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We deform the Dorfman’s and Sokolov’s Hamiltonian operators by the quasi-Miura trans-
formation coming from the topological field theory and investigate the deformed operators.

1 Introduction

The Dorfman’s and Sokolov’s Hamiltonian operators are defined respectively as [2,11] (D = ∂x)

J = D
1
vx
D

1
vx
D, (1)

S = vxD
−1vx, (2)

which are Hamiltonian operators (or J−1 = D−1vxD
−1vxD

−1 and S−1 = 1
vx
D 1

vx
are symplectic

operators). The Dorfman’s operator J (or J−1) and the Sokolov’s operator S are related to
integrable equations as follows.

• The Riemann hierarchy

vtn = vnvx = SδHn =
1

(n+ 1)(2n+ 1)
KδHn+1 =

1
(n+ 1)(n+ 2)

DδHn+2

=
1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
JδHn+4, (3)

where

K = Dv + vD, Hn =
∫
vndx, n = 1, 2, 3 . . . ,

and δ is the variational derivative. When n = 1, it is called the Riemann equation or disper-
sionless KdV equation. We notice that it seems that the Riemann hierarchy (3) is a quater-
Hamiltonian system. But one can show that S and J is not compatible, i.e., S + λJ are not
a Hamiltonian operator for any λ �= 0 (see below).

• The Schwarzian KdV equation [10,13]

vt = vxxx − 3
2
v2
xx

vx
= vx{v, x} = SδH1 = J−1δH2, (4)

where {v, x} is the Schwartz derivative and

H1 =
1
2

∫ (
v−2
x v2

xx

)
dx, H2 =

1
2

∫ (
−v−2

x v2
xxx +

3
4
v−4
x v4

xx

)
dx.

Remark 1. It is not difficult to verify that J−1 is also a Hamiltonian operator and, then, J is
also a symplectic operator; however, S−1 = 1

vx
D 1

vx
is not a Hamiltonian operator and, then,

S is not a symplectic operator.
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Next, to deform the operators J and S, we use the free energy in topological field theory of
the famous KdV equation

ut = uux +
ε2

12
uxxx (5)

to construct the quasi-Miura transformation as follows. The free energy F of KdV equation (5)
in TFT has the form (F0 = 1

6v
3)

F =
1
6
v3 +

∞∑
g=1

ε2g−2Fg

(
v; vx, vxx, vxxx, . . . , v

(3g−2)
)
.

Let

�F =
∞∑

g=1

ε2g−2Fg

(
v; vx, vxx, vxxx, . . . , v

(3g−2)
)

= F1(v; vx) + ε2F2(v; vx, vxx, vxxx, vxxxx)

+ ε4F3

(
v; vx, vxx, vxxx, vxxxx, . . . , v

(7)
)

+ · · · .

The �F will satisfy the loop equation [4, p. 151]

∑
r≥0

∂ � F

∂v(r)
∂r

x

1
v − λ

+
∑
r≥1

∂ � F

∂v(r)

r∑
k=1

(
r
k

)
∂k−1

x

1√
v − λ

∂r−k+1
x

1√
v − λ

=
1

16λ2
− 1

16(v − λ)2
− κ0

λ2

+
ε2

2

∑
k,l≥0

[
∂2 � F

∂v(k)∂v(l)
+
∂ � F

∂v(k)

∂ � F

∂v(l)

]
∂k+1

x

1√
v − λ

∂l+1
x

1√
v − λ

− ε2

16

∑
k≥0

∂ � F

∂v(k)
∂k+2

x

1
(v − λ)2

. (6)

Then we can determine F1, F2, F3, . . . recursively by substituting �F into equation (6). For F1,
one obtains

1
v − λ

∂F1

∂v
− 3

2
vx

(v − λ)2
∂F1

∂vx
=

1
16λ2

− 1
16(v − λ)2

− κ0

λ2
.

From this, we have

κ0 =
1
16
, F1 =

1
24

log vx.

For the next terms F2(v; vx, vxx, vxxx, vxxxx), it can be similarly computed and the result is

F2 =
vxxxx

1152v2
x

− 7vxxvxxx

1920v3
x

+
v3
xx

360v4
x

.

