
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 356–367

Aspects of Quantum Groups and Integrable Systems

Robert CARROLL

Department of Mathematics, University of Illinois, 1409 W. Green Str., Urbana, USA
E-mail: rcarroll@math.uiuc.edu

Some algebro-geometric origins of q-differential equations are examined.

1 Introduction

Many q-differential operators arise in the study of q-special functions, Casimir operators, quan-
tum groups, and representation theory. There are also natural origins via quantum integrable
systems and the quantization of classical integrable systems. The latter is often expressed via
a q-hierarchy picture akin to the standard Hirota–Lax–Sato formulation and this has many
canonical aspects. On the other hand one can produce a great number of q-differential opera-
tors by more or less ad hoc manipulation of noncommutative differential calculi or by variations
of classical Lie group methods applied to quantum groups. We examine first the hierarchy
picture briefly and notice that although the standard methods generalize quite readily the re-
sulting KP or KdV equations for example seem to have an infinite number of terms whereas
many “ad hoc” derivations from differential calculi or e.g. Maurer–Cartan arguments have only
a finite number of terms and there is no clear way to determine if in fact such equations have
any intrinsic meaning. We show that the standard derivation of KdV via vector fields on the
unit circle and the smooth dual space of Lax operators can be extended to a q-situation using
a q-Virasoro algebra and we produce a corresponding qKdV equation with an infinite number of
terms; this seems to be a fairly canonical derivation and we suggest that it could be equivalent
to the hierarchy qKdV equation (not yet proved). This approach to KdV via the unit circle
with its attendant UrKdV–mKdV equations, Schwarzian derivatives, projective geometry, etc.
has another connection to quantum mechanics (QM) via the beautiful equivalence principle of
Faraggi–Matone and we use this as a motivational background (cf. [1]). In this connection we
remark that in fact KP for example can already be considered as a Moyal quantization of dKP
(dispersionless KP) and it is not clear just what role the qKP or qKdV equations can play in
quantum mechanics; however for completeness we also indicate a few approaches to Moyal type
integrable equations.

2 The equivalence principle

The equivalence principle (EP) of Faraggi–Matone (cf. refs. [1, 2]) is based on the idea that all
physical systems can be connected by a coordinate transformation to the free situation with
vanishing energy (i.e. all potentials are equivalent under coordinate transformations). This
automatically leads to the quantum stationary Hamilton–Jacobi equation (QSHJE) which is
a third-order nonlinear differential equation providing a trajectory representation of quantum
mechanics (QM). The theory transcends in several respects the Bohm theory and in particular
utilizes a Floydian time (cf. ref. [3]) leading to (A1) q̇ = p/mQ �= p/m where (A2) mQ = m(1−
∂EQ) is the “quantum mass” and Q the “quantum potential”. Thus the EP is reminscient of the
Einstein equivalence of relativity theory. This latter served as a midwife to the birth of relativity
but was somewhat inaccurate in its original form. It is better put as saying that all laws of physics
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should be invariant under general coordinate transformations (cf. ref. [4]). This demands that not
only the form but also the content of the equations be unchanged. More precisely the equations
should be covariant and all absolute constants in the equations are to be left unchanged (e.g. c,
�, e, m and ηµν = Minkowski tensor). Now for the EP, the classical picture with Scl(q,Q0, t)
the Hamilton principal function (p = ∂Scl/∂q) and P 0, Q0 playing the role of initial conditions
involves the classical HJ equation (CHJE) (A3) H(q, p) = (∂Scl/∂q), t) + (∂Scl/∂t) = 0. For
time independent V one writes Scl = Scl

0 (q,Q0)− Et and arrives at the classical stationary HJ
equation (CSHJE) (A4) (1/2m)(∂Scl

0 /∂q)
2 +W = 0 where W = V (q)−E. In the Bohm theory

one looked at Schrödinger equations (A5) i�ψt = −(�2/2m)ψ′′+V ψ with ψ = ψ(q) exp(−iEt/�)
and (A6) ψ(q) = R(q exp(iŴ /�) leading to(

1
2m

)
(Ŵ ′)2 + V − E − �

2R′′

2mR
= 0, (R2Ŵ ′)′ = 0, (1)

where (A7) Q̂ = −�
2R′′/2mR was called the quantum potential; this can be written in the

Schwartzian form (A8) Q̂ = (�2/4m){Ŵ ; q} (via R2Ŵ ′ = c). Here (A9) {f ; q} = (f ′′′/f ′) −
(3/2)(f ′′/f ′)2. Writing W = V (q)−E as in (A4) we have the quantum stationary HJ equation
(QSHJE) (A10) (1/2m)(∂Ŵ ′/∂q)2 + W(q) + Q̂(q) = 0 (≡ W = −(�2/4m){exp(2iS0/�); q}).
This was worked out in the Bohm school (without the Schwarzian connections) but (A6) is
not appropriate for all situations; the Bohm theory is incomplete and can lead to incorrect
predictions. The technique of Faraggi–Matone (FM) is completely general and with only the EP
as guide one exploits the relations between Schwarzians, Legendre duality, and the geometry of
a second-order differential operator D2

x + V (x) (Möbius transformations play an important role
here) to arrive at the QSHJE in the form

1
2m

(
∂Sv

0 (qv)
∂qv

)2

+ W(qv) + Qv(qv) = 0, (2)

where v : q → qv represents an arbitrary locally invertible coordinate transformation. Note
in this direction for example that the Schwarzian derivative of the the ratio of two linearly
independent elements in ker (D2

x + V (x)) is twice V (x). In particular given an arbitrary system
with coordinate q and reduced action S0(q) the system with coordinate q0 corresponding to
V − E = 0 involves (A11) W(q) = (q0; q) where (q0, q) is a cocycle term which has the form
(A12) (qa; qb) = −(�2/4m){qa; qb}. In fact it can be said that the essence of the EP is the
cocycle condition (A13) (qa; qc) = (∂qcqb)2[(qa; qb)− (qc; qb)].

