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The properties of geodesical extension of the Schwarzshild metric for the radial motion of
test particle are studied.

1 Introduction

The notion of the Riemann extension of non-Riemannian spaces was introduced first in [1]. Main
idea of this theory is to apply the methods of Riemann geometry for studying of the properties
of non-Riemannian spaces.

For example, the system of differential equations in form

d2xk

ds2
+ Πk

ij

dxi

ds

dxj

ds
= 0 (1)

with arbitrary coefficients Πk
ij(x

l) can be considered as the system of geodesic equations of
affinely connected space with local coordinates xk.

For the n-dimensional Riemannian spaces with the metrics

nds2 = gijdxidxj

the system of geodesic equations looks similar, but the coefficients Πk
ij(x

l) now have very special
form and depend on the choice of the metric gij

Πi
kl = Γi

kl =
1
2
gim(gmk,l + gml,k − gkl,m).

In order for methods of Riemann geometry to be applied for studying of the properties of
the spaces with equations (1) construction of 2n-dimensional extension of the space with local
coordinates xi was introduced.

The metric of extended space constructs with help of coefficients of equation (1) and looks
as follows

2nds2 = −2Πk
ij(x

l)Ψkdxidxj + 2dΨkdxk, (2)

where Ψk are the coordinates of additional space.
The important property of such metric is that the geodesic equations of metric (2) consist of

two parts

ẍk + Γk
ij ẋ

iẋj = 0, (3)

and

δ2Ψk

ds2
+ Rl

kjiẋ
j ẋiΨl = 0, (4)
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where

δΨk

ds
=

dΨk

ds
− Γl

jkΨl
dxj

ds
.

The first part (3) of the complete system is the system of equations for geodesics of basic
space with local coordinates xi and it does not contains the coordinates Ψk.

The second part (4) of system of geodesic equations has the form of linear 4×4 matrix system
of second order ODE’s for coordinates Ψk

d2�Ψ
ds2

+ A(s)
d�Ψ
ds

+ B(s)�Ψ = 0 (5)

with the matrix

A = A(xi(s), ẋi(s)), B = B(xi(s), ẋi(s)).

From this point of view we have the case of geodesical extension of the basic space (xi).
It is important to note that the geometry of extended space is connected with geometry of

basic space.
For example the property of such space to be a Ricci-flat one keeps also for the extended

space.
This fact give us the possibility to use the linear system of equation (5) for studying of the

properties of basic space.
In particular the invariants of the 4 × 4 matrix-function

E = B − 1
2

dA

ds
− 1

4
A2

under change of the coordinates Ψk can be used for that.
The first application of the notion of extended spaces to study of nonlinear second-order

differential equations connected with nonlinear dynamical systems was made in paper of the
author [2–4].

Here we consider the properties of extended spaces for the Einstein-spaces in General Rela-
tivity.

2 The Schwarzschild space-time and geodesic equations

The line element of standard metric of the Schwarzschild space-time in coordinate system x, θ,
φ, t has the form

ds2 =
1

(1 − 2M/x)
dx2 + x2(dθ2 + sin2 θdφ2) − (1 − 2M/x)dt2. (6)

The geodesic equations of this type of the metric are given by

ẍ +
M

x(2M − x)
ẋ2 + (2M − x)θ̇2 + (2M − x) sin2 θφ̇2 − M(2M − x)

x3
ṫ2 = 0, (7)

θ̈ +
2
x

ẋθ̇ − sin θ cos θφ̇2 = 0, (8)

φ̈ +
2
x

ẋφ̇ + 2
cos θ

sin θ
φ̇θ̇ = 0, (9)

ẗ − 2
M

x(2M − x)
ẋṫ = 0. (10)
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The symbols of Christoffel of the metric (6) look as

Γ1
11 =

M

x(2M − x)
, Γ1

22 = (2M − x), Γ1
33 = (2M − x) sin2 θ,

Γ1
44 = −M(2M − x)

x3
, Γ2

12 =
1
x

, Γ2
33 = − sin θ cos θ, Γ3

23 =
cos θ

sin θ
,

Γ4
14 = − M

x(2M − x)
, Γ3

13 =
1
x

.

