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Isotropic Magnetohydrodynamic (MHD) Equilibrium Equations and generalized Anisotropic
Magnetohydrodynamic (Chew–Goldberger–Low, CGL) Equilibrium Equations possess infi-
nite-dimensional groups of intrinsic symmetries. We show that certain non-trivial Lie point
transformations (that can be obtained by direct application of the general Lie group analysis
method) are equivalent to Bogoyavlenskij symmetries in both isotropic and anisotropic cases.

1 Introduction

Among all descriptions of plasma as a continuous medium, two single-fluid models are used
most frequently. They are the isotropic magnetohydrodynamics (MHD) equations [1] and the
anisotropic CGL (Chew–Goldberger–Low) magnetohydrodynamics equations [2]. Both of them
are generalizations of Navier–Stokes system onto the case of conducting fluids; they are derived
from Boltzmann and Maxwell equations under different isotropy assumptions.

The isotropic MHD approximation employs scalar pressure p and is valid when the mean
free path of plasma particles is much smaller than the typical scale of the problem, so that the
picture is maintained nearly isotropic via frequent collisions.

On the other hand, when the mean free path for particle collisions is long compared to Larmor
radius, for instance, in strongly magnetized or rarified plasmas, the CGL approximation should
be used. In this model, the pressure is a tensor with two different components: the pressure
along the magnetic field p‖ and in the transverse direction p⊥. In the limit p⊥ = p‖ = p, CGL
and MHD models coincide.

The applications of these models include but are not limited to the problem of controlled
thermonuclear fusion, astrophysical applications (star formation, solar activity, astrophysical
jets) and terrestrial applications (laboratory and industrial plasmas, ball lightning models).
The relevant references are [1, 3–9].

Similarly to the Navier–Stokes gas dynamics equations, both MHD and CGL models are
essentially nonlinear, and there are no methods so far for solving corresponding general ini-
tial/boundary value problems. There also is a lack of physically relevant particular analytical
solutions that could model specific phenomena.

In recent papers [10, 11] Bogoyavlenskij introduced new symmetry transforms of the ideal
MHD equilibrium equations. In certain classes of plasma configurations, Bogoyavlenskij sym-
metries break geometrical symmetry, thus giving rise to important classes of non-symmetric
MHD equilibrium solutions.

In [12], we have shown that anisotropic CGL plasma equilibria possess similar topology-
dependent infinite-dimensional symmetries, which generalize Bogoyavlenskij symmetries.

It is shown that Bogoyavlenskij symmetries for isotropic plasmas and generalized Bogoyav-
lenskij symmetries for anisotropic plasmas are equivalent to in particular Lie groups of point
transformations, which are found independently using the classical Lie group analysis method.
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The Lie symmetry method [13] used in this work finds Lie groups of point symmetries of
partial differential equations. Lie transformations are used to build particular solutions of the
system under consideration, to reduce the order and to obtain invariants. Self-similar solutions
constructed from Lie symmetries often have direct physical significance. Many appropriate
examples can be found in [14].

We remark, however, that not all symmetries of a given system can be found by the Lie
method, but only continuous symmetries that have one-parametric Lie group structure.

In Section 2 of this paper, the isotropic and anisotropic plasma equilibrium equations are
described, together with their most important properties, including their Bogoyavlenskij sym-
metries.

In Sections 3 and 4, the general Lie point symmetry method is described, and an equivalence
correspondence is established between Bogoyavlenskij symmetries for isotropic and anisotropic
plasmas and certain infinite-dimensional Lie point symmetry groups.

2 MHD and CGL equilibrium equations

The equilibrium states of isotropic moving plasmas are described by the system of MHD equi-
librium equations, which under the assumptions of infinite conductivity and negligible viscosity
has the form [1]

ρV × curlV − 1
µ

B × curlB − gradP − ρ grad
V 2

2
= 0, (1)

div ρV = 0, curl (V × B) = 0, div B = 0. (2)

Here V is plasma velocity; B is the vector of the magnetic field induction; ρ, plasma density;
P , plasma pressure; and µ, magnetic permeability coefficient.

