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We prove that the natural action of permutations in a tensor product of type II factors is
free, and compute the von Neumann trace of the projection onto the space of symmetric and
antisymmetric elements respectively. We apply this result to computation of von Neumann
dimensions of spaces of harmonic forms (L2-Betti numbers) of N -point configuration spaces
of infinite coverings of compact manifolds.

1 Introduction

It is difficult to overestimate the role of the theory of von Neumann algebras and their traces in
different areas of mathematical and theoretical physics. One of the important applications is the
definition of regularized dimensions of certain infinite-dimensional Hilbert modules, in particular
of the spaces of harmonic forms over certain non-compact manifolds possessing infinite discrete
groups of isometries (L2-Betti numbers, see [3, 7] and references given there).

Thus an important problem is construction of von Neumann algebras containing particular
operators, and computation of the corresponding traces of these operators. In this note, we
describe the structure of the von Neumann algebra {M⊗n, U}′′, where M is a von Neumann
algebra acting in a separable Hilbert space H and U is the natural action of the symmetric
group Sn by permutations in H⊗n, ⊗n denoting the n-th tensor power.

It is clear that the answer to this question is spatial dependent, i.e. it depends on the choice of
the concrete M-module H. For example, if H = Cm is a module over the Im factor M = Mm(C),
then (for n = 2) M⊗M coincides with the space of all linear operators in Cm ⊗Cm. Therefore
the permutation operator U belongs to M ⊗ M and {M ⊗ M, U}′′ = M ⊗ M. On the
contrary, if the same Im factor M acts on its standard form H = Cm ⊗ Cm by operators
x(f ⊗ g) = xf ⊗ g, x ∈ M, f, g ∈ Cm, then U does not belong to M⊗M. Thus U induces an
outer action α of the symmetric group S2 on the factor M⊗M and the von Neumann algebra
{M⊗M, U}′′ is isomorphic to the cross-product M⊗M×α S2.

In Section 2, we consider the case where H is a separable module over a type II factor M.
We prove that the action α of the group Sn in M⊗n generated by the representation U is outer
and free and thus the von Neumann algebra {M⊗n, U}′′ is isomorphic to the cross-product
M⊗n×α Sn. We compute the von Neumann trace of the projection onto the space of symmetric
and antisymmetric elements of H⊗n respectively. In Section 3, we apply this result to computa-
tion of the von Neumann dimensions of the spaces of harmonic forms of the spaces of N -point
configurations in infinite coverings of compact manifolds (L2-Betti numbers of configuration
spaces).

In the particular case where M is the commutant of a free action of an infinite discrete group,
the results of Section 2 were obtained (by different methods) in [5] (n = 2) and [2] (n arbitrary).
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In the latter work, the L2-Betti numbers of infinite configuration spaces equipped with Poisson
measures were computed.

In what follows we denote by L(H) the algebra of all bounded operators in Hilbert space H.
We refer to [4, 9] for general notions of the theory of von Neumann algebras.

2 Permutations in a tensor product of type II factors

Let L2(M) be the standard form of a finite factor M. Denote by Ω the corresponding cyclic and
separating vector for M. Let τ be a faithful normal trace on M. Since (M⊗M)′ = M′ ⊗M′,
M⊗M is a finite factor acting in Hilbert space L2(M) ⊗ L2(M). Let U be the permutation
operator in L2(M) ⊗ L2(M). Denote by αU the corresponding automorphism of the factor
M⊗M,

αU (x ⊗ y) = U(x ⊗ y)U∗ = y ⊗ x, x, y ∈ M. (1)

This automorphism generates a natural action α of the group S2 on M⊗M. Recall that the
action of an automorphism β on M is called free, if each element x ∈ M satisfying the equality
xy = β(y)x for all y ∈ M is zero. It is well known that an automorphism of a factor is free iff
it is outer. If α : G → Aut(M) is a free action of a discrete group G on M then M ×α G is
a factor (see, for example, [6, Proposition 1.4.4]).

We have the following statement.

Proposition 1. (i) The Hilbert space L2(M)⊗L2(M) is the standard form of the factor M⊗M;
(ii) The action α of the group S2 on M⊗M is free;
(iii) There exists a natural isomorphism of the finite factor M ⊗ M ×α S2 and the von

Neumann algebra {M⊗M, U}′′.
Proof. Note that the vector Ω1 = Ω⊗Ω is cyclic for both M⊗M and (M⊗M)′ = M′⊗M′.
Hence Ω1 is separating for M⊗M (that is, zΩ1 = 0, z ∈ M⊗M implies z = 0).

