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The main purpose of the paper is to summarize some fundamental results concerning the
matrix impulsive differential equations with impulses at fixed points. The theory of impulsive
matrix differential equations is interesting in itself and it will assume greater importance
in the near future, since the application of the theory to various fields of science is also
increasing, especially in the theory of polyphase transmission line and surge phenomena.

1 Introduction

Many evolution processes are characterized by the fact that at certain moments of time they
experience a change of state abruptly. These processes are subject to short-term perturbation
whose duration is negligible in comparison with the duration of the process. Consequently, it is
natural to assume that these perturbations act instantaneously, that is in the form of impulses. It
is known, for example, that many biological phenomena involving thresholds, bursting rhythm
models in medicine and biology, optimal control models in economics, pharmacokinetics and
frequency modulated systems, do exhibit impulsive effects. Thus impulsive differential equations,
that is, differential equations involving impulsive effects, appear as a natural description of
observed evolution phenomena of several real world problems. In the theory of impulsive systems,
there are some problems similar to the ones considered in the theory of ordinary differential
equations but there are also problems that are specific to the theory of impulsive systems.

We will be considering the matrix differential equations. It means that a phase space of
evolution process be a matrix space Rn×m. The point that describes the state of the process at
the time t we denote X(t) ∈ Rn×m. The topological product of the phase space Rn×m and real
axis R, i.e. R×Rn×m will be called the extended phase space of the considered evolution process.
The process itself goes as follows: the point Pt = (t, X(t)), X(t) ∈ Rn×m, begins its motion from
the initial point Pt0 = (t0, X0) and moves along the curve {(t, X(t)); t > t0} until the time
t1 > t0 at which the point Pt meets the set Γ1. At t = t1 the operator M1 transfers the point
X(t1) ∈ Rn×m into the point X(t1 + 0) = X+(t1) ∈ Rn×m then the point Pt continues to move
further along the curve {(t, X(t)); t > t1} with initial value (t1, X+(t1)), X+(t1) = M1(X(t1)),
where X(t) = X(t, t1, X+

1 ) = Xt(t1, X+
1 ) is the solution of equation

dX

dt
= A(t)X − XB(t) + F (t, X), (1)

where F : R+ ×Rn×m → Rn×m, R+ is the nonnegative real line. The point Pt moves along the
curve until the moment t2 > t1 at which the point Pt again meet the new set Γ2. The moment ti
at which the point Pt hits the set Γi (i = 1, 2, . . .) are called moment of impulsive effect. The
sets Γi in extended phase space R+ × Rn×m may be determined by equation Fi(t, X) = 0;
Fi : R+ × Rn×m → R+. When the point Pt hits the set Γi at the moment ti this equation
becomes identity: Fi(ti, X(ti)) ≡ 0. If this equation is solved with respect to t, we have explicit
form of the set Γi : t = τi(X), τi : Rn×m → R+. As a special case we are considering the sets Γi

as a sequence of hyperplane t = ti = const, where {ti} is a given sequence of times (finite or
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infinite). A solution of an impulsive differential system may be a piecewise continuous function
having a countable number of discontinuities of the first kind if the integral curve encounters
the sets Γi at a countable number of points that are not the fixed point of operator Mi. The
matrix differential equations without impulses have been considered in the papers [1–6].

2 Matrix differential system with impulses at fixed times

If in a real process described by system (1) the impulses occur at fixed times the mathematical
model of this process will be given by the following matrix impulsive system

dX

dt
= A(t)X − XB(t) + F (t, X), t �= ti, (2)

�X(t) = DiX(t)D̃i + F̃i(X(t)), t = ti, (3)

where F ∈ C[R+ × �, Rn×m] is continuous map of the direct product R+ × � into space of
matrices Rn×m, � ⊂ Rn×m being an open set, Rn×m is the space of matrices with real entries,
F̃ : Rn×m → Rn×m is nonlinear matrix-valued function, �X(ti) = X(ti +0)−X(ti), X(ti +0) =
lim

h→0+
X(ti + h), D ∈ Rn×n, D̃ ∈ Rm×m. If the matrix-valued functions F̃i(X) and F (t, X) are

independent from X we have matrix nonhomogeneous bilinear impulsive system

dX

dt
= A(t)X − XB(t) + F (t), t �= ti, (4)

�X(t) = DiX(t)D̃i + F̃i, t = ti, (5)

where A(t), B(t), F (t) are Lebesgue summable matrix-valued function of real variable t on the
interval [a, b].