Now, one can define the quasi-Miura transformation as

u = v + ε2(�F )xx = v + ε2(F1)xx + ε4(F2)xx + · · ·

= v +
ε2

24
(log vx)xx + ε4

(
vxxxx

1152v2
x

− 7vxxvxxx

1920v3
x

+
v3
xx

360v4
x

)
xx

+ · · · . (7)
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One remarks that Miura-type transformation means the coefficients of ε are homogeneous poly-
nomials in the derivatives vx, vxx, . . . , v

(m) [4, p. 37], [5] and “quasi” means the ones of ε are
quasi-homogeneous rational functions in the derivatives, too [4, p. 109] (see also [12]).

The truncated quasi-Miura transformation

u = v +
g∑

n=1

ε2n
[
Fn

(
v; vx, vxx, . . . , v

(3g−2)
)]

xx
(8)

has the basic property [4, p. 117] that it reduces the Magri–Poisson pencil [6] of KdV equation (5)

{u(x), u(y)}λ = [u(x) − λ]Dδ(x− y) +
1
2
ux(x)δ(x− y) +

ε2

8
D3δ(x− y) (9)

to the Poisson pencil of the Riemann hierarchy (3):

{v(x), v(y)}λ = [v(x) − λ]Dδ(x− y) +
1
2
vx(x)δ(x− y) +O

(
ε2g+2

)
. (10)

One can also say that the truncated quasi-Miura transformation (8) deforms the KdV equa-
tion (5) to the Riemann equation vt = vvx up to O

(
ε2g+2

)
.

Remark 2. A simple calculation shows that, under the transformation u = ε2

4 {m,x}, the KdV
equation (5) is transformed into the Schwarzian KdV equation

mt =
ε2

12
mx{m,x} =

ε2

12

(
mxxx − 3

2
m2

xx

mx

)
.

Furthermore, after a direct calculation, one can see that the Magri Poisson bracket

K(ε) = {u(x), u(y)} = u(x)Dδ(x− y) +
1
2
ux(x)δ(x− y) +

ε2

8
D3δ(x− y) (11)

is transformed into the Dorfman’s symplectic operator J−1 (m = v)

{m(x),m(y)} = −ε
2

8
D−1mxD

−1mxD
−1δ(x− y).

Now, a natural question arises: under the truncated quasi-Miura transformation (8), are the
deformed Dorfman’s operator J(ε) and Sokolov’s operator S(ε) still Hamiltonian operators up
to O

(
ε2g+2

)
? For simplicity, we consider only the case g = 1, i.e.,

u = v +
ε2

24
(log vx)xx +O

(
ε4

)
(12)

or

v = u− ε2

24
(log ux)xx +O

(
ε4

)
. (13)

The answer is true for the Dorfman’s operator J(ε) but it is false for the Sokolov’s operator S(ε).
It is the purpose of this article.
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2 Deformations under quasi-Miura transformation

In the new “u-coordinate”, J and S will be given by the operators

J(ε) = M∗D
1

ux − ε2

24(log ux)xxx

D
1

ux − ε2

24(log ux)xxx

DM +O
(
ε4

)
, (14)

S(ε) = M∗
(
ux − ε2

24
(log ux)xxx

)
D−1

(
ux − ε2

24
(log ux)xxx

)
M +O

(
ε4

)
, (15)

where

M = 1 − ε2

24
D

1
ux
D2, M∗ = 1 +

ε2

24
D2 1

ux
D, (16)

M∗ being the adjoint operator of M . Then we have the following

Theorem 1. 1. J(ε) is a Hamiltonian operator up to O
(
ε4

)
. 2. S(ε) is not a Hamiltonian

operator up to O
(
ε4

)
.

Proof. 1. The fact that J(ε) is a skew-adjoint (or J∗(ε) = −J(ε)) differential operator (up to
O

(
ε4

)
) follows immediately from (14). Rather than prove the Poisson form [7] of the Jacobi

identity for J(ε), it is simpler to prove that the symplectic two-form

ΩJ(ε) =
∫
{du ∧ J(ε)−1du}dx+O

(
ε4

)
is closed [8, 9]: dΩJ(ε) = O

(
ε4

)
.