Denote τ1 = τ ⊗ τ . It is obvious that τ1 is a trace on M ⊗ M. Moreover the trace τ1 is
faithful on M⊗M. Indeed, since Ω1 is separating for M⊗M, for x =

∑
i xi ⊗ yi ∈ M⊗M

we have

τ1(x∗x) =
∑

i

τ(x∗
i xk)τ(y∗i yk) =

∑
i

(x∗
i xkΩ, Ω)L2(M)(y

∗
i ykΩ, Ω)L2(M)

= (x∗xΩ1, Ω1)L2(M)⊗L2(M) = ‖xΩ1‖2 �= 0. (2)

Since

τ1(x) = (xΩ1, Ω1)L2(M)⊗L2(M)

for any x ∈ M⊗M we can conclude that L2(M) ⊗ L2(M) is the standard form of M⊗M.
Let us show that αU given by (1) is a nontrivial outer automorphism of M ⊗ M, i.e. that

the operator U does not belong to (M⊗M)∪ (M⊗M)′. Suppose that U ∈ M⊗M. Rewrite
the equality UΩ⊗Ω = Ω⊗Ω in the form (U − 1)Ω1 = 0. Moreover Ω1 is a separating vector for
M⊗M, which implies that U = 1. Thus U /∈ M⊗M. It can be shown by similar arguments
that U /∈ (M⊗M)′.

Since M⊗M is a factor, it follows from Proposition 1.4.4 of [6] that

(M⊗M)′ ∩ (M⊗M×α S2) = C.

This implies in particular that the crossed product M ⊗ M ×α S2 is also a finite factor. We
conclude from the equality αU (x)Ω1 = UxU−1Ω1 that there exists a natural homomorphism of
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M⊗M×α S2 onto {M⊗M, U}′′. Since a finite factor does not contain two-sided ideals, any
normal homomorphism of it is either identically zero or injective. Hence factors M⊗M×α S2

and {M⊗M, U}′′ are isomorphic. �

Now we can consider the case where M is a type II factor. Let H be a separable M-module.
Denote by U the operator of permutation in H⊗H and let αU be the corresponding (nontrivial)
automorphism of M⊗M.

Theorem 1. The automorphism αU defines an outer action of the group S2 on the II-factor
M⊗M, and there exists an isomorphism of factors

M⊗M×α S2 � {M⊗M, U}′′. (3)

Proof. Case II1. Let M be a II1-factor. Denote by K the standard form of M. Using the
theorem on the structure of normal isomorphisms of von Neumann algebras [9] we can conclude
that H as M-module is isomorphic to M-module

Hd = p(K ⊗ l2) (4)

for some d ∈ [0,∞], where p ∈ M′ ⊗ L(l2) is a projection with Tr p = d. Here Tr denotes the
natural trace in M′ ⊗L(l2), with the normalization Tr (1M ⊗ q) = 1, where q is a projection of
rank 1 in L(l2). The action of M on Hd is given by

x(p(f ⊗ ξ)) = p(xf ⊗ ξ), x ∈ M, f ∈ K, ξ ∈ l2.

Let us remark that the Hilbert spaces K ⊗ l2 ⊗K ⊗ l2 and K ⊗K ⊗ l2 ⊗ l2 are isomorphic. Thus
there exists a projection p̃ such that M⊗M-modules

Hd ⊗ Hd = (p ⊗ p)(K ⊗ l2 ⊗ K ⊗ l2)

and

p̃(K ⊗ K ⊗ l2 ⊗ l2)

are isomorphic, where the action of M⊗M on the latter space is defined by

(x ⊗ y)(p̃(f ⊗ g ⊗ ξ ⊗ η)) = p̃(xf ⊗ yg ⊗ ξ ⊗ η),

x, y ∈ M, f, g ∈ K, ξ, η ∈ l2. The operator U of permutation in Hd ⊗Hd is unitarily isomorphic
to the operator U1⊗U2 in p̃(K ⊗K ⊗ l2⊗ l2), where U1 is the operator of permutation in K ⊗K
and U2 is the operator of permutation in l2⊗ l2. It follows from Proposition 1 that U1 /∈ M⊗M.
Hence the operator U does not belong to M⊗M and thus αU is outer (and consequently, free)
automorphism of M⊗M. Repeating the arguments from the proof of Proposition 1 we conclude
that the factors M⊗M× S2 and {M⊗M, U}′′ are isomorphic.