The space of matrices Rn×m is topologically isomorphic to the Euclidean space Rnm and
therefore the space of solutions M of the system (2), (3) is topologically isomorphic to the space
of solutions M̃ of the system of vector differential equations

dx

dt
= (A(t) ⊗ Im − In ⊗ BT (t))x + f(t), t �= ti, (6)

�x(t) = (Di ⊗ D̃T
i )x(t) + f̃i, t = ti. (7)

Here the superscript T denotes the transpose, ⊗ is the sign of tensor product of matrices,
xT = (x1,∗, x2,∗, . . . , xn,∗), fT = (f1,∗, f2,∗, . . . , fn,∗), f̃i

T
= (f̃ i

1,∗, f̃ i
2,∗, . . . , f̃ i

n,∗) (i = 1, 2, . . .)
are vectors, xi,∗ is the i-th row of the matrix X, fi,∗ is the i-th row of the matrix F . Without
lost of generality we take t0 = 0. If f = 0, f̃ = 0 we have the homogeneous vector bilinear
system of differential equations. It is well known [7] that a solution of the homogeneous vector
system of differential equations is xt = U t

τxτ , where xt = x(t), U t
τ is evolution matrix operator.

The structure of the evolution operator for impulsive differential system of equations has been
considered in [8, 9]. It should be remarked that U t

τ for impulsive differential system in the
Banach space has been considered in [9] and it was call there multiplicative Stiltjes integral

U t
τ =

�∫
t
τexp(dF (s)) which is the solution of equivalent integral equation [9]

U t
τ = I +

∫ t

τ
(dF (s))U s

τ , (8)

where I is identity operator, operator-valued function F (t) has bounded variation, and F (t)
is not continuously differentiable on [τ, t], it has finite number of discontinuities of first kind
at some moment of time ti (i = 1, 2, . . .). As was underlined in monograph [7] larger part
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of result, concerning the properties of differential system of equations in Banach spaces with-
out impulses, may be generalized into impulsive differential system of equations. We denote
[U t

τ ] : Rn×m → Rn×m the evolution operator of homogeneous matrix impulsive differential sys-
tem of equation (2), (3) which corresponding to evolution operator (fundamental matrix) U t

τ

associated homogeneous vector system (6), (7). The vector function x(t) = U t
0x0 is a solution

of homogeneous system (6), (7) for any constant vector x0 and if x0 ranges over the whole
space Rnm, then the family of function x(t) forms a space of solutions M̃ of the system (6), (7).
The matrix function [U t

0]X0, accordingly, is a solution of the homogeneous system, associated to
the system (2), (3), for any constant matrix X0 ∈ Rn×m and if X0 ranges over the whole matrix
space Rn×m then the family of matrix functions Xt = [U t

0]X0 form a space of solutions M of the
system (2), (3). The operator [U t

0] we call fundamental operator or evolution operator (transfer
operator) [9]. Some problems of an impulsive matrix differential equations have been considered
in [12–16].

3 Homogeneous matrix bilinear impulsive differential system

The solution of the homogeneous system (2), (3) can be written in the form Xt(Xτ ) = [U t
τ ]Xτ ,

where [U t
τ ] is nonsingular solution of homogeneous bilinear matrix impulsive differential sys-

tem (2), (3), which satisfies the condition [U τ
τ ] = [I], [I] is used to denote the unit operator in

the space of matrix Rn×m. The evolution operator of the equation (2), (3) on the interval of
continuity we denote [Ωt

τ ]: Rn×m → Rn×m, where [Ωt
τ ]Z = Ω

A

t
τZ Ω

B

τ
t , Z ∈ Rn×m; Ω

A

t
τ , Ω

B

t
τ are

matriciants associated with the matrices A(t) and B(t) respectively. Ω
A

τ
τ = In, Ω

B

τ
τ = Im; In, Im

are unit matrices in the Euclidean spaces Rn and Rm. Let an interval [τ, τ + h] contain a finite
number of points of discontinuity tj+i, (i = s + 1, k), s < k, if τ < tj+s+1 and t > tj+k, then
evolution operator of system (2), (3) can be represented as

[U t
τ ] = [Ωt

tj+k
]
∏
ν

(
([I] + [Dν ])[Ωtν

tν−1
]
)

, (9)

where ν = j +k, j +k− 1, . . . , j + s+1, (k > s), we denote τ = tj+s and it should be noted that
point of time τ is not the point of discontinuity. The evolution operator U t