The equations of geodesic (7)–(10) have the first integrals

x4ẋ2 = E2x4 − (x2 − 2Mx)(µ2x2 + L2), x4θ̇2 = L2 − L2

sin2 θ
, (11)

φ̇ =
L

x2 sin2 θ
, ṫ =

E

(1 − 2M/x)
. (12)

where a dot denotes differentiation with respect to parameter s and (E, µ, L) are the constants
of motion.

3 The Riemann extension of the Schwarzschild metric

Now with the help of the formulae (2) we construct the eight-dimensional extension of basic
metric (6)

ds2 = − 2M

x(2M − x)
Pdx2 − 2

x
Qdxdθ − 2(2M − x)Pdθ2 − 2

x
Udxdφ + 2

M

x(2M − x)
V dxdt

− 2
cos θ

sin θ
Udφdθ − 2((2M − x) sin2 θP − sin θ cos θQ)dφ2 + 2

M(2M − x)
x3

Pdt2

+ 2dxdP + 2dθdQ + 2dφdU + 2dtdV, (13)

where (P, Q, U, V ) are the set of additional coordinates.
The eight-dimensional space in local coordinates (x, θ, φ, t, P, Q, U, V ) with this type of metric

is also the Einstein space with the condition on the Ricci tensor

8Rik = 0.

The complete system of geodesic equations for the metric (7) is divided into two parts.
The first part coincides with the equations (7)–(10) on the coordinates (x, θ, φ, t) and second

part forms the linear system of equations for coordinates P , Q, U , V .
They are defined as

P̈ +
2M

x(x − 2M)
ẋṖ − 2

x
θ̇Q̇ − 2

x
φ̇U̇ − 2M

x(x − 2M)
ṫV̇

−
(

2M

x2(x − 2M)
ẋ2 +

(x − 2M)
x

θ̇2 +
sin2 θ(x − 2M)

x
φ̇2 +

2M(x − 2M)
x4

ṫ2
)

P

+
(

4
x2

ẋθ̇ − 2 cos θ

x
φ̇2

)
Q +

(
4
x2

ẋφ̇ +
4 cos θ

x sin θ
θ̇φ̇

)
U +

(
4M2

x2(x − 2m)2
ẋṫ

)
V = 0,

Q̈ + 2(x − 2m)θ̇Ṗ − 2
x

ẋQ̇ − 2 cos θ

sin θ
φ̇U̇ − 2(x − 4M)

x
ẋθ̇P

+
(

2(x − 3M)
x2(x − 2M)

ẋ2 − 2(x − 2M)
x

θ̇2 − (x − 4M sin2 θ)
x

φ̇2 +
2M(x − 2M)

x4
ṫ2
)

Q
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+
(

4 cos θ

x sin θ
ẋφ̇ +

4 cos2 θ

sin2 θ
θ̇φ̇

)
U = 0,

Ü + 2 sin2 θ(x − 2M)φ̇Ṗ + 2 sin θ cos θφ̇Q̇ −
(

2 cos θ

sin θ
θ̇ +

2
x

ẋ

)
U̇ − 2 sin2 θ(x − 4M)

x
ẋφ̇P

−
(

4 sin θ cos θ

x
ẋφ̇ + 2θ̇φ̇

)
Q +

(
2(x − 3M)
x2(x − 2m)

ẋ2 +
4 cos θ

x sin θ
ẋθ̇

+
2(x cos2 θ + 2M sin2 θ)

x sin2 θ
θ̇2 − 2(x − 2M sin2 θ)

x
φ̇2

)
U = 0,

V̈ − 2M(x − 2m)
x3

ṫṖ − 2M

x(x − 2M)
ẋV̇ +

4M(x − 2M)
x4

ẋṫP

+
(

2M(2x − 3M)
x2(x − 2M)2

ẋ2 − 2M

x
θ̇2 − 2M sin2 θ

x
φ̇2 +

2M2

x4
ṫ2
)

V = 0.