In addition FM developed a theory of (x, ψ) duality (cf. ref. [1]) which related the space
coordinate and the wave function via a prepotential (free energy) in the form F = (1/2)ψψ̄+iX/ε
for example. A number of interesting philosophical points arise (e.g. the emergence of space from
the wave function) and we connected this to various features of dispersionless KdV in refs. [5, 6] in
a sort of extended WKB spirit. One should note here that although a form (A6) is not generally
appropriate it is correct when one is dealing with two independent solutions of the Schrödinger
equation ψ and ψ̄ which are not proportional. In this context we utilized some interplay between
various geometric properties of KdV which involve the Lax operator L2 = D2

x + V (x) and of
course this is all related to Schwartzians, Virasoro algebras, and vector fields on S1 (see e.g.
refs. [7–10]. Thus the simple presence of the Schrödinger equation (SE) in QM automatically
incorporates a host of geometrical properties of Dx = d/dx and the circle S1. In fact since the
FM theory exhibits the fundamental nature of the SE via its geometrical properties connected
to the QSHJE one could speculate about trivializing QM to a study of S1 and ∂x!

In any event KdV in its geometrical glory is important and we want to look at qKdV and
qKP. A main theme here is to understand the relation of the qKdV hierarchy picture in terms of
a geometrical origin of qKdV type equations. The hierarchy picture is described below. We also
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give various derivations of qKdv and qKP type equations from various geometrical or quantum
group points of view (most of which are not equivalent to the hierarchy pictures). However
we do find a qKdV equation from a q-Virasoro context which could agree with the hierarchy
picture (see Section 6). Even so it is not entirely obvious that the hierarchy picture is the only
legitimate object of study – although the analytic approach of ref. [11] and the algebraic (oper)
approach of ref. [12] do point in this direction.

3 KP and KDV hierarchies

For classical KP and KdV one has (cf. refs. [5, 6, 13, 14]

L = ∂ +
∞∑
1

un+1(t)∂−n, W = 1 +
∞∑
1

wn∂
−n, L = W∂W−1 (3)

with (A14) ψ = Weξ = W (λ)eξ; ξ =
∞∑
1
tnλ

n; Lψ = −λψ; ∂mψ = Bmψ = Lm
+ψ and (A15)

∂mL = [Bm, L]; ∂nBm − ∂mBn = [Bn, Bm]; ∂nW = −(Ln−)W . Recall (A16) ψ(t, λ) = X(λ)τ
τ =

eξτ
(
tj− 1

jλj

)
τ(t) = eξτ−

τ where τ is the famous tau function with (A17) u = ∂2
x log(τ) with u ∼ u2 in 3.

Typical forms for KP and KdV are (A18) ut−uxxx+6uux−3∂−1uyy = 0 and ut−uxxx+6uux = 0.
For KdV one has L2

+ = L2 and the hierarchy picture is much simplified; we discuss this below
in the context of qKdV.

4 Q-hierarchies

For qKP we go to refs. [11, 12, 14–23]; the hierarchy picture is straightforward but the resulting
equations are much more complicated. Thus one writes e.g. (A19) ∂qf(x) = [f(qx)−f(x)]/(q−
1)x and Df(x) = f(qx). Then in the hierarchy constructions x and t = t1 are both used in the
first variable position with

τq(x, t) = τ(ti + c(x)i), c(x) =
(

(1− q)x
1− q , . . . ,

(1− q)nxn

n(1− qn)
, . . .

)
, (4)

where τ is an ordinary tau function for KP. One takes then (∂1 ∼ ∂/∂t1, . . . , ∂n ∼ ∂/∂tn)

Lq = ∂q +
∞∑
0

an(t)∂−n
q , ∂nLq = [(Ln

q )+, Lq] = [Bq
n, Lq] (5)

(note a0 �= 0 appears here and u ∼ a1). Further (ξ =
∞∑
1
tkλ

k)

ψq =
τq(x, t− [λ−1])

τq(x, t)
eq(xλ) exp(ξ), (q; q)k = (1− q) · · · (1− qk), (6)

expq(x) =
∞∑
1

(1− q)kxk

(q; q)k
= exp

( ∞∑
1

1− q)kxk

k(1− qk)

)
, ∂qeq(xλ) = λeq(x),

where [λ−1] = (1/nλn). Note also (A20) ψq = Wqeq(xλ)eξ; Lqψq = λψq with

Lq = Wq∂qW
−1
q , Wq = 1 +

∞∑
1

w̃j∂
−j
q , ∂jWq = −(Lj

q)−Wq. (7)
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Next note eq(xλ)−1 = e1/q(−xλ) and the adjoint wave function ψ∗
q is determined via