τ of the system (6),
(7), which corresponding to the operator [U t

τ ] can be written as

U t
τ = (Ω

A

t
tj+k

⊗ ∼
Ω
B

tj+k

t )
∏
ν

(
(Inm + Dν ⊗ D̃T

ν )(Ω
A

tν
tν−1

⊗ ∼
Ω
B

tν−1

tν )
)

, (10)

where ν = j + k, j + k − 1, . . . , j + s + 1, (k > s), Inm = In ⊗ Im, Ω̃ = ΩT , U t
τ is a solution

of the Cauchy problem for the homogeneous system associated with the system (6), (7), with
initial conditions U τ

τ = Inm, Inm is unit operator in the Euclidean space Rnm. Any matrix
solution Z(t) of the vector system (6), (7) can be represented as Z(t) = U t

τZ(τ). By using the
Jacobi formula we get from (10), detZt = det U t

τ det Zτ . We use the properties: det(An⊗Bm) =
(det A)n(det B)m, detΩ

A

tν
tν−1

= exp
∫ tν
tν−1

Tr A(s)ds, det Ω
B

tν−1

tν = exp(− ∫ tν
tν−1

Tr B(s)ds). Then we

have

det U t
τ = exp

(∫ t

τ
(n Tr A(s) − m Tr B(s))ds

)
×
∏
ν

det(Inm + Dν ⊗ D̃T
ν ), (11)

where ν = j + s + 1, j + k, (k > s), Tr A(s) =
n∑

i=1
aii(s), Tr B(s) =

m∑
i=1

bii(s). Because the

matrices (Inm + Dν ⊗ D̃T
ν ) are nonsingular for all ν, it follows from (11) that the matrix Z(t)
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is nonsingular if Z(τ) is such. The operator U t
τ : Rnm → Rnm is topologically equivalent the

operator [U t
τ ] : Rn×m → Rn×m therefore the operator [U t

τ ] is nonsingular in the space Rn×m.
For a nonsingular operator [U t

τ ], the inverse operator [U t
τ ]

−1 = [U τ
t ] is given by the following

[U τ
t ] =

(∏
ν

[Ωtν−1

tν ]([I] + [Dν ])−1

)
[Ωtj+k

t ], (12)

where ν = j + s + 1, j + k, (k > s), tj+s = τ , τ < tj+s+1, t > tj+k, [Ωt
τ ]

−1 = [Ωτ
t ].

4 Nonhomogeneous bilinear matrix impulsive
differential system

We call the system (2), (3) with F (t) �= 0, F̃i �= 0 (i = 1, 2, . . .) nonhomogeneous bilinear matrix
equation

dX

dt
= A(t)X − XB(t) + F (t, ), t �= ti, (13)

�X(t) = DiX(t)D̃i + F̃i, t = ti, i = 1, 2, . . . , (14)

where A(t), B(t), Di, D̃i are the same as in system (2), (3), F : [a, b] → Rn×m is a matrix-
valued function, continuous (piecewise continuous) on the interval [a, b], F̃i ∈ Rn×m are constant
matrices, a < ti < b, a = t0. We use change of variables X(t) = [U t

t0 ]Y (t), which is called
“variation of parameter”. Taking into account the properties of evolutionary operator [U t

t0 ] we
get

dY/dt = [U t0
t ]F (t), t �= ti, �Y (ti) = [U t0

ti+0]F̃i, t = ti, i = 1, 2, . . . (15)

the jump condition can also be written in the form �Y (ti) = [U t0
ti

]F̂i, where F̂i = ([I]+[Di])−1F̃i.
Because the operators ([I] + [Di]) : Rn×m → Rn×m are nonsingular for all i, F̂i is the unique
solution of matrix algebraic equation

F̂i + DiF̂iD̃i = F̃i. (16)

The solution of the equation (16) can be written in the form [7]

F̂i =
n,m,nj1

,mj2∑
j1,j2,r1=0,r2=0

Ṕj1Q́
r1
j1

F̃iP̀j2Q̀
r2
j2

∂rϕ(λj1 , µj2)
r12∂λr1

j1
∂µr2

j2

, (17)

where ϕ(λ, µ) = (1 + λµ)−1, r = r1 + r2, r12 = r1!r2!. The matrices Q́j1 , Q̀j2 are defined by the
spectral expansion of the matrices Dj and D̃j

Dj =
n∑

j1=1

(λj1Ṕj1 + Q́j1), D̃j =
m∑

j2=1

(µj2P̀j2 + Q̀j2). (18)