So we get the linear matrix-second order ODE for the coordinates U , V , P , Q

d2Ψ
ds2

+ A(x, θ, φ, t)
dΨ
ds

+ B(x, θ, φ, t)Ψ = 0, (14)

where

Ψ(s) =




P (s)
Q(s)
U(s)
V (s)




and A, B are some 4 × 4 matrix-functions depending on the coordinates x(s), θ(s), φ(s), t(s)
and their derivatives.

We shall study this system of equations at the conditions θ = π/2, L = 0, M = µ and
φ(s) = const. This is simplest case and it corresponds to the radial motion of the test particle
in the Schwarzschild space-time.

With these conditions matrix A takes the form


− 2M
x(−2 M+x) ẋ 0 0 2M

x(−2 M+x) ṫ

0 2
x ẋ 0 0

0 0 2
x ẋ 0

2M(−2 M+x))
x3 ṫ 0 0 2M

x(−2M+x) ẋ




,

and matrix B has the elements

B11 = −
(
2 Mx2 + 2Mx2ẋ2 − 8M2xṫ2 + 8M3ṫ2

)
x4(x − 2M)

, B12 = 0, B13 = 0,

B14 =
4M2ẋṫ

x2(x − 2M)2
, B21 = 0,

B22 =

(
2x3ẋ2 − 8M2xṫ2 + 8M3ṫ2 + 2Mx2ṫ2 − 6Mx2ẋ2

)
x4(x − 2M)

, B23 = 0, B24 = 0,

B31 = 0, B32 = 0, B33 = 2

(
4M3ṫ2 + x3ẋ2 − 3Mx2ẋ2 + Mxṫ2 − 4M2xṫ2

)
x4(x − 2M)

,

B34 = 0, B41 = 4
M(x − 2 M)ẋṫ

x4
, B42 = 0, B43 = 0,
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B44 = 2M

(
4M3ṫ2 + 2x3ẋ2 − 3Mx2ẋ2 + Mx2ṫ2 − 4M2xṫ2

)
x4(x − 2M)2

.

The equations for the coordinates of x and t are

x4ẋ2 = µ2x4 − (x2 − 2Mx)(µ2x2) = 2Mµ2x2,

ṫ =
µ

(1 − 2M/x)
.

They have the solutions

x(s) = 1/4
122/3

(
µM2 (s − C1)

√
2
)2/3

M
(15)

and

t(s) = µs + 2
µ 3
√

3 3
√

2M
3
√

Mµ2

3
√

s

+

(
−4 µM3/2arctanh

(
1
2

3
√

3 3
√

2 6
√

Mµ2

√
M

3
√

s

)
+ C2

√
Mµ2

)
1√
Mµ2

, (16)

where Ci are parameters.
Now we will solve our matrix system of equations (14) with a given matrix A and B.
The second and third equations of the system are given by

d2

ds2
Q(s) − 2

ẋ

x

d

ds
Q(s) −

(
6Mx2ẋ2 + 8M2xṫ − 2x3ẋ2 − 8M3ṫ2 − 2Mx2ṫ2)

)
x4(x − 2M)

Q(s) = 0, (17)

d2

ds2
U(s) − 2

ẋ

x

d

ds
U(s) −

(
6Mx2ẋ2 + 8M2xṫ − 2x3ẋ2 − 8M3ṫ2 − 2Mx2ṫ2)

)
x4(x − 2M)

U(s) = 0. (18)

The first and fourth equations of the given system have the form of 2 × 2 matrix system of
linear second order differential equations with the variable coefficients

d2

ds2
P (s) +

2Mẋ

x(x − 2M)
d

ds
P (s) − 2Mṫ

x(x − 2M)
d

ds
V (s)