A simple calculation can yield

J(ε)−1 =
(

1 +
ε2

24
D

1
ux
D2

)
D−1

(
ux − ε2

24
(log ux)xxx

)
D−1

×
(
ux − ε2

24
(log ux)xxx

)
D−1

(
1 − ε2

24
D2 1

ux
D

)

=
(
D−1ux − ε2

24
D−1(log ux)xxx +

ε2

24
D

1
ux
Dux

)
D−1

×
(
uxD

−1 − ε2

24
(log ux)xxxD

−1 − ε2

24
uxD

1
ux
D

)
+O

(
ε4

)
= D−1uxD

−1uxD
−1 +

ε2

24

[
D

1
ux
DuxD

−1uxD
−1 −D−1(log ux)xxxD

−1uxD
−1

−D−1uxD
−1uxD

1
ux
D −D−1uxD

−1(log ux)xxxD
−1

]
+O

(
ε4

)
= D−1uxD

−1uxD
−1

+
ε2

24
[
DuxD

−1 −D−1uxD + (log ux)xuxD
−1 +D−1(log ux)xux

]
+O

(
ε4

)
.

Let ψ denote the potential function for u, i.e., u = ψx. Thus, formally,

D−1
x (du) = dψ

and hence, after a series of integration by parts, one has

ΩJ(ε) =
∫ { [(

D−1d

(
ψ2

x

2

))
∧ d

(
ψ2

x

2

)
− ψxdψ ∧ d

(
ψ2

x

2

)]

+
ε2

24
[2ψxxdψ ∧ dψxx + 2ψxxxdψx ∧ dψ]

}
dx+O

(
ε4

)
.
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So

dΩJ(ε) =
∫ {

0 +
ε2

12
[dψxxx ∧ dψx ∧ dψ]

}
dx+O

(
ε4

)
=
ε2

12

∫
{(dψxx ∧ dψx ∧ dψ)x} dx+O(ε4) = O

(
ε4

)
.

This completes the proof of (1).
2. The skew-adjoint property of the deformed Sokolov’s operator S(ε) (15) is obvious. To see

whether S(ε) is Hamiltonian operator or not, we must check whether S(ε) satisfies the Jacobi
identity up to O

(
ε4

)
. Following [7, 8], we introduce the arbitrary basis of tangent vector Θ,

which is then conveniently manipulated according to the rules of exterior calculus. The Jacobi
identity is given by the compact expression

P (ε) ∧ δI = O
(
ε4

)
(mod. div.), (17)

where P (ε) = S(ε)Θ, I = 1
2Θ ∧ P (ε) and δ denotes the variational derivative. The vanishing of

the tri-vector (17) modulo a divergence is equivalent to the satisfaction of the Jacobi identity.
After a tedious calculation, one can obtain

S(ε) = M∗
(
ux − ε2

24
(log ux)xxx

)
D−1

(
ux − ε2

24
(log ux)xxx

)
M +O

(
ε4

)
=

[
ux +

ε2

24
(
D3 +D2(log ux)x − (log ux)xxx

)]
D−1

×
[
ux − ε2

24
(
D3 − (log ux)xD

2 + (log ux)xxx

)]
+O

(
ε4

)
= uxD

−1ux +
ε2

24
[
D2ux +D2(log ux)xD

−1ux − (log ux)xxxD
−1ux − uxD

2

+ uxD
−1(log ux)xD

2 − uxD
−1(log ux)xxx

]
+O

(
ε4

)
= uxD

−1ux +
ε2

24
[
D2ux − uxD

2 + (log ux)xDux + uxD(log ux)x

]
+O

(
ε4

)
= uxD

−1ux +
ε2

12
[Duxx + uxxD] +O

(
ε4

)
.

So

P (ε) = S(ε)Θ = uxD
−1(uxΘ) +

ε2

12
[2uxxΘx + uxxxΘ] +O

(
ε4

)
.