ψ∗
q = (W ∗)−1

x/q exp1/q(−xλ)eξ, L∗
x/qψ

∗
q = λψ∗

q ,

ψ∗
q =

τq(x, t+ [λ−1])
τq(x, t)

exp1/q(−xλ)e−ξ, (8)

where V =
∑
vi∂

i
q ∼ V ∗ =

∑
(∂∗q )ivi with ∂∗q = −q−1∂1/q and Vx/q ∼

∑
vi(x/q)qi∂i

q. Recall also
the Schur polynomials∑

pn(t)λn = exp(ξ(t, λ)),
∑

p̃n(x, t)λn = expq(xλ)eξ(t,λ),

p̃k(x, t) = pk(t+ c(x)). (9)

Next the classical Hirota bilinear identity is∮
ψ∗(t, λ)ψ(t′, λ)dλ = 0 ⇒

∮
τ(t+ y + [λ−1])τ(t− y − [λ−1])e−2

∑
yiλ

i
= 0 (10)

and this leads to classical Hirota equations (A21) ∂1∂nτ · τ = 2pn+1(∂̃)τ · τ (Hirota notation –
also ∂̃ = (∂1, (1/2)∂2, . . .)). One can produce analogous formulas in q-theory but their usefulness
is limited and not even clear (cf. ref. [14] for an extensive discussion). The problem lies in the
fact that u = ∂2 log τ does not generalize but instead

u = −(q − 1)x∂q

(
p2(∂̃)τq
τq

)
+
∂qτq
τq

(q − 1)x∂q

(
∂1τq
τ1

)
+ ∂q

(
∂qτq
τq

)
. (11)

The classical Hirota equations are compatible with and lead to formulas involving log τ (and
hence u) but in the q-situation (11) makes this impossible. In fact I have never seen a qKP
equation analogous to (A18) for example.

The problems are more easily seen with qKdV and there one has (recall Df(x) = f(qx))

L2
q = ∂2

q + (q − 1)xu∂q + u, u = ∂q∂1 log[τq(x, t)Dτq(x, t)],

Lq = ∂q + s0 + s1∂
−1
q + · · · . (12)

Considerable calculation leads to (u1 = (q − 1)xu)

s0 = (q − 1)x∂1∂q log τq, ∂tu = (∂3
qu) + w2(∂2

qu) + w1(∂qu)− [(∂2
qw0) + u1(∂qw0)],(13)

w2 = D2s0 + u1 = D2s0 +Ds0 + s0, (14)

w1 = (q + 1)(D∂qs0) + τ2s1 + [(Ds0) + s0](Ds0) + u,

w0 = ∂2
q s0 + (q + 1)(D∂qs1) + u1∂qs0 + u1(Ds1) + us0 +D2s2

and the determination of the si requires infinite series calculations based on formulas like

s1 +Ds1 = u− ∂qs0 − s20 = f ⇒ s1(x) =
∞∑
0

(−1)nf(qnx). (15)

Similarly (A22) Ds2 +s2 = −∂qs1−s0s1−s1D−1s0, etc. This seems to suggest that an explicit
form of qKdV (as in (A18)) arising in the hierarchy picture with coefficients specified in terms
of u (or s0) will involve an infinite number of terms.
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5 Origins of Q-equations

5.1 Linear equations

In refs. [14–16] we sketched a number of sources for linear q-differential equations in various
contexts (see the references there for details and cf. also refs. [24, 25]). This includes many
relations involving q-special functions, Casimir operators, quantum groups, and representation
theory with linear q-differential equations arising naturally. A good source of general information
with Lie theoretic background is refs. [26, 27]. There is also a development involving special
functions and q-special functions where tau functions arise as generating functions for matrix
elements in general group representations (cf. ref. [15] and references there).

Remark 1. The development in ref. [26] for example emphasizes the ideas of intertwining and
group invariant differential operators in a general Lie theoretic context with representations
involving Verma modules (cf. also ref. [27] and references there). One arrives e.g. at a Maxwell
hierarchy and its quantum group version in the context of a particular q-Minkowski space-time.
The spirit is that of QG symmetries described via invariant q-differential operators and here the
equations are also q-conformally invariant. Other work involving Dirac equations is described in
ref. [15] for example and the differential operators involved seem to be primarily linear. However
the treatment in ref. [27] provides interesting nonlinear differential operators in the context of
multilinear intertwining differential operators. Bilinear and trilinear formulas for example are
written out for s�(2) and there is an interesting connection to KdV. Thus let G be a Lie group
with representations T , T ′ in spaces C, C ′. An intertwining operator I is a continuous linear
map (A23) I : C → C ′ : f → j such that (A24) I ◦ T (g) = T ′(g) ◦ I. The equation (A25)
If = j is then a G-invariant equation. Omitting details one defines multilinear intertwining
differential operators via

kI : f ⊗ · · · ⊗ f → j; kI ◦ T (g)⊗ · · · ⊗ T (g) = T ′(g) ◦ kI (16)

and arrives at generalized Schwarzians (A26) S̃chn(φ) = [1/(φ′)2]2I0
nα(φ). Recalling that the

KdV equation can be written in the Krichever–Novikov form (A27) ∂tf + S̃ch4(f)f ′ = 0 (note
S̃ch4(f) = S(f) is the Schwarzian derivative) one can pass to the standard KdV form (A28)
∂tu + u′′′ − 6uu′ = 0 where the substitution u = −(1/2)S̃ch4(f) is used. It is conjectured in
ref. [27] that the equations (A29) ∂tf+S̃chn(f)f ′ = 0 (n ∈ 2N+2) are integrable, and if so they
should coincide with the KdV hierarchy. One expects that a similar analysis in the q-context
would be of great interest in understanding qKdV.