−
(
2 Mx2ṫ2 + 2Mx2ẋ2 − 8M2xṫ2 + 8M3ṫ2

)
x4(x − 2M)

P (s) +
4Mx2ẋṫ

x2(x − 2M)2
V (s) = 0, (19)

and

d2

ds2
V (s) − 2M (−2M + x)) ṫ

x3

d

ds
P (s) − 2Mẋ

x(x − 2M)
d

ds
V (s) +

4M(x − 2M)ẋṫ

x4
P (s)

+
2M

(−3Mx2ẋ2 + 2x2ẋ2 − 4M2xṫ2 + Mx2ṫ2 + 4M3ṫ2
)

x4(x − 2M)2
V (s) = 0. (20)

To integrate the equation (17) we transform it with the help of substitution

Q(s) = x(s)T (s).

As a result we get the equation for the function T (s)

d2T

ds2
+

(
x4ẍ − 2Mx3ẍ − 2Mx2ẋ2 − 8M2xṫ2 + 8M3ṫ2 + 2Mx2ṫ2)

)
x4(x − 2M)

T (s) = 0
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which takes the form

d2

ds2
T (s) +

Mµ2

x3
T (s) = 0 (21)

after substitution here the relation (15) and (16).
In the simplest case

x(s) = (9Mµ2/2)1/3s2/3

the solution of equation (21) is

T (s) = C1s
2/3 + C2s

1/3,

where Ci are the parameters.
As a result we get solutions for the coordinates Q(s) and U(s).
They look as

Q(s) = (9Mµ2/2)1/3(C1s + C2s
4/3), (22)

U(s) = (9Mµ2/2)1/3(C3s + C4s
4/3). (23)

To integrate the equations for the coordinates P (s) and V (s) we use the relation

ẋ(s)P (s) + θ̇(s)Q(s) + φ̇(s)U(s) + ṫ(s)V (s) − s

2
= const, (24)

which is consequence of the well-known first integral of geodesic equations of arbitrary Riemann
space

gikẋ
iẋk = const.

In our case the relation (24) takes the form

ẋP (s) + ṫV (s) − s

2
= 0 (25)

(const = 0) and with the help of this condition the system (19), (20) can be reduced into the
two independent equations.

In fact, from the equation (25) we get

P (s) = −2ṫV (s) − s

ẋ
(26)

and after substitution of this expression into the equation (20) we get one second-order differen-
tial equation for the function V (s).

In fact, with the help of relations (11), (12) we have

d2

ds2
V (s) +

√
2Mµ2

x(s)3/2

d

ds
V (s) − 3Mµ2

x(s)3
V (s) −

√
2M

2x(s)3/2
+

3Mµ

2x(s)3
s = 0.

Now we put here the expression

x(s) = (9Mµ2/2)1/3s2/3

for the function x and as a result we get a simple equation

d2

ds2
V (s) +

2
3s

d

ds
V (s) − 2

3s2
V (s) = 0

for the coordinate V (s).
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Its solution is defined by

V (s) = C5s +
C6

s2/3
. (27)

Now from the relation (26) we get the expression for coordinate P (s)

P (s) = −1/2
s2/3

(
6µ 3
√

µ2Ms5/3C5 + 6µ 3
√

µ2MC6 − 3s5/3 3
√

µ2M + 2 3
√

3 3
√

2sM
)

3
√

µ2M
(
s 3
√

µ2M32/322/3 − 4 3
√

sM
) . (28)

So the formulae (22), (23), (27), (28) present the solutions of geodesic equations for coor-
dinates (Q, U, V, P ) of Riemann extension of the Schwarzschild metric for the radial motion of
test particle in basic space with coordinates (x, θ, φ, t).

The generalization and the interpretation of these solutions will be done later.
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