluation of V(®Q%) using the result that
gc = gc + 51(71970 + 5(61975 - Q7agbc- u

We cannot determine the number of linearly independent conformal Killing tensors because
of the freedom in their trace; but we can consider the number of linearly independent trace-free
conformal Killing tensors. From the above theorem and the analogous result for conformal
Killing vectors we have,

Corollary 1. The number of linearly independent trace-free conformal Killing tensors is in-
variant under conformal change of the metric. The number of linearly independent reducible
trace-free conformal Killing tensors is similarly invariant.

The maximum number of trace-free conformal Killing tensors in an n (> 2)-dimensional
Riemannian space has been found by Weir [8] to be (n —1)(n+2)(n+3)(n+4)/12, and he has
shown that this number is attained in flat space.

For M conformal Killing vectors there are in general M (M + 1)/2 symmetrised products of
pairs of conformal Killing vectors; hence, in conformally flat spaces, we can construct M (M+1)/2
reducible trace-free conformal Killing tensors. In an n-dimensional Riemannian space there exist
at most (n + 1)(n + 2)/2 linearly independent conformal Killing vectors, and the maximum
number can be attained only in conformally flat spaces. Hence by substituting M = (n+1)(n+
2)/2 we can obtain the maximum possible number of reducible conformal Killing tensors in an
n-dimensional Riemannian space; but of course these need not all be linearly independent. (For
example, in 4 dimensions there are 120 reducible trace-free conformal Killing tensors which can
be constructed from the metric and the conformal Killing vectors, while the theoretical upper
limit of linearly independent trace-free conformal Killing tensors is only 84.) However, Weir [8]
has shown explicitly, in n (> 2)-dimensional flat spaces, that of the M (M + 1)/2 possible trace-
free conformal Killing tensors constructed as above, only (n — 1)(n + 2)(n + 3)(n + 4)/12 are
linearly independent. So, in n (> 2)-dimensional flat spaces all (n — 1)(n 4+ 2)(n + 3)(n +4)/12
trace-free conformal Killing tensors are reducible [8].

Applying the above corollary we can extend Weir’s results to conformally flat spaces:

Corollary 2. The maximum number of linearly independent trace-free conformal Killing tensors
inn (> 2) dimensions is (n—1)(n+2)(n+3)(n+4)/12 and is attained in conformally flat spaces.
In this case all the trace-free conformal Killing tensors are reducible.

So to find all the Killing tensors for conformally flat spaces, we simply investigate all the
reducible conformal Killing tensors; these we can build up from all the conformal Killing vectors.

In four dimensions, conformally flat space-times necessarily admit 15 independent confor-
mal Killing vectors from which 84 independent reducible conformal Killing tensors can be con-
structed. Hence in such space-times there is a rich supply of ‘candidate’ conformal Killing tensors
which may satisfy the gradient condition and so be associated with possibly irreducible Killing
tensors. The large number of candidate tensors means that a direct approach by hand calcula-
tion would be lengthy and error-prone. However the calculations involved, though lengthy, are
routine and this enables them to be automated by using of a computer algebra package such as
Reduce. Work is in progress on investigating a number of conformally flat space-times including
the perfect fluid solutions [7] and the pure radiation solutions [2], the Robertson-Walker metrics
and the interior Schwarzschild solution; these results will be presented elsewhere. In this paper
we will restrict ourselves to a few preliminary remarks.
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The generic perfect fluid solutions [7] and the pure radiation solutions [2] admit no Killing
vectors and so if any gradient conformal Killing tensors are found then the associated Killing
tensors will necessarily be irreducible (unless they are simply constant multiples of the metric).

Amery and Maharaj [1] found a number of conformal Killing tensors and Killing tensors in
Robertson—Walker space-times using Koutras’ algorithms, but because they used only mutually
orthogonal conformal Killing vectors in their construction, they were only able to construct 39
‘candidate’ conformal Killing tensors. However, the Robertson-Walker metrics, being confor-
mally flat, admit the maximal number, namely 84, of reducible conformal Killing tensors and
so Amery and Maharaj’s results are incomplete.