5.2 Differential calculi

When we come to nonlinear equations such as KP or KdV there are a number of classical
derivations of intrinsic geometrical or algebraic interest which should morally have a q-version.
Moreover one would expect the q-versions to bear some natural or canonical relation to the
hierarchy version described earlier. In refs. [14–16] we examined some such derivations but
without being able to establish a clear connection to the hierarchy picture. The constructions
however seem interesting enough and well modeled on meaningful classical situations so some
further study is indicated. First in a somewhat experimental manner consider a differential
calculus approach following refs. [14–16, 28]. Thus

Example 1. Consider a calculus based on (A) dt2 = dx2 = dxdt + dtdx = 0 (B) [dt, t] =
[dx, t] = [dt, x] = 0 and [dx, x] = ηdt. Assuming the Leibnitz rule d(fg) = (df)g + f(dg) for
functions and d2 = 0 one obtains (A30) df = fxdx + (ft + (1/2)ηfxx)dt. For a connection
A = wdt + udx the zero curvature condition F = dA + A2 = 0 leads to (A31) (ut − wx +
(η/2)uxx + ηuux = 0 which for wx = 0 is a form of Burger’s equation.
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Example 2. Next consider (A) [dt, t] = [dx, t] = [dt, x] = [dy, t] = [dt, y] = [dy, y] = 0
with (B) [dx, x] = 2bdy and [dx, y] = [dy, x] = 3adt. Further (C) dt2 = dy2 = dtdx + dxdt =
dydt+dtdy = dydx+dxdy = 0. Then (A32) df = fxdx+(fy +bfxx)dy+(ft +3afxy +abfxxxdt).
For A = vdx+ wdt+ udy one finds that dA+A2 = F = 0 implies

ux = vy + bvxx + 2bvvx, wx = 3avxy + abvxxx + 3auvx + 3av(vy + bvxx), (17)
wx + bwxx = ut + 3auxy + abuxxx + 3auux − v[2bwx − 3a(uy + buxx)].

Taking e.g. wx = (3a/2b)uy + (3a/2)uxx in the last equation to decouple one arrives at (A33)
∂x(ut − (ab/2)uxxx + 3auux) = (3a/2b)uyy; for suitable a, b this is KP. If the equation is
independent of y we obtain a version of KdV.

It is surprisingly difficult to convert these examples into meaningful q-calculus equations and
in that spirit for guidance we were motivated to develop many formulas concerning qKP, qKdV,
etc. One has e.g. a first-order differential calculus (FODC) Γ+ from ref. [25] on a quantum
plane or Manin plane (cf. also ref. [15]); this is based on xp = qpx with standard formulas as in
ref. [25]. In this FODC the partial derivatives ∂i of Γ+ act on A = formal power series with x,
p ordering, via (∂px

n = qnxn∂p and ∂xp
n = qnpn∂x)

∂x(f(x)h(p)) = (Dx
q2f(x))h(p), ∂p(f(x)h(p)) = (Tqf(x))(Dp

q2h(p)), (18)

∂x(xn) = Dq2xn = [[n]]q2xn−1, [[n]]q2 =
q2n − 1
q2 − 1

, ∂pp
n = [[n]]q2pn−1. (19)

Example 3. The q-plane itself doesn’t seem immediately fruitful here so consider the generalized
q-plane with an algebra generated by x, y, x−1, y−1 where xy = qyx, xdx = qdxx, ydx = q−1dxy,
xdy = qdyx, and ydy = q−1dyy. Also from qdyx = dxy we have qdydx = dxdy and a little
calculation yields (A34) dxn = [(1−q−n)/(1−q−1)]xn−1dx with dym = [(1−qm)/(1−q)]ym−1dy.
Working from f =

∑
anmx

nym one obtains then (note dxym = qmymdx)

df = DyD
x
q−1fdx+Dy

qfdy. (20)

Set then A = wdy+udx with dA = DyD
x
q−1wdxdy+Dy

qudydx and, noting that dyxn = q−nxndy,
dyym = qmymdy, and dxym = qmymdx with dxxn = q−nxndx one gets dyw = D−1

x Dywdy and
dxu = D−1

x Dyudx leading to A2 = wD−1
x Dyudydx+ uD−1

x Dywdxdy; and

dA+A2 = 0 = qDyD
x
q−1w +Dy

qu+ wD−1
x Dyu+ quD−1

x Dyw. (21)

Setting then e.g. qw = D−1
y Dx

q−1u one gets

Dy
qu+ (Dx

q−1)2u+ q−1(D−1
x Dyu)(D−1

y Dx
q−1u) + uD−1

x Dx
q−1u = 0. (22)

For q → 1 we have (A35) uy +uxx +2uux = 0 so this appears to be an exact q-form of Burger’s
equation.