Case II∞. Let M be a II∞ factor. Fix an arbitrary finite projection p ∈ M. Then there
exists [9] a spatial isomorphism of M and the II∞ factor Mp ⊗ L(l2), where Mp = pMp (the
so-called “corner” of M) is a II1 factor. Denote Hp = pH. Then the II∞ factor M ⊗ M is
isomorphic to Mp ⊗ Mp ⊗ L(l2 ⊗ l2) and the permutation operator U in H ⊗ H is unitarily
equivalent to the operator U1 ⊗U2, where U1 is the operator of permutation in Hp ⊗Hp and U2

is the operator of permutation in l2 ⊗ l2. Note that the operator U2 belongs to L(l2 ⊗ l2).
It follows from the arguments presented above that the operator U1 does not belong to

Mp⊗Mp. Thus the operator U does not belong to M⊗M and as above α is free automorphism
of M⊗M. Therefore M⊗M×α S2 is a II∞ factor. It follows from the arguments presented
in the proof of Proposition 1 that there exists a normal homomorphism of M⊗M×α S2 onto
{M⊗M, U}′′. Since any normal homomorphism of a factor is either identically zero or injective
we have that {M⊗M, U}′′ is also a II∞ factor isomorphic to M⊗M×α S2. �
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The following result is the extension of the theorem above to the case of the symmetric
group Sn acting in M⊗n, n ≥ 2.

Theorem 2. Let M be a type II factor and H be a separable M-module. Let Uij (i, j = 1, . . . , n)
be the operator in H⊗n permuting i-th and j-th components. Then the family of operators
{Uij}i,j=1,...,n defines an outer action of the symmetric group Sn on the factor M⊗n, and there
exists an isomorphism

Mn ×α Sn � {Mn, {Uij}i,j=1,...,n}′′. (5)

Proof. It follows from Theorem 1 that the operator Uij does not belong to the factor M⊗n

and therefore determines the outer automorphism αUij of M⊗n. Since automorphisms αUij ,
i, j = 1, . . . , n generate the action of the symmetric group Sn on the factor M⊗n, we conclude
that this action is free. Therefore the factors Mn×αSn and {Mn, {Uij}i,j=1,...,n}′′ are isomorphic
(see the proof of Theorem 1). �

Let Ps and Pa be projections in H⊗n onto the symmetric tensor power H⊗̂n and the anti-
symmetric tensor power H∧n respectively,

Ps =
1
n!

∑
g∈Sn

Ug (6)

and

Pa =
1
n!

∑
g∈Sn

(−1)sign (g)Ug. (7)

It is obvious that Ps and Pa belong to Mn ×α Sn.
Denote

Ms = {M⊗n, Ps}′′, Ma = {M⊗n, Pa}′′ (8)

Proposition 2. Let M be a II∞ factor. Then

Ms = Ma = M⊗n ×α Sn. (9)

Proof. The inclusion Ms ⊂ M⊗n×α Sn is obvious. For the inverse inclusion it suffices to show
that the operators Pij = 1

2(1 + Uij) i, j = 1, . . . , n belongs to Ms. Since M � Mp ⊗ L(l2),
the factor M contains an isometry V such that (V ∗)m → 0, m → ∞ strongly (for example
V = 1 ⊗ W where W is unilateral shift in l2: Wek = ek+1 for a standard basis {ek}∞k=1 in l2).
Since (V ∗)mV m = 1 we have strong convergence(

1 ⊗ 1 ⊗ (V ∗)m ⊗ · · · ⊗ (V ∗)m
)
Ps

(
1 ⊗ 1 ⊗ V m ⊗ · · · ⊗ V m

) → 2
n!

P12,

m → ∞. Thus P12 ∈ Ms. Similar arguments show that Pij ∈ Ms for any i, j = 1, . . . , n.
The case of Ma can be treated in a completely similar way. �

In what follows we denote by TrN the faithful normal semifinite trace on a II∞ factor N .