Taking into account (16) we get for t > t0

Y (t) = Y0 +
∫ t

t0

[U t0
τ ]F1(τ)dτ . (19)

where F1(τ) = F (τ) +
∑

i [U t0
ti

]F̂iδ(t − ti).
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Corollary 1. Let [U t
τ ] be a fundamental operator homogeneous matrix system (2), (3), with

nonsingular operators ([I]+[Di]), (i = 1, 2, . . .). Then every solution of nonhomogeneous matrix
bilinear impulsive differential system (2), (3), for t > t0 is given by the formula

X(t) = [U t
t0 ]X0 +

∫ t

t0

[U t
τ ]F (τ)dτ +

∑
i

[U t
ti ]F̂i, (20)

where i is defined by the inequalities t0 < ti < t.

This formula can be written by using Stieltjes integral of operator-valued function [U t
τ ] by

the matrix-valued function L(t), where L(t) =
∫ t
t0

(F (τ) +
∑

i F̂iδ(τ − ti))dτ =
∫ t
t0

F (τ)dτ +∑
i F̂iη(τ − ti) is matrix-valued function of bounded variation on [t0, t). Here δ(t − ti) is the

Dirac delta function, η(t − ti) is the Heaviside step-function or jump-function. Both of these
functions are generalized functions or distributions

X(t) = [U t
t0 ]X0 +

∫ t

t0

[U t
τ ]dL(t), (21)

where [U t
τ ] is the multiplicative Stiltjes integral [7, 10] or evolution operator of homogeneous

bilinear matrix impulsive equation corresponding to (2), (3).

5 Bilinear matrix impulsive system of differential equation
with constant coefficients

Let the matrices A(t), B(t), Di, D̃i in system (2), (3) be constant. Then we have a bilinear
matrix impulsive system of differential equations with constant coefficients

dX

dt
= AX − XB + F (t), t �= ti, (22)

�X(t) = DX(t)D̃ + F̃i, t = ti, i = 1, 2, . . . . (23)

At first we consider homogeneous system, i.e. F (t) ≡ 0, F̃i ≡ 0. Suppose that the times ti
are indexed by the set of natural numbers such that ti → ∞ for i → ∞. Without loss of
generality, we can assume that t1 > t0. It is easy to see that for any (t0, X0), there exists
a unique solution Xt

t0 of (22), (23) for t ≥ t0, it can be written as Xt(t0, X0) = [U t
t0 ]X0, where

[U t
t0 ] = [Ωt

tk
]

1∏
ν=k

(
([I] + [D])[Ωtν

tν−1
]
)

(24)

and [Ωt
s]Z = eA(t−s)Ze−B(t−s). Solutions of the homogeneous matrix system are not invariant

with respect to shifts because, due to the times of an impulsive effect t = ti, homogeneous
matrix system is not autonomous. However, in some cases expression (24) can be simplified.
For example, if the matrices A and D, B and D̃ commute, then matrix exponent eAt commutes
with the matrix D and e−Bt commutes with the matrix D̃ and equality (24) can be written as

Xt(t0, X0) = ([I] + [D])p(t,t0)eA(t−t0)X0e
−B(t−t0), (25)

where p(t, t0) is the number of points ti which belong to the segment [t, t0], i.e. p(t, t0) = k if
tk < t < tk−1, t0 < t1. In particular, if the times ti are equidistant, ti = t1 + (i − 1)θ and
operator ([I] + [D]) is nonsingular, then from (25) we get

Xt(t0, X0) = eLn([I]+[D])p(t,t0)eA(t−t0)X0e
−B(t−t0),
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where p(t, t0) = (t − t1)/θ − {(t − t1)/θ}), curly brackets {·} means fractional part of the real
value (t − t1)/θ. For the equivalent vector equation (6), (7), we have

xt(x0) = Θ(t)eS(t−t1),

where

S = D̂ +
1
θ
Ln(Inm + D ⊗ D̃), D̂ = A ⊗ Im − In ⊗ BT ,

Θ(t) = eD̂(t1−t0)e−Ln(Inm+D⊗D̃)({(t−t1)/θ}+1).

From this, it can be seen that behavior of the solution of an impulsive system is defined by
eigenvalues of the matrix S because matrix Θ(t) is bounded. Consequently, if the real parts of all
eigenvalues of the matrix S are negative, then all solutions of homogeneous system corresponding
to the system (22), (23) tend to zero for t → ∞.
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