Example 4. We will try now a somewhat different approach. First we take q-derivatives only
in x, as in the case of qKP for example and we know from Example 2 that (A32) leads to
interesting consequences so begin with an assumption (fy = ∂f/∂y, etc.)

df = Dx
q fdx+

(
fy + b(Dx

q )2f
)
dy +

(
ft + 3a∂yD

x
q f + ab(Dx

q )3f
)
dt. (23)

Then we can determine what elementary commutation relations between the variables are con-
sistent with (23). This is rather ad hoc but we stipulate x, y, t ordering and then there are
relations

dxx = qxdx+ b[2]qdy, dyx = q2xdy + a[3]qdt,

dtx = q3xdt, dxy = ydx+ 3adt (24)
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along with

[dt, y] = [dy, y] = [dy, t] = [dx, t] = [dt, t] = [dx, y] = 0 (25)

which are determined by (23). The underlying structure for x, y, t is not visible from (23) but
(24)–(25) do lead to (23) and whatever zero curvature equations subsequently arise (see ref. [16]
for details). Returning now to (23) it remains to check now the zero curvature equation arising
in the spirit of Example 2 (some extra factors and terms will arise via noncommutativity). Thus
assume first dx2 = dy2 = dt2 = 0 and take A = vdx + wdt + udy; after some computation
modeled on Example 2 one arrives at a rather clumsy q-version of KP. For y independent u we
obtain

ut + ab(Dx
q )3u− [3]qab

[2]q
Dx

qDx(Dx
q )2u+ [3]qauD2

xD
x
qu

=
[3]qa
[2]qb

(
DxD

x
quD

3
xu− uD3

xD
x
qu
)

(26)

which is a quantum KdV type equation.

5.3 Geometry

We indicate two “geometrical” contexts in a classical vein and subsequently give “quantum”
versions of these.

Example 5. One can devise a procedure directly from ref. [29]. Thus look at SL(2,R) with

matrices (A36) X =
(
a b
c d

)
, ad− bc = 1. The right invariant Maurer–Cartan (MC) form is

(A37) ω = dXX−1 = (wi
j) (i, j = 1, 2) where ω1

1 + ω2
2 = 0. The structure equation of SL(2,R)

or MC equation is (A38) dω = ω ∧ ω or explicitly (A39) dω1
1 = ω2

1 ∧ ω1
2; dω

2
1 = 2ω1

1 ∧ ω2
1;

dω1
2 = 2ω1

2 ∧ ω1
1. Now let U be a neighborhood in the (x, t) plane and consider a smooth map

f : U → SL(2,R). The pullback of the MC form can be written as (A40) ω1
1 ∼ ηdx + Adt;

ω2
1 ∼ Qdx + Bdt; ω1

2 ∼ rdx + Cdt with coefficient functions of x, t. The equations (A39)
become (A41) (i) −ηt + Ax − QC + rB = 0, (ii) −Qt + Bx − 2ηB + 2QA = 0, and (iii)
−rt + Cx − 2rA+ 2ηC = 0. Take r = 1 with η independent of (x, t) and set Q = u(x, t). Then
from (i) and (iii) one gets (A42) A = ηC + 1

2Cx; B = uC − ηCx − 1
2Cxx. Putting this in the

(ii) above yields ut = K(u) where (A43) K(u) = uxC + 2uCx + 2η2Cx − 1
2Cxxx. In the special

case C = η2 − (1/2)u one gets the KdV equation (A44) ut = 1
4uxxx − 3

2uux.

Example 6. Following ref. [30], let Vec (S1) denote the Lie algebra of smooth vector fields on
S1 and then the Virasoro algebra is Vir = Vec(S1) ⊕ R = W ⊕ R with (note the minus sign
convention involving f ′g − fg′)

[(f(x)∂x, a), (g(x)∂x, b)] =
(

(f ′g − fg′)∂x,

∫
S1

f ′g′′dx
)

(27)

(W ∼ Witt algebra). Here
∫
S1 f

′g′′dx is called the Gelfand–Fuks cocycle, where a cocycle on
a Lie algebra g is a bilinear skew symmetric form c(·, ·) satisfying (A45)

∑
c([f, g], h) = 0

over cyclic permutations of f , g, h. This means that ĝ = g ⊕ R (central extension) with
commutator [(f, a), (g, b)] = ([f, g], c(f, g)) satisfies the Jacobi identity of a Lie algebra. Now
the Euler equation corresponding to geodesic flow is a 1-parameter family of KdV equations.
To see how this arises consider (A46) Vir∗ = {(u(x)dx2, c); u smooth on S1 and c ∈ R}. Then
(A47) 〈(v(x)∂x, a), (u(x)dx2, c)〉 =

∫
S1 v(x)u(x)dx + ac. The coadjoint action of (f∂x, a) ∈

Vir on (udx2, c) ∈ Vir∗ is (ad∗
v : g∗ → g∗, ad∗

vw(u) = w(advu)) (A48) ad∗
(f∂x,a)(udx

2, c) =
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(2f ′u+ fu′ + cf ′′′)dx2, 0) which arises from the identity (A49) 〈[(f∂x, a), (g∂x, b)], (udx2, c)〉 =
〈(g∂x, b), ad∗

(f∂x,a)(udx
2, c)〉. Now for S1 there are no boundary terms in integration (for single

valued functions) so, integrating by parts,∫
S1

g(2f ′u+ fu′ + cf ′′′)dx =
∫

S1

[u(gf ′ − fg′) + cf ′g′′]dx. (28)

Now a function H on g = Vir determines a tautological inertia operator A : Vir → Vir∗ :
(u∂x, c)→ (udx2, c) and hence a quadratic Hamiltonian on Vir∗ via

H(udx2, c) =
1
2
〈(u∂x, c), (udx2, c)〉 =

1
2
〈(u∂x, c), A(u∂x, c)〉. (29)

Following ref. [30] the corresponding Euler equation is ṁ = −ad∗
A−1mm (m ∈ ĝ) which here takes

the form (A50) ∂t(udx2, c) = −ad∗
A−1(udx2,c)(udx

2, c). Using (A51) (f∂x, a) = A−1(udx2, c) =
(u∂x, c) this becomes an equation (A52) ∂tu = −2u′u − uu′ − cu′′′ = −3uu′ − cu′′′ where c is
independent of time.