Hence

I =
1
2
Θ ∧ P (ε) =

1
2
uxΘ ∧D−1(uxΘ) +

ε2

12
uxxΘ ∧ Θx +O

(
ε4

)
and then

δI = −1
2
[Θ ∧D−1(uxΘ)]x − 1

2
uxΘ ∧D−1(Θx) +

ε2

12
[Θ ∧ Θx]xx +O

(
ε4

)
= −1

2
Θx ∧D−1(uxΘ) +

ε2

12
[Θ ∧ Θx]xx +O

(
ε4

)
.
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Finally,

P (ε) ∧ δI =
{
uxD

−1(uxΘ) +
ε2

12
[2uxxΘx + uxxxΘ]

}

∧
{
−1

2
Θx ∧D−1(uxΘ) +

ε2

12
[Θ ∧ Θx]xx

}
+O

(
ε4

)
= 0 +

ε2

12

{
− 1

2
uxxxΘ ∧ Θx ∧D−1(uxΘ) + uxxxD

−1(uxΘ) ∧ Θ ∧ Θx

+ 3uxxuxΘ ∧ Θ ∧ Θx + u2
xΘx ∧ Θ ∧ Θx

}
+O

(
ε4

)
= 0 +

ε2

24
uxxxΘ ∧ Θx ∧D−1(uxΘ),

which can be easily checked that it cannot be expressed as a total divergence. So S(ε) cannot
satisfy the Jacobi identity and therefore S(ε) is not a Hamiltonian operator. This completes the
proof of (2). �

Remark 3. Using the technics of the last proof, one can show that J and S is not compatible.
Since J and S are Hamiltonian operators, what we are going to do is show that [7, 8]

Q̃(Θ) ∧ δR+Q(Θ) ∧ δR̃ �= 0 (mod. div.),

where

Q(Θ) = vxD
−1(vxΘ), R =

1
2
Θ ∧Q(Θ),

Q̃(Θ) =
(

1
vx

(
Θx

vx

)
x

)
x

, R̃ =
1
2
Θ ∧ Q̃(Θ) = − 1

2v2
x

Θx ∧ Θxx.

Then

δR =
−1
2

[Θ ∧D−1(vxΘ)]x − 1
2
vxΘ ∧D−1(Θx) =

−1
2

Θx ∧D−1(vxΘ)

and

δR̃ = −
(

1
v3
x

Θx ∧ Θxx

)
x

.

Hence

Q̃(Θ) ∧ δR+Q(Θ) ∧ δR̃

=
(

1
vx

(
Θx

vx

)
x

)
x

∧
(−1

2
Θx ∧D−1(vxΘ)

)
− vxD

−1(vxΘ) ∧
(

1
v3
x

Θx ∧ Θxx

)
x

=
1
2

1
vx

(
Θx

vx

)
x

∧ [
Θxx ∧D−1(vxΘ) + vxΘx ∧ Θ

]
+

[
vxxD

−1(vxΘ) + v2
xΘ

] ∧ (
1
v3
x

Θx ∧ Θxx

)

=
1

2vx
Θxx ∧ Θx ∧ Θ − vxx

2v3
x

Θx ∧ Θxx ∧D−1(vxΘ)

+
vxx

v3
x

D−1(vxΘ) ∧ Θx ∧ Θxx +
1
vx

Θ ∧ Θx ∧ Θxx

=
1

2vx
Θ ∧ Θx ∧ Θxx +

vxx

2v3
x

Θx ∧ Θxx ∧D−1(vxΘ)

�= 0 (mod. div.),

as required.
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3 Concluding remarks

• That J(ε) is a Hamiltonian operator (up to O
(
ε4

)
) is proved in [1]. We give another proof

here, which remarkably simplifies the proof given in [1].
• We notice that all the deformed operators J(ε) (14), D(ε)

(
= D +O

(
ε4

))
, K(ε) (11) under the

quasi-Miura transformation (7) are Hamiltonian operators (up to O
(
ε4

)
). That the deformed

Sokolov’s operator S(ε) is not Hamiltonian is a little surprising that means that the Poisson
bracket of the Hamiltonians Hm(u; ε), Hn(u; ε) for S(ε)

{Hm(u; ε), Hn(u; ε)}S(ε)

will not be O
(
ε4

)
but O

(
ε2

)
, i.e., it cannot be a conserved quantity of the Riemann hierarchy (3).
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