In the case of incompressible plasma, the equation

div V = 0 (3)

is added to the above system. In this paper we restrict our consideration to incompressible
plasmas.

It is known [10, 11, 15, 16] that all compact incompressible MHD equilibrium configurations,
except the Beltrami case curl B = αB, α = const, have two-dimensional magnetic surfaces – the
vector fields B and V are in every point tangent to magnetic surfaces. The magnetic surfaces
may not exist for unbounded incompressible MHD equilibrium configurations with V || B.

In the case when plasma Larmor radius is small compared to characteristic dimensions of
the system, the set of equations was found by Chew, Goldberger and Low [2]. The anisotropic
equilibrium equations are:

ρV × curlV − 1
µ

B × curlB = div P + ρ grad
V 2

2
, (4)

div ρV = 0, curl(V × B) = 0, div B = 0, (5)

where P is the pressure tensor with two independent components:

P = Ip⊥ +
p‖ − p⊥

B2 (BB). (6)

Here I is a unit tensor.
For this system to be closed, one needs to add to it two equations of state. In this paper we

will consider incompressible CGL plasmas: div V = 0.
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Using vector calculus identities, the pressure tensor divergence may be rewritten in the form

div P = grad p⊥ + τ curlB × B + τ grad
B2

2
+ B(B · grad τ), (7)

τ =
p‖ − p⊥

B2 . (8)

Hence the system (4), (5) rewrites as

ρV × curlV −
(

1
µ
− τ

)
B × curlB

= grad p⊥ + ρ grad
V 2

2
+ τ grad

B2

2
+ B(B · grad τ), (9)

div V = 0, div B = 0, curl (V × B) = 0. (10)

Recently Bogoyavlenskij [10, 11] found that the ideal MHD equilibrium equations (1)–(3)
possess the following symmetries.

Let {V (r), B(r), P (r), ρ(r)} be a solution of (1)–(3), where the density ρ(r) is constant on
both magnetic field lines and streamlines. Then {V 1(r), B1(r), P1(r), ρ1(r)} is also a solution,
where

V 1 =
b(r)

m(r)
√

µρ
B +

a(r)
m(r)

V , B1 = a(r)B + b(r)
√

µρV , (11)

ρ1 = m2(r)ρ, P1 = CP +
(
CB2 − B2

1

)
/(2µ).

Here

a2(r) − b2(r) = C = const,

and a(r), b(r), c(r) are functions constant on both magnetic field lines and streamlines (i.e. on
magnetic surfaces Ψ = const, when they exist).

These transformations form an infinite-dimensional Abelian group [11]

Gm = Am ⊕ Am ⊕ R+ ⊕ Z2 ⊕ Z2 ⊕ Z2, (12)

where R+ is a multiplicative group of positive numbers, and Am is an additive Abelian group
of smooth functions in R

3 that are constant on magnetic surfaces. The group Gm has eight
connected components.

In [12] we have found that a similar group of transformations is present in the case of
anisotropic (CGL) incompressible plasma equilibria: let {V (r), B(r), p⊥(r), p‖(r), ρ(r)} be a so-
lution of the CGL system (9), (10), where the density ρ(r) and the anisotropy factor τ(r) (8) are
constant on both magnetic field lines and streamlines. Then {V1(r), B1(r), p⊥1(r), p‖1(r), ρ1(r)}
is also a solution, where

ρ1 = m2(r)ρ,

V 1 =
b(r)

√
1/µ − τ

m(r)
√

ρ
B +

a(r)
m(r)

V , B1 =
a(r)
n(r)

B +
b(r)