6 Q-versions

6.1 Q-Virasoro

We recall first from refs. [16, 31] the following information regarding q-Virasoro constructions.
Thus work on S1 with (q �= 0,±1)

∂qz =
qmzm − q−mzm

(q − q−1)z
= zm−1[m], [m] =

qm − q−m

q − q−1
. (30)

We adapt the formalism of ref. [31] as follows. Let Dn = −zn+1∂ with ∂ : zm → qm[m]zm−1 so
∂ ∼ ∂qτ where τf(z) = f(qz). Generally we will think of z = eiθ ∈ S1 so (1/2πi)

∫
S1 z

ndz =
(1/2π)

∫
zn+1dθ = δ(−1,0) which will be written as (A52)

∫
zn = δ(−1,0). Write also (A53)

�n ∼ Dn = −zn+1∂qτ and it is known that q-brackets are needed now where (A54) [�m, �n]q =
qm−n�m�n − qn−m�n�m = [m − n]�m+n. For a central term in a putative Virq one wants (cf.
refs. [16, 31]) a formula (A55) c[m+ 1][m][m− 1]δm+m,0 (see below for an optimal term). First
we want to formulate the q-bracket in terms of vector fields as follows (the central term will be
added later). This can be done as a direct calculation using the basic definition of ∂ above (cf.
also (37) below). Thus

[zn∂, zm∂]q ∼ qn−mzn∂(zm∂)− qm−nzm∂(zn∂) = [n−m](−zm+n−1∂). (31)

Let now v ∼ ∑
anz

n and w ∼ ∑
bmz

m; then we define a bracket in V ec(S1) via (A56)
[v∂, w∂]q = −∑ anbm[n−m]zm+n−1∂. We defined a bracket of vector fields in ref. [16] so that
from (A56) there resulted a correspondence (A57) v′w − vw′ ∼ −[v∂x, w∂x] ∼ −[v∂, w∂]q =
−{(τv)(∂qw)− (τw)(∂qv)}τ . This dangling τ creates some complications and is removed below.

Remark 2. In ref. [31] one defines the q-analogue of the enveloping algebra of the Witt alge-
bra W as the associative algebra Uq(W) having generators �m (m ∈ Z) and relations (A54). The
q-deformed Virasoro algebra is defined as the associative algebra Uq(Vir) having generators �m
(m ∈ Z) and relations (q �= root of unity)

qm−n�m�n − qn−m�n�m = [m− n]�m+n + δm+n,0
[m+ 1][m][m− 1]

[2][3]〈m〉 ĉ, (32)

where 〈m〉 = qm + q−m and ĉ�m = q2m�mĉ (thus ĉ is an operator which we examine below
and we refer to refs. [16, 31] for the central term). Then Uq(Vir) ∼ Virq is a Z graded algebra
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with deg (�m) = m and deg (ĉ) = 0. One also introduces in ref. [31] a larger algebra U(Vq) =
associative algebra generated by J±1, ĉ, dm (m ∈ Z) with relations

JJ−1 = J−1J = 1, JdmJ
−1 = qmdm, ĉJ = Jĉ, ĉdm = qmdmĉ, (33)

qmdmdnJ − qndndmJ = [m− n]dm+n + δm+n,0
[m+ 1][m][m− 1]

[2][3]〈m〉 ĉ.

The subalgebra of U(Vq) generated by �′m = dmJ and ĉ′ = ĉJ (m ∈ Z) is the same as Uq(Vir).
It is stated in ref. [31] that Vq is the universal quantum central extension of Wq and thus (33) is
better adapted for optimal algebraic and geometric meaning; it is this aspect which we emphasize
below.

Now we mimic the framework of Example 6 and it is interesting to note that an ordinary
integral

∫
S1 will suffice. One does not need a Jackson type integral in order to deal with

integration by parts. Thus we observe that (A58)
∫
S1 f =

∫ ∑
fnz

n = f−1;
∫
∂qf = (q −

q−1)−1(f0 − f0) = 0. Since ∂q(fh) = (τf)(∂qh) + (∂qf)(τ−1h) we have an integration by parts
formula∫

(τf)(∂qh) = −
∫

(∂qf)(τ−1h)⇒
∫
f∂q(τh) = −

∫
∂q(τ−1f)h. (34)

This can be written as (recall ∂ ∼ ∂qτ) (A59)
∫
f∂h = − ∫ h∂̂f for ∂̂ = ∂qτ

−1. Now we think of
Uq(Vir) with elements (f∂, a) satisfying (A60) [(f∂, a), (g∂, b)] = (−[f∂, g∂]q∂, ψ(f∂, g∂)). The
central term could be defined tentatively via e.g. (A61)

∫
(τ∂3f)(τg)ĉ = ψ(f∂, g∂) (where one

notes that (A62) ψ(f∂, g∂) = q−1
∫
g∂3f ĉ). We will want to put the central operator ĉ into the

integral, acting on f , and will see below that ĉ ∼ τ2 for example and τ2F (z) = F (q2z)τ2 so it
eventually automatically passes to the right in our qKdV type equations. Hence for the moment
think of ĉ = τ2 put into (A61) via e.g. τ∂3τ−2ĉf ≡ τ∂3f and ignored at the end except when
exhibiting formulas like (32) on generators (see also remarks below).

