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We deform the Dorfman’s and Sokolov’s Hamiltonian operators by the quasi-Miura trans-
formation coming from the topological field theory and investigate the deformed operators.

1 Introduction

The Dorfman’s and Sokolov’s Hamiltonian operators are defined respectively as [2,11] (D = 9,)
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J=D—D-D, (1)
Uy Ug

S = v, D v, (2)

which are Hamiltonian operators (or J~' = D™y, D~ 'y,D~! and S~! = iDi are symplectic
operators). The Dorfman’s operator J (or J~!) and the Sokolov’s operator S are related to
integrable equations as follows.

e The Riemann hierarchy
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where
K =Dv+uvD, Hn:/v”d:c, n=123...,

and J is the variational derivative. When n = 1, it is called the Riemann equation or disper-
sionless KdV equation. We notice that it seems that the Riemann hierarchy (3) is a quater-
Hamiltonian system. But one can show that S and J is not compatible, i.e., S + AJ are not
a Hamiltonian operator for any A # 0 (see below).
e The Schwarzian KdV equation [10,13]
302

Vi = Upga — 5% = v {v,x} = S0H, = J 6 Hy, (4)

where {v,z} is the Schwartz derivative and

1 B 1 _ 3 _

Remark 1. It is not difficult to verify that J~! is also a Hamiltonian operator and, then, J is
also a symplectic operator; however, S~1 = %D% is not a Hamiltonian operator and, then,
S is not a symplectic operator.
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Next, to deform the operators J and .S, we use the free energy in topological field theory of
the famous KdV equation

62

to construct the quasi- Miura transformation as follows. The free energy F' of KdV equation (5)
in TFT has the form (Fy = 3v%)
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Let
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The AF will satisfy the loop equation [4, p. 151]
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Then we can determine F, Fy, F3, ... recursively by substituting AF' into equation (6). For Fi,
one obtains
1 0F 3 w, OF 1 1 Ko
v—A v  2(@w—-N20v, 16X2 16(v —\)2 A2’

From this, we have

1
= —logu,.

"0~ 167 24

For the next terms Fy(v; vy, Vpz,s Vzz, Vzzazz ), it can be similarly computed and the result is
3
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Now, one can define the quasi-Miura transformation as

U=+ EZ(AF)J::B =v+ 62(F1)J:a: + 64(F2)a:w +
2 3

v TVgaV v
_ ] 4 rrzT rxVrxx T . 7
v 24( 08 Va)es + € <1152vg 192003 ' 36008 ) T Q




On the Deformations of Dorfman’s and Sokolov’s Operators 57

One remarks that Miura-type transformation means the coefficients of € are homogeneous poly-
nomials in the derivatives vy, Ugg, . .., 0" [4, p. 37], [5] and “quasi” means the ones of € are
quasi-homogeneous rational functions in the derivatives, too [4, p. 109] (see also [12]).

The truncated quasi-Miura transformation

rx

g
_ on . C pB9-2)
u=0v-+ ngl € [Fn (v, Vs Uy - - o, U )] (8)

has the basic property [4, p. 117] that it reduces the Magri—Poisson pencil [6] of KAV equation (5)

62
{u(), u(y)r = [u(z) = A|Dé(z — y) + %ux(xﬁ(iv —y)+ §D35($ ) (9)

to the Poisson pencil of the Riemann hierarchy (3):

{v(@),v(y)}x = [v(z) = AIDé(z —y) + %%(@5(% —y) + 0 (772). (10)

One can also say that the truncated quasi-Miura transformation (8) deforms the KdV equa-
tion (5) to the Riemann equation v; = vv, up to O(e?972).

Remark 2. A simple calculation shows that, under the transformation u = %{m, x}, the KAV
equation (5) is transformed into the Schwarzian KdV equation

2 2 2
€ € 3m
my = Emm{m,x} akD <mmx ~3 m“j) .

Furthermore, after a direct calculation, one can see that the Magri Poisson bracket
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K(e) = {u(),u(y)} = u(z)Dé(x —y) + %um(l’ﬁ(w —y)+ §D35(w —v) (11)

is transformed into the Dorfman’s symplectic operator J~! (m = v)

2

{m(z),m(y)} = —%D_lme_lme_lé(x —v).

Now, a natural question arises: under the truncated quasi-Miura transformation (8), are the
deformed Dorfman’s operator J(e) and Sokolov’s operator S(e) still Hamiltonian operators up
to 0(629+2)? For simplicity, we consider only the case g = 1, i.e.,

2
€
u=uv+ ﬂ(log Vg ) gz + O (64) (12)
or
2
€
v=u— ﬂ(log Ug )z + O (64) : (13)

The answer is true for the Dorfman’s operator .J(e) but it is false for the Sokolov’s operator S(e).
It is the purpose of this article.
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2 Deformations under quasi-Miura transformation

In the new “u-coordinate”, J and S will be given by the operators
1 1
€2 D €2
Uy — ﬂ(log u$)ma3:c Uy — ﬂ(log uz)a:at:ﬂ

2 2
S(e) = M* (um 6—(log um)zm> D! <um — 6—(log ux)mz> M+ 0 (64) ,

J(e) = M*D DM +0 ('),

24 24

where

2
€ 1
M=1-—D—D? M*=1+—D?>—-D
247w, + 247wy,

M* being the adjoint operator of M. Then we have the following

(16)

Theorem 1. 1. J(¢) is a Hamiltonian operator up to O(€*). 2. S(e) is not a Hamiltonian

operator up to 0(64).