√
ρ

n(r)
√

1/µ − τ
V ,

p⊥1 = Cp⊥ +
(CB2 − B2

1)
2µ

,

p‖1 = p‖n2(r)
B2

1

B2 + p⊥
(

C − n2(r)
B2

1

B2

)
+

(CB2 + B1
2(1 − 2n2(r)))
2µ

. (13)
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Here

a2(r) − b2(r) = C = const,

and a(r), b(r), m(r), n(r) are functions constant on both magnetic field lines and streamlines.
For these symmetries, the anisotropy factor τ(r) is transformed as follows:

τ1 ≡ p‖1 − p⊥1

B1
2 =

1
µ
− n2(r)

(
1
µ
− τ

)
. (14)

The transformations for anisotropic case form an Abelian Lie group G = Am ⊕ Am ⊕ Am ⊕
R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 with sixteen connected components.

3 Lie group formalism for the MHD equilibrium equations

A solution to a system of l first-order partial differential equations

E(x, u, u
1
) = 0,

E = (E1, . . . , El), x = (x1, . . . , xn) ∈ X, u = (u1, . . . , um) ∈ U,

u
1

=
(

∂uj

∂xi

∣∣∣ i = 1, . . . , n; j = 1, . . . , m

)
∈ U1 (15)

represents a manifold Ω in (m+n)-dimensional space X×U , which corresponds to a manifold Ω1

in (m + n + mn)-dimensional prolonged (jet) space X × U × U1 of dependent and independent
variables together with partial derivatives [13].

Studying ideal MHD equilibria, one should take into account the generally the plasma domain
is spanned by nested 2-dimensional magnetic surfaces – surfaces on which magnetic field lines
and plasma streamlines lie [16].

The Lie method of seeking one-parametric groups of transformations that map solutions
of (15) into solutions consists in finding the Lie algebra of vector fields tangent to the solution
manifold Ω1 in the jet space. These vector fields serve as infinitesimal generators for a Lie
symmetry group with representation

(x′)i = f i(x, u, a) (i = 1, . . . , n),

(u′)j = gj(x, u, a) (j = 1, . . . , m), (16)

and have the form

v =
∑

i

ξi(x, u)
∂

∂xi
+
∑

k

ηk(x, u)
∂

∂uk
+
∑
i, k

ξk
i (x, u, u

1
)

∂

∂uk
i

. (17)

Components of these tangent vector fields are expressed through the group representation as
follows:

ξi(x, u) =
∂f i(x, u, a)

∂a

∣∣∣
a=0

, ηj(x, u) =
∂gj(x, u, a)

∂a

∣∣∣
a=0

, (18)

i = 1, . . . , n, j = 1, . . . , m.

The variables ξk
i in (17) are the coordinates of the prolonged tangent vector field correspond-

ing to the derivatives uk
i :

ξj
i (x, u, u

1
) = Diη

j −
n∑

k=1

uj
kDiξ

k, Di ≡ ∂

∂xi
+

m∑
j=1

uj
i

∂

∂uj
. (19)
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The relation (19) defines an isomorphism between tangent vector fields (17) and infinitesimal
operators

X =
∑

i

ξi(x, u)
∂

∂xi
+
∑

k

ηk(x, u)
∂

∂uk
. (20)

The explicit reconstruction of the transformations (16) from a generator (17) is done by
solving the initial value problem

∂f i(a)
∂a

= ξi(f , g),
∂gk(a)

∂a
= ηk(f , g), (21)

f i(0) = xi, gk(0) = uk.

To find all Lie group generators admissible by the original system (15), one needs to solve
the determining equations

vE(x, u, u
1
)
∣∣∣
E(x,u,u

1
)=0

= 0. (22)

All l determining equations (22) are linear partial differential equations with respect to m+n
unknown functions (18) of m + n variables.

4 Connection between Bogoyavlenskij symmetries
and Lie transformations

In this section the equivalence is established between Bogoyavlenskij symmetries (11), (13) for
isotropic and anisotropic cases and certain infinite-dimensional Lie group transformations.