We recall now from ref. [31] (second paper)

[dm, dn] = JdmJ
−1dnJ − JdnJ

−1dmJ = q−nJdmdn − q−mJdndm. (35)

Further ĉdm = qmdmĉ suggests ĉ = τ here and dm is being used as �mτ−1. Dropping the
minus sign momentarily, from �m = zm+1∂qτ we get then (A63) dm = zm+1∂q. Then, using
(A64) ∂qτ = qτ∂q, one obtains τdm = τ(zm+1∂q) = qmzm+1∂qτ and τ−1dm = q−mdmτ

−1.
In addition JdmJ

−1 = qmdm corresponds to Jdm = qmdmJ so we identify J = τ . Writing
�m = dmJ = dmτ we can also easily see that the brackets [dm, dn] above are exactly the q-
brackets (A65) [�m, �n]q = qm�m�n − qn�n�m.

Now in ref. [31] (second paper) a Jacobi type identity is used involving an operator σ(x) =
(1/2)(τ+τ−1)(x) for x ∈ ⊕Cdn. This seems to be better phrased in terms of an operator (A66)
Γ(dp) = 〈p〉dp which avoids the need to carry τ around to other terms. Then we can check that
the rule in (33) rewritten as (A67) [dm, dn] = [m− n]dm+n + γmδm+n,0ĉ will yield

[[dm, dn],Γ(dp)] + [[dn, dp],Γ(dm)] + [[dp, dm],Γ(dn)] = Ξm,n,p = 0. (36)

This is based on two identities; one is (A68) [m− n][m+ n− p]〈p〉+ [n− p][n+ p−m]〈m〉+
[p−m][p+m− n]〈n〉 = 0 and the second is

[p+ 1][p][p− 1][m− n] + [m+ 1][m][m− 1][n− p]
+ [n+ 1][n][n− 1][p−m] = 0 (m+ n+ p = 0). (37)

The proofs are essentially straightforward (cf. ref. [32] for details). Thus Vq will be a genuine
central extension of Wq, with a reasonable Jacobi identity (36).
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Remark 3. Now in 31–(A57) we recall �m ∼ −zm+1∂ = −zm+1∂qτ and a dm formulation would
drop the τ . Thus work with ∂q instead of ∂ = ∂qτ with (A69) ∂qz

p+1 = qp+1zp+1∂q+[p+1]zpτ−1

based on ∂qf = (τf)∂q + (∂qf)τ−1. Then

[dm, dn] = [zm+1∂q, z
n+1∂q]

= qmdmdnτ − qndndmτ = [n−m]zn+m+1∂q = [m− n]dm+n. (38)

In this context the δm+n,0 term does not arise. Note here τ−1∂q = q∂qτ
−1 and (A70) qm+1[n+

1]− qn+1[m+ 1] = [n−m]. Let now v ∼∑ vn+1z
n+1 and w =

∑
wm+1z

m+1; then

[v∂q, w∂q] = [
∑

vn+1dn,
∑

wm+1dm] =
∑

vn+1wm+1[n−m]zn+m+1∂q. (39)

Going back to (38) this corresponds then to (A71) [v∂q, w∂q] = [(τv)(∂qw)− (τw)(∂qv)]∂q and
this replaces (A57).

Now we build in a cocycle term by using (33) in (38); a term (A72) [zm+1∂q, z
n+1∂q] =

[dm, dn] = [m− n]dm+n + γmδm+n,0τ arises. For [v∂q, w∂q] we get then an additional term

∑
vn+1wm+1γnδm+n,0τ =

∑
vn+1w−n+1

[n+ 1][n][n− 1]τ
〈n〉[2][3]

. (40)

Then for a = 1/[2][3] and (τ + τ−1)zn = (qn + q−n)zn = 〈n〉zn define

a

∫
w(∂2

q (τ + τ−1)−1(∂qv)) =
∑

vn+1w−n+1γn = φ(v∂q, w∂q). (41)

One checks that φ is antisymmetric and satisfies the q-cocycle condition

φ([v∂q, w∂q],Γ(u∂q)) + φ([w∂q, u∂q],Γ(v∂q)) + φ([u∂q, v∂q],Γ(w∂q)) = 0. (42)

Consequently (cf. ref. [32] for details).

Theorem 1. The term φ(v∂a, w∂q) in (41) is a q-cocycle and following the constructions in
ref. [16] one has a possibly canonical qKdV equation in the form (a = 1/[2][3])

ut + c′∂2
q (τ + τ−1)−1∂qu+ ∂q(uτu) + τ−1u∂qτ

−1u. (43)

Proof. We modify slightly the constructions in ref. [16] and write

q〈[f∂q, a), (g∂q, b)], (u, c)〉
= −q

∫
[(τf)(∂qg)− (τf)(∂qf)]u+ caq

∫
g∂2

q (τ + τ−1)−1∂2
qf. (44)

We note from ref. [16] that (A73) q
∫
fg =

∫
τ−1fτ−1g and

∫
∂qf = 0 while via (A74)

∂q(gfu) = ∂qfτ
−1(fu) + (τg)∂q(fu) (via ∂q(ab) = (τa)∂qb+ (∂a)τ−1b). Then (A75)

∫
g[τ−1×

∂q(τuτ2f) + τ−1(u∂qf) + aqc∂2
q (τ + τ−1)−1∂qf ] follows from (44). Putting f = u we obtain the

Euler equation as in ref. [16], namely (A76) qut = −qca∂2
q (τ + τ−1)−1∂qu − τ−1∂q(τuτ2u) −