Corollary 1. For any A ∈ M we have

TrMs(A
⊗nPs) = TrMa(A⊗nPa) =

(TrMA)n

n!
. (10)

Proof. According to the Proposition 2 we will use the trace on a factor M⊗n×αSn. It is obvious
that αg(A⊗n) = A⊗n for any g ∈ Sn. Therefore for any g ∈ Sn we have TrM⊗n×αSn

(A⊗nUg) =
δe,gTrM⊗n(A⊗n) (here δg,h is the Kronecker symbol). Then (10) follows from (6) and (7). �
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3 L2-Betti numbers of N -point configuration spaces

In this section, we apply the results described above to computation of L2-Betti numbers of
the spaces of configurations of N points in the universal covering of a compact manifold with
infinite fundamental group. We start with the discussion of the structure of the spaces of
square-integrable differential forms over configuration spaces.

Let X be a smooth connected Riemannian manifold. Consider the N -point configuration
space

X(N) := {{x1, . . . , xN} ⊂ X} , (11)

the set of all N -point subsets of X. Clearly,

X(N) = ˜X × · · · × X/SN , (12)

where ˜X × · · · × X is the Cartesian product of N copies of X without coinciding components.
X(N) is a Riemannian manifold equipped with the Riemannian structure induced from X.

For a Riemannian manifold R, we denote by L2Ωp(R) the space of square-integrable (w.r.t.
the Riemannian volume) p-forms on R. We let ∆p

R be the Hodge–deRham Laplacian in L2Ωp(R),
and Hp(R) := Ker∆p

R, the space of square-integrable harmonic p-forms on R.
For a Hilbert space K, we use the notation

K
k�s =

{
K⊗̂s, k is even,

K∧s, k is odd.
(13)

The following result is a symmetrized version of the Künneth formula.

Theorem 3.

Hp
(
X(N)

)
=

⊕
s1, . . . , sd = 0, 1, 2, . . .
s1 + s2 + · · · + sd = N
s1 + 2s2 + · · · + dsd = p

(H1(X)
)1�s1 ⊗ · · · ⊗ (Hd(X)

)d�sd (14)

where d = dimX − 1.

Proof. Let us first remark that the space L2Ωp
(
X(N)

)
is unitarily isomorphic to L2Ωp

sym

(
XN

)
,

the latter being the space of square-integrable p-forms on XN :=

N︷ ︸︸ ︷
X × · · · × X which are sym-

metric w.r.t. the permutations of variables. It is easy to see that there exists a natural unitary
isomorphism

L2Ωp
sym

(
X(N)

)
=

⊕
s0, . . . , sd+1 = 0, 1, 2, . . .

s0 + · · · + sd+1 = N
s1 + 2s2 + · · · + (d + 1)sd+1 = p

(
L2Ω0(X)

)0�s0 ⊗· · ·⊗(
L2Ωd+1(X)

)d+1� sd+1 . (15)

It has been proved in [1] that the restriction (∆p
XN )sym of ∆p

XN onto L2Ωp
sym

(
XN

)
is essentially

self-adjoint on the space of smooth forms with compact support. Thus (∆p
XN )sym coincides with

the Hodge–deRham Laplacian on X(N), and we have

Hp
(
X(N)

)
= Ker

(
∆p

XN

)
sym

= Ker
(
∆p

XN

) ∩ L2Ωp
sym

(
XN

)
. (16)
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By the Künneth formula,

Ker (∆p
XN ) =

⊕
1 ≤ k1, . . . , kN ≤ d
k1 + · · · + kN = p

(Hk1(X)) ⊗ · · · ⊗ (HkN (X)), (17)

(remark that H0(X) = Hd+1(X) = 0), which together with (15) implies the result. �

Corollary 2. If all spaces Hk(X) are finite-dimensional, then all spaces Hp
(
X(N)

)
are so.

Their dimensions are given by the following formula:

dimHp
(
X(N)

)
=

∑
s1, . . . , sd = 0, 1, 2, . . .
s1 + s2 + · · · + sd = N
s1 + 2s2 + · · · + dsd = p

β
(s1)
1 · · ·β(sd)

d , (18)

where

β
(s)
k :=


(

βk

s

)
, k = 1, 3, . . . ,(

βk + s − 1
s

)
, k = 2, 4, . . . ,

(19)

s �= 0, and β
(s)
k = 1 for s = 0. Here βk := dimHk(X), k = 1, . . . , d. This case occurs for

instance when X is compact or has finite number of ends.