Theorem 1 shows that the application of the Lie group formalism to MHD equilibria (1), (2)
yields certain Lie point transformations, some of which depend on arbitrary functions.

Theorem 2 proves that these Lie point transformations are equivalent to the groups Gm of
Bogoyavlenskij symmetries (11).

Theorems 3 and 4 contain similar statements for Anisotropic (CGL) plasma equilibria.

Theorem 1. Consider the incompressible MHD equilibrium system of equations (1)–(3), where
the density ρ(r) is constant on both magnetic field lines and streamlines. This system admits
the infinitesimal operators

X(1) = M(r)

(
3∑

k=1

Bk

µρ

∂

∂Vk
+

3∑
k=1

Vk
∂

∂Bk
− 1

µ
(V · B)

∂

∂P

)
, (23)

X(2) =
3∑

k=1

Vk
∂

∂Vk
+

3∑
k=1

Bk
∂

∂Bk
+ 2P

∂

∂P
, (24)

X(3) = N(r)

(
2ρ

∂

∂ρ
−

3∑
k=1

Vk
∂

∂Vk

)
, (25)

X(4) =
∂

∂P
. (26)

These operators form a basis of the Lie algebra of infinitesimal operators in the class of Lie
point transformations {x′ = x, u′ = g(u, a)}. Here M(r), N(r) are arbitrary smooth functions
constant on both magnetic field lines and streamlines.
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The proof of Theorem 1 is given in [17]. All infinitesimal operators are obtained by direct
differentiation of Bogoyavlenskij symmetries with respect to a properly chosen parameter.

Remark 1. Let us explicitly write down the transformations contained in the infinitesimal
operators (23)–(26). According to the reconstruction procedure (21), for the operator (23), we
have

ρ1 = ρ, x1 = x,

and solve the linear initial value problem

∂V 1

∂τ
= B1

M(r)
µρ

,
∂B1

∂τ
= V 1M(r),

∂P1

∂τ
= −M(r)

µ
(V 1 · B1),

V 1(τ = 0) = V , B1(τ = 0) = B, P1(τ = 0) = P. (27)

The solution is

B1 = cosh
(

M(r)τ√
µρ

)
B + sinh

(
M(r)τ√

µρ

)√
µρV ,

V 1 = sinh
(

M(r)τ√
µρ

)
B√
µρ

+ cosh
(

M(r)τ√
µρ

)
V ,

P1 = P + (B2 − B2
1)/(2µ), ρ1 = ρ. (28)

The infinitesimal operator (23) thus contains the possibility of “mixing” the components of
the vector fields B and V of the original solution into a new solution.

The same way by solving a corresponding initial value problem (21) we find that transforma-
tions contained in the operator (24) are scalings

ρ1 = ρ, B1 = exp(τ)B, V 1 = exp(τ)V , P1 = exp(2τ)P ; (29)

the operator (25) corresponds to infinite-dimensional scalings

ρ1 = exp(2N(r)τ)ρ, B1 = B, V 1 = exp(−N(r)τ)V , P1 = P ; (30)

the operator (26) – to translations

ρ1 = ρ, B1 = B, V 1 = V , P1 = P + τ. (31)

Theorem 2. Lie point transformations (28)–(30) are equivalent to the group Gm of Bogoy-
avlenskij transformations (11).

The proof of Theorem 2 can also be found in [17].
Theorems 3, 4 establish connection of the infinite-dimensional symmetries of anisotropic

plasmas with Lie symmetry method.