τ−1(u∂qu). Using also τ−1∂q = q∂qτ
−1 we obtain (43) with c′ = ac. �

Remark 4. In view of the expression (A77) (τ + τ−1)−1 ∼ τ
∑

(−1)nτ2n the equation (43)
involves an infinite number of terms (much as are indicated for qKdV in the hierarchy picture
in ref. [16]. Since we now have a derivation with all of the classical algebraic and geometrical
structure duplicated it seems that (43) could be a good candidate for a canonical form.
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Remark 5. The Maurer–Cartan (MC) formulas were indicated in Example 5 and a version of
this in a q-plane context appears in ref. [25]. A version of this can also be developed directly
from the discussion of duality (cf. ref. [16] for details). A more interesting version comes from
a quantum line R

1
q coupled with a time variable (e.g. Aq = C(R) ⊗ R

1
q) with e.g. xΛ = qΛx;

xdx = qdxx; dxΛ = qΛdx; xdΛ = qdΛx; e1x = qΛx and e1Λ = 0; df(e1) = e1f ; e2Λ = qΛx;
e2x = 0; df(e2) = e2f (Λ is introduced for technical reasons (cf. ref. [16]). The MC equations
are (A78) dω0 = Q(ω0 ∧ ω1); dω1 = −ω0 ∧ ω2; dω2 = Q(ω1 ∧ ω2) (Q = q2 + q4) and we must
find expressions df and dω for functions and 1-forms. After considerable calculation based on
zero curvature ideas (and some assumptions on Λ, dΛ) one can say that if u = u(x, t) does
not depend on Λ a qKdV type equation based on the quantum line arises in the form (A79)
ut = 1

Q2∂
x
q−1(∂x

q )2u+ η
Q

(
(∂x

q−1Dx)2 −D−1
x (∂x

q )2
)
u− 1

Q[q(∂x
q )Dxu+(1+ q)u∂x

q u]+ ηu(1−Dx)u.

7 Moyal approach

One knows that Moyal quantization plays an important role in mathematical physics (for dis-
cussion cf. ref. [5, 15]). In fact KP can be identified with a Moyal quantization of dKP (cf.
ref. [15] for details). Generally speaking one writes

f ∗ g = f exp
[
κ(
←−
∂ x
−→
∂ p −←−∂ p

−→
∂ x

]
g = f

(
x+ κ

−→
∂ p, p− κ−→∂ x

)
g(x, p) (45)

and {f, g}M = (f ∗ g − g ∗ f)/2κ is the Moyal bracket. This leads to (A80) {f, g}M =
1
κ{f sin[κ(

←−
∂ x
−→
∂ p −←−∂ p

−→
∂ x)]g}. One can also write (using x, t variables and κ ∼ θ/2) (A81)

f ∗ g = m ◦ exp(θP/2)(f ⊗ g); m(f ⊗ g) = fg; P = ∂t ⊗ ∂x − ∂x ⊗ ∂t. Now go to ref. [28] as
developed in ref. [15] where one deals with bicomplexes (BC) M = ⊕r≥0M

r with linear maps
d, δ : M r → M r satisfying (A82) d2 = δ2 = dδ + δd = 0 (note δ is not the standard met-
ric adjoint). In the spirit of Examples 1, 2 one develops zero curvature equations to produce
integrable equations such as KdV and KP.

Example 7. LetM = C∞(R3)⊗Λ2 (Λ2 ∼ ⊕2
0Λ

j) with (A83) df = (ft−fxxx)τ+(1/2)(fy−fxx)ξ
and δf = (3/2)(fy + fxx)τ + fxξ where τ, ξ ∈ Λ1. Deform now (or “dress”) d to Df =
df + δ(vf)− vδ(f) so

Df = [ft − fxxx + (3/2)(vy + vxx)f + 3vxfx]τ + (1/2)(fy − fxx + 2vxf)ξ. (46)

Then the required BC condition D2 = 0 becomes (A84) vxt−(1/4)vxxxx+3vxvxx−(3/4)vyy = 0
which is equivalent to KP for u ∼ −vx. There are also other forms of dressing of one BC to
another while preserving the BC conditions. The underlying ideas here are zero curvature,
cohomology (to get hierarchies), and gauge transformations (involving Seiberg–Witten (SW)
maps – cf. ref. [5, 15]). In particular SW maps preserve zero curvature and e.g. solutions of the
KdV equation determine solutions of a noncommutative KdV (NCKdV) equation in a manner
similar to what happens with the SW map between commutative and noncommutative gauge
theories (cf. ref. [15, 28] for details). Thus take M = C∞(R2) ⊗ Λ2 with τ, ξ ∈ Λ1 satisfying
τ2 = ξ2 = τξ + ξτ = 0. One can then define d, δ on M0 = C∞(R2) and extend by linearity
via d(fτ + hξ) = (df)τ + (dh)ξ for example. Start with (A85) df = −fxxξ + (ft + 4fxxx)τ and
δf = fxξ − 3fxxτ (similar to Example 1). Apply a dressing to d in the form (u = φx)

Df = df + δ(φ ∗ f)− φ ∗ δf = −(fxx + u ∗ f)ξ + (ft + 4fxxx − 6u ∗ fx − 3ux ∗ f)τ (47)

(note ∂x and ∂t are derivations for ∗ which is a product as in (45) based on x, t). The only
nontrivial BC equation is now D2 = 0 and this is equivalent to the NCKdV equation (A86)
ut + uxxx − 3(u ∗ ux + ux ∗ u) = 0. There are many more developments but we stop here.
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