An important example of a manifold X with infinite dimensional spaces H(p)(X) is given by
an infinite covering of a compact Riemannian manifold (say M). In this case, the fundamental
group G = π1(M) acts by isometries on X and consequently on all spaces L2Ωp(X). The
orthogonal projection

Pp : L2Ωp(X) → H(p)(X) (20)

commutes with the action of G and thus belongs to the commutant Ap of this action which is
a semifinite von Neumann algebra. The corresponding von Neumann trace bp := TrAPp gives
a regularized dimension of the space H(p)(X) and is called the L2-Betti number of X (or M).
L2-Betti numbers were introduced in [3] studied by many authors (see e.g. [7] and references
given there). It is known [3] that (because of the elliptic regularity of ∆p

X) bp < ∞.
It is natural to ask whether the notion of L2-Betti numbers can be extended to configuration

spaces over infinite coverings. It particular, is formula (19) valid in this case (with βk replaced
by bk)? In what follows, we use the results of the first section for constructing a von Neumann
algebra containing the projection

Pp : L2Ωp
(
X(N)

) → Hp
(
X(N)

)
, (21)

and computing its von Neumann trace.
In what follows, we assume that G is an ICC group (that is, all non-trivial classes of conjugate

elements are infinite). Under this condition we have that the von Neumann algebra Ap is a II∞
factor.

Let us define the operator

P(n)
p :=

{
P⊗n

p Ps, p is even,

P⊗n
p Pa, p is odd

(22)
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and the von Neumann algebra

A(n)
p :=

{ {A⊗n
p , Ps

}′′
, p is even,{A⊗n

p , Pa

}′′
, p is odd,

(23)

generated by A⊗n
p and projections Ps and Pa respectively. Thus, P(n)

p is the orthogonal pro-

jection
(
L2Ωp(X)

)⊗n → (Hp(X))
p
�n, n = 1, 2, . . .. Obviously, P(n)

p ∈ A(n)
p . It follows from the

Proposition 2 that A(n)
p = A⊗n

p ×α Sn. We will use the convention A(0)
p = C1.

Further, we introduce the von Neumann algebra

A(p) =
∏

s1, . . . , sd = 0, 1, 2, . . .
s1 + s2 + · · · + sd = N
s1 + 2s2 + · · · + dsd = p

A(s1)
1 ⊗ · · · ⊗ A(sd)

d , (24)

d = dimX − 1. Since all algebras A(sk)
k are II∞-factors, so is A(p), with the trace given by the

product of the traces in A(sk)
k .

Theorem 4. We have Pp ∈ A(p) and

TrA(p)Pp =
∑

s1, . . . , sd = 0, 1, 2, . . .
s1 + s2 + · · · + sd = N
s1 + 2s2 + · · · + dsd = p

(b1)s1

s1!
· · · (bd)sd

sd!
, (25)

where bk are the L2-Betti numbers of X, k = 1, . . . , d, and b0 = 1.

Proof. It follows from Theorem 3 that

Pp =
∑

s1, . . . , sd = 0, 1, 2, . . .
s1 + s2 + · · · + sd = N
s1 + 2s2 + · · · + dsd = p

P1
(s1) · · · Pd

(sd), (26)

with the convention P(0)
k = id . The result follows now from Corollary 1. �

We will use the notation bp = TrA(p)Pp and call bp the p-th L2-Betti number of ΓX .

Remark 1. It is easy to see that formula (25) can be rewritten in the form

bp =
1

N !

∑
1 ≤ k1, . . . , kN ≤ d
k1 + · · · + kN = p

bk1 · · · bkN
, (27)

or, according to the Künneth formula (17),

bp =
1

N !
TrA⊗N P,

where P is the orthogonal projection L2Ωp
(
XN

) → Hp
(
XN

)
.

Example 1. Let X = Hd, the hyperbolic space of dimension d. It is known that the only
non-zero L2 Betti number of Hd is bd/2 (provided d is even). Then

bp =


(
bd/2

)k

k!
, p =

kd

2
,

0, p �= kd

2
.

(28)
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