A generic Robertson-Walker metric admits 6 independent Killing vectors and so 22 (= 1 +
6.7/2) reducible Killing tensors can be constructed from the metric and the Killing vectors — of
which 21 are linearly independent. Similarly for the special case of the static Einstein universe
which admits a seventh Killing vector, we can construct 30 (= 1 + 7.8/2) reducible Killing
tensors from the metric and the Killing vectors — of which 27 are linearly independent. Hence,
after finding the gradient conformal Killing tensors and their associated Killing tensors of the
generic Robertson-Walker metric (or of the Einstein universe), we need to determine whether
they are irreducible by checking if they are independent of these 21 (or 27) reducible Killing
tensors. Again the high dimension of these linear subspaces involved and the routine nature of
the calculations means that the computations can be automated by use of the computer algebra
system Reduce.

3 Finding irreducible Killing tensors in arbitrary spaces

Consider the most general reducible conformal Killing tensor @4

M M

Qab = Z Z ars(X1(aX|7b) T AJab)

I1=1J=I

satisfying

Q(ab:c) = q(aYbc)-

When the vector ¢, is a gradient vector ¢, then @ is said to be of gradient type, and has an
associated Killing tensor K., where

Kap = Qab — q9ab-

Hence, we have an indirect method — using conformal Killing tensors — to find examples of
Killing tensors, most of which we expect to be irreducible:

(i) From the conformal Killing vectors of a given metric, we can find all the reducible conformal
Killing tensors.

If the metric admits N independent Killing vectors &1,...,&x then the linear space of all
reducible conformal Killing tensor contains a linear subspace of reducible Killing tensors. We
can exclude these from consideration if we choose the basis of the conformal Killing vectors
&, EN, XN+1s- -+, XM, Where the &r’s are Killing vectors and we consider only reducible
conformal Killing tensors of the form

N M M M
Qabzz Z ary€raX| ) + Z ZGIJXI(aX\J\b)-

I=1J=N+1 I=N+1J=I
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(ii) Next test to see if any of these conformal Killing tensors are of gradient type (including
do = 0) and if so, construct the associated Killing tensors.

(iii) Check directly which of these Killing tensors are irreducible by comparison with the defi-
nition in Section 1.

4 Some sample theorems

For individual spaces we can always work from ‘first principles’ by systematically examining all
reducible conformal Killing tensors. However, there are some general theorems which we can
easily deduce, and then exploit:

Theorem 2. Any space which admits a proper homothetic Killing vector x, with homothetic
constant h as well as a gradient Killing vector § o also admits a Killing tensor Kqp = X(ap) —

fgab/h-

Theorem 3. Any space which admits a conformal Killing vector field x, which is a gradient
also admits the Killing tensor Kup = XaXb — X>Gab, where X2 = XaX®.

Theorem 4. Any space which admits a proper non-null conformal Killing vector field x, which
is geodesic (that is Xa;bXb = \Xa) also admits the Killing tensor Kap, = XaXb — X>9ab-

These theorems (and others in [3]) generalise the results in [5] and [1]. It is important to note
that, in all such cases the Killing tensors have to be investigated directly to determine whether
they are irreducible Killing tensors, i.e. not constructed from Killing vectors and metric.

5 Example: A Kimura metric

A Kimura metric (type I) [4] given by
r? 1
ds® = ?dt2 — mdﬂ — 1r2d6? — r?sin® 0do?,

is of Petrov type D with a non-zero energy momentum tensor.
Four Killing vectors

fﬁzsingb%—k%t@cosqﬁ%, £ = %,
&34 = —cosqb%—kcot@simz)%, £4% = %,
which in covariant form are
1o = —1?sin 0 ¢ — 2 sin 0 cos 6 cos ¢ ®.a, 9q = —12 sin? 00 4,
€34 = 12 cos 00 4 — 72 sin 6 cos 6 sin b a, 4o = %t@.

None are gradient vectors, but &, and &4, are hypersurface orthogonal.
Two proper conformal Killing vectors

0 0 10
a_ 2" a _ 2, Y - Y
AL =T or and A2 " t@r br Ot

with conformal factors r and rt respectively.
Both are gradient vectors x1, = — (r/b?) , and x2q = — (rt/0%) .
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Eleven reducible proper conformal Killing tensors.