Theorem 3. Consider the incompressible anisotropic CGL equilibrium system of equations (9)–
(10), where the density ρ(r) and anisotropy factor τ(r) are constant on both magnetic field lines
and streamlines. This system admits the infinitesimal operators

X(1) = M(r)

(
3∑

k=1

Bk
1/µ − τ

ρ

∂

∂Vk
+

3∑
k=1

Vk
∂

∂Bk
− 1

µ
(V · B)

∂

∂p⊥

)
, (32)

X(2) =
3∑

k=1

Vk
∂

∂Vk
+

3∑
k=1

Bk
∂

∂Bk
+ 2P

∂

∂p⊥
, (33)
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X(3) = N(r)

(
2ρ

∂

∂ρ
−

3∑
k=1

Vk
∂

∂Vk

)
, (34)

X(4) = L(r)

(
2(1/µ − τ)

∂

∂τ
−

3∑
k=1

Bk
∂

∂Bk
+

B2

µ

∂

∂p⊥

)
, (35)

X(5) =
∂

∂p⊥
. (36)

These operators form a basis of the Lie algebra of infinitesimal operators in the class of Lie point
transformations {x′ = x, u′ = g(u, a)}. Here L(r), M(r), N(r) are arbitrary smooth functions
constant on both magnetic field lines and streamlines.

This theorem is proven exactly the same way as Theorem 1, by replacing the arbitrary func-
tions of the transformations (13), (14) with exponents containing a parameter and differentiating
by it.

The analog of Theorem 2 is also true for incompressible CGL plasma equilibria:

Theorem 4. Lie point transformations defined by (32)–(36) are equivalent to the group G of
Bogoyavlenskij transformations (13), (14).

To prove this theorem, one needs to follow the sequence of steps of proof of Theorem 2,
replacing MHD equilibrium infinitesimal operators by operators (32)–(36).

5 Summary

The isotropic and anisotropic plasma equilibrium equations (1), (2), (4), (5) in the incompressible
case (3) possess infinite-dimensional families of intrinsic symmetries (11), (13), which are the
richest known classes of transformations for these equations. These symmetries form Abelian
groups Gm = Am ⊕Am ⊕R+ ⊕Z2 ⊕Z2 ⊕Z2 and G = Am ⊕Am ⊕Am ⊕R+ ⊕Z2 ⊕Z2 ⊕Z2 ⊕Z2

with eight and sixteen connected components respectively.
It is important that both of these groups of symmetries are implied by the Lie point transfor-

mations of these equations, and are thus obtainable from the standard procedure of Lie group
analysis, which is applicable to any system of PDEs with sufficiently smooth coefficients.

The Lie procedure in application to MHD equilibria is described in Section 3. Every solution
to a system of PDEs with n variables and m unknown functions represents a manifold Ω1 in (m+
n+mn)-dimensional jet space X×U×U1 of independent and dependent variables x, u and partial
derivatives uk

i (15). The Lie procedure consists in finding vector fields v (17) tangent to Ω1.
These vector fields serve as infinitesimal transformation group generators. Their components
ξi, ηj (18) are functions of all independent and dependent variables. The equations (22) for
determining the tangent vector field components are the conditions of invariance of the solution
manifold Ω1 under the action of v.

To find the above Bogoyavlenskij symmetries for MHD and CGL equilibria, one must take
into account the fact that in the general case ideal plasma domain is spanned by nested 2-
dimensional magnetic surfaces – surfaces tangent to plasma velocity and magnetic field [16].
The arbitrary functions of Bogoyavlenskij symmetries are functions constant on such magnetic
surfaces.

The operators (23)–(26) admissible by incompressible MHD equilibria form a basis of the Lie
algebra of infinitesimal operators corresponding to the subgroup {x′ = x, u′ = g(u, a)} of the
group (16) of all Lie point transformations.

The same statement is true for the operators (32)–(36) and incompressible MHD equilibrium
equations.
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Theorems 2 and 4 show that the transformations generated by infinitesimal operators from
Theorems 1, 3 are equivalent to the groups Gm, G of Bogoyavlenskij symmetries for MHD and
CGL equilibria respectively.

This result illustrates that the general Lie approach of analyzing systems of partial differential
equations is capable of revealing highly non-trivial intrinsic transformations that may have great
importance in applications, as is the case for Bogoyavlenskij symmetries.
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