Proof. 1. The fact that J(e) is a skew-adjoint (or J*(¢) = —J(¢)) differential operator (up to
O(e*)) follows immediately from (14). Rather than prove the Poisson form [7] of the Jacobi

identity for J(e), it is simpler to prove that the symplectic two-form
Qy(e) = /{du A J(e)tdu}ydz + O (64)

is closed [8,9]: d2;(e) = O (e*).
A simple calculation can yield
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X
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X
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2
+ < [Duch_1 — D 'u,D + (log ugc)gguggD_1 + D_l(log ux)xux] +0 (64) )

24
Let v denote the potential function for wu, i.e., u = ¥,. Thus, formally,
D (du) = dip

and hence, after a series of integration by parts, one has

Q€)= / { [(D‘ld (%2» A (%2) Yo Ad (1%2)}

2
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So

40, () = / {0 + ;—22 (diame A diby A dw]} dr + O (¢!)
62
- < / {(difan A dipy A dip),} dz + O(eb) = O (1)

This completes the proof of (1).

2. The skew-adjoint property of the deformed Sokolov’s operator S(e) (15) is obvious. To see
whether S(e€) is Hamiltonian operator or not, we must check whether S(e) satisfies the Jacobi
identity up to O (64). Following [7, 8], we introduce the arbitrary basis of tangent vector O,
which is then conveniently manipulated according to the rules of exterior calculus. The Jacobi
identity is given by the compact expression

P(e)ASI =0 (€*) (mod. div.), (17)

where P(e) = S(€)©, I = 10 A P(e) and § denotes the variational derivative. The vanishing of
the tri-vector (17) modulo a divergence is equivalent to the satisfaction of the Jacobi identity.
After a tedious calculation, one can obtain

2

* 62 — €
S(e) =M (ux - ﬂ(log ux)mx> D1 (ux - ﬂ(log ux)xm) M+ 0O (64)

€2 -

24
2

€
= u, D tu, + 21 [D2uz + D2(log um)xD_lux — (log ux)me_luw — uyD?

+ u, D (log ug ) D? — uy D~ (log Uz)gwz| + O (64)
2

= u, D tu, + ;—4 [D2um —ugD? + (log uz )z Duy 4 uz D(log ux)m] + 0 (64)

62
X |:ux Iy (D3 - (log u$)Z‘D2 + (log uz)x:ca:):| +0 (54>

2
€
= u, D tu, + E[Dum + Ug D] + O (64) .

So
2
P(e) = S(€)© = uy D (u,0) + E[Qum@x + Ugz O] + O (64) :
Hence
1 1 -1 62 4
I = 5@ A P(e) = §ux@ AND™(u,©) + Eum@ ANO,+ O (e )
and then

2
5I = —%[@ AD M uy©)], — %uIG AD™H(O,) + %[9 A Oglaz + O (¢)

1 2



60 J.H. Chang

Finally,
€2

P(e) NI = {uxD_l(um@) + 5

A {—%em A D Hu,0) + ;—Z[G A @I]m} +0 (")

0+ ;—Z{ - %um@ A Oy A D™ H11z0) + tgge D (uz0) AO A O,
+ B0t © A O N O, +u20, NON O, + O (¢!)

=0+ %um@ A O, A D7 (u,0),

which can be easily checked that it cannot be expressed as a total divergence. So S(€) cannot
satisfy the Jacobi identity and therefore S(e) is not a Hamiltonian operator. This completes the
proof of (2). [

Remark 3. Using the technics of the last proof, one can show that J and S is not compatible.
Since J and S are Hamiltonian operators, what we are going to do is show that [7,8]

Q(O)ASR+Q(O)ASR#0 (mod. div.),
where

Q) = u.D ' (1,0),  R=301QO),

@<@>=(i (@—)> . R=10Q0)= 40,16,

UCE ’Um T
Then
-1 -1
6R=—-[OAD ! (0,0))s ~ 50,0 ADH(O,) = -0, AD ™ (1,0)
and
- 1
Hence

= i - __1 _1 _ _1 i
1
2 < ) A [Ozx A D™ (020) + 120, A O]

1
+ [z D (v:0) + v20] A <v_3@”” A ®xcp>

T

1 v _
— E@” AOy NO — %@x A Oz A D71 (v,0)
1
+ 22D (0,0) A Oy A Oy + —O N O, A Oy
x Vg

1 v _
— EG AOy A Oy + ﬁ@x A Oz A D71 (v,0)

#0 (mod. div.),

as required.
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3 Concluding remarks

e That J(e) is a Hamiltonian operator (up to O(e*)) is proved in [1]. We give another proof
here, which remarkably simplifies the proof given in [1].
e We notice that all the deformed operators J(e) (14), D(e) (= D + O (e*)), K(e) (11) under the
quasi-Miura transformation (7) are Hamiltonian operators (up to O (e*)). That the deformed
Sokolov’s operator S(e) is not Hamiltonian is a little surprising that means that the Poisson
bracket of the Hamiltonians Hy,(u;€), Hy(u;€) for S(e)

{Hom (u; €), Hn(u; €)}s(e)

will not be O (64) but O (62), i.e., it cannot be a conserved quantity of the Riemann hierarchy (3).
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