We can immediately write down 11 reducible proper conformal Killing tensors from the
symmetrised products of each proper conformal Killing vector with each Killing vector, together
with the symmetrised products of the proper conformal Killing vectors

§1(aX1b)s  S1(aX2b)s  S2(aX1b)s  E2(aX2b)s  E3(aX1b)s  E3(aX2b)s  Sa(aX1b)s  Sa(aX2b)s
X1aX1bs  X2aX2bs  X1(aX2b)-
Killing tensors.

X1a and xa, are gradient vectors and so by Theorem 3 we obtain respectively two Killing
tensors with non-zero components,

1 1 1
Ktt:_ KQOZ__ K¢¢:_7
P ! b2’ ! b2 sin” 0
and
Ktt b2 + 1 Kt'r bt K@@ t2 K(bd) t2
= _— = — T = — = — .
2 r2’ ’ 2 ’ 2 sin? 6
Noting that for the case Qap = X1(aX2v) + AJabs
Tt T r’t
= st e = (35) 1(55) = (57)
is a gradient vector, we find the associated Killing tensor
t r t t2
Ktt — 2_’ Kt’r‘ _ _ K00 -9 K¢¢> _ _ 2
A ’ b’ ’ b2’ ’ sin” 0

These are the only Killing tensors which can be found by this method.
A comparison of the Killing tensor K1 with the Killing vectors shows that it is in fact
reducible since,

Kigy = %f4a§4b - b%(flaf% + &2aop + £34630)-

K, and K are irreducible Killing tensors since it is clearly impossible to obtain, using the
Killing vectors and metric, those terms in which are explicit functions of ¢. It is easy to confirm
from observation that these three tensors are linearly independent of each other and of the
metric.

In Kimura’s original work [4] he sought directly for irreducible Killing tensors, and found
the two tensors Ko and K3. Koutras [5] only found 8 reducible trace-free conformal Killing
tensors and only the 2 Killing tensors K7 and K5, because he used his less general algorithms.
O’Connor and Prince [6] obtained all three Killing tensors since they used the same more general
argument as we have done.

6 Summary

We have clarified the concept and definition of reducible conformal Killing tensors of order 2 and
their trace-free counterparts; this enables us to write down immediately all the reducible con-
formal Killing tensors in a space where the conformal Killing vectors are known. By identifying
those reducible conformal Killing tensors of gradient type we are able to construct associated
Killing tensors, most of which we expect to be irreducible. For conformally flat spaces we
have shown that all conformal Killing vectors are reducible and so they can all (including both
reducible and irreducible Killing tensors) be found by this indirect method.
The full details of the results summarised here are given in [3].



714

S.B. Edgar, R. Rani and A. Barnes

Acknowledgements

B.E. wishes to thank Vetenskapsradet (the Swedish Research Council) for financial support.

1]
2]

[7]
8]

Amery G. and Maharaj S. D., Higher order symmetries and the Koutras algorithm, Int. J. Mod. Phys. D,
2002, V.11, 337-351.

Edgar S.B. and Ludwig G., All conformally-flat pure radiation metrics, Class. Quantum Grav., 1997, V.14,
L65-167.

Edgar S.B., Rani R. and Barnes A., Killing tensors and conformal Killing tensors from conformal Killing
vectors, Class. Quantum Grav, 2003, V.20, 1929-1942.

Kimura M., On quadratic first integrals in static spherically symmetric space-times, having spacial parts of
non-constant curvature. I, Tensor (N.S.), 1976, V.30, 27-43.

Koutras A., Killing tensors from conformal Killing vectors, Class. Quantum Grav., 1992, V.9, 1573-1580.

Jerie M., O’Connor J.E.R. and Prince G.E., Space-time symmetries for the Kerr metric, Class. Quantum
Grav., 1999, V.16, 2885-2887.

Stephani H., Uber Losungen der Einsteinschen Feldgleichungen, Comm. Math. Phys., 1967, V.4, 137-142.
Weir G.J., Conformal Killing tensors in reducible spaces, J. Math. Phys., 1977, V.18, 1782—-1787.



