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We describe an investigation method of general equivariant boundary value problem for
PDE of general form in a domain and show how it works for the case of simplest group
O(n,R).

1 Solvability conditions of equivariant expansion

Let Ω ⊂ R
n be a domain, L =

∑
|α|≤m

aα(x)Dα be some arbitrary differential operation with

smooth coefficients aα(x), L+ be a formally adjoint differential operation. Let L0, L+
0 be minimal

operators (i.e., for example, D(L0) is the clozure of C∞
0 (Ω) in the norm of the graph ‖u‖2

L =
‖u‖2

L2(Ω)+‖Lu‖2
L2(Ω)), and L, L+ be maximal expansions of L,L+ in the space L2(Ω) respectively

(i.e. L = (L+
0 )∗, L+ = (L0)∗), L̃ = L|D(L̃) where D(L̃) is the clozure of C∞(Ω̄) in the norm of

the graph ‖u‖L and it is analogous for L̃+.
M.Yo. Vishik introduced the conditions:
V1) the operator L0: D(L0) → L2(Ω) has a continuous left-inverse,
V2) the operator L+

0 : D(L+
0 ) → L2(Ω) has a continuous left-inverse

and proved that
1) these conditions are necessary and sufficient for the existence of a solvable expansion LB:

D(LB) → L2(Ω), (that is D(L0) ⊂ D(LB), ∃ L−1
B : L2(Ω) → D(LB));

2) under conditions V1), V2) for any solvable expansion LB the following decomposition of
the domain D(L) is valid: D(L) = D(L0) + kerL+B, and L: B → kerL+ is an isomorphism.

Let G be some Lie group, smoothly acting in the closed domain Ω̄. It means, that there is
a group of diffeomorphisms Ug: Ω̄ � x → g · x = Ug(x) ∈ Ω̄ of domain Ω̄ onto itself, group,
smoothly depending on an element of G, and mapping g → Ug is a homomorphism of groups.
Thus the contraction of diffeomorphisms Ug on boundary ∂Ω induces a smooth action of group G
on boundary ∂Ω.

The action of group G on domain Ω̄ generates a representation of the group G in function
spaces: (gu)(x) = u(g−1x) (homomorphism of group G into group of converted operators).
Such representation is induced on spaces C∞

0 (Ω), C∞(Ω), Hm(Ω), H−m(Ω), D′(Ω), H(m)(Ω),
H(−m)(Ω) and others. Let the differential operation L be invariant with respect to the action
of group G, that is g(Lu) = L(gu). Then spaces D(L), D(L0), C(L), kerL are invariant with
respect to the action of the group.

If the action of group preserves the volume of the domain Ω then the scalar product in the
space L2(Ω) is invariant with respect to the action of group G, and consequently the represen-
tation of the group G is unitary in this space. In this case the operation L+ is also invariant
with respect to an action of group G, the spaces D(L+), D(L+

0 ), C(L+), kerL+ are invariant.
Boundary value problem

Lu = f, Γu ∈ B, (1)

generated by a subspace B ⊂ C(L) of the boundary space C(L) = D(L)/D(L0) we shall
name G-invariant, if the space B is invariant with respect to the indicated action of group G.
A G-invariant boundary value problem we will name equivariant, if it is clear what group acts.
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If the group G is compact (and is continuous), then, as it is well known, the Hilbert space
of representation is decomposed in the direct sum of finite-dimensional invariant subspaces,
in which the irreducible representations of group G are induced. And if the group is also
commutative, the irreducible representations are one-dimensional.

Let space of a representation of the group G be the boundary space C(L). For the case of
compact group we have decompositions

C(L) =
∞∑

k=0

⊕C̃k, C(kerL) =
∞∑

k=0

⊕Ck(kerL), B =
∞∑

k=0

⊕Bk.

If our G-invariant boundary value problem is well-posed, the decompositions in the direct sum
C(L) = C(kerL) ⊕ B imply decompositions in the direct sum Ck := Ck(kerL) ⊕ Bk =

∑
l

C̃kl

with finite-dimensional projectors Πk: Ck → Ck(kerL) along Bk and now check of the well-
posedness of a G-invariant boundary value problem can be reduced to check of two properties:

1) Ck(kerL) ∩Bk = 0;

2) ∃ κ > 0, ∀ k, ‖Πk‖Ck < κ.

Below we shall study a spectrum of an operator of a general well-posed equivariant boundary
value problem for the Poisson equation in a disk and in a ball, detecting cases of violation of
the well-posedness of the problem, which are expressed in violation of property 1). Thus the
fulfilment of property 2) will be assured by the assumed property of the well-posedness of this
problem for the Poisson equation.

2 Equivariant boundary value problems
for the Helmholtz equation in a disk

Let us conduct evaluations on check of two properties of the well-posedness of a general equivari-
ant boundary value problem in a simplest case. As the group we will choose group of rotations
of the plane SO(2,R). It is compact commutative group.

Let us consider the problem (1), where L = ∆ and L is the maximum operator generated
by the Laplace operator ∆, invariant with respect to the action of rotations group, domain
Ω = K = {x ∈ R

2 | |x| < 1} is the disk. Let us remark, that here we have L = L̃, i.e. each
function fromD(L) can be approximated by smooth functions. Let us assume that this boundary
value problem is G-invariant and is well-posed.

And we study such boundary value problem for the Helmholtz equation

Lλv = ∆v + λ2v = g, Γv ∈ B,

where λ is a complex number. But in the beginning we study the boundary space C(Lλ) of the
Helmholtz operator and its subspace C(kerLλ).

Boundary space consists of some pairs of functions (u|∂Ω, u
′
ν |∂Ω) ∈ H−1/2(∂K)×H−3/2(∂K),

therefore a general boundary condition must have the form

Au|∂K +Bu′ν |∂K = 0

with some operators A, B. The G-invariance of this condition means the commutativity of
operators A and B with all the representation operators. But, as it is well-known, a rotation
invariant linear operator has a form of the convolution with a function. Therefore we will
consider boundary value problems of the type:

α ∗ u|∂K − β ∗ u′ν |∂K = 0,
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where α =
∑
αke

ikτ ; β =
∑
βke

ikτ are functions on the boundary ∂K, ∗ is the convolution on
∂K: α ∗ ψ =

∑
αkψke

ikτ .
The boundary condition for Fourier coefficients of functions u|∂Ω, u′ν |∂Ω from the space B

can be written in the form

∀ k ∈ Z, αkak + βkbk = 0. (2)

Let us designate by Ck an image of an enclosure Ik: C
2 → C(L) acting by a rule Ik: (a, b) →

(aeikτ , beikτ ). The boundary problem sets a subspace B of the space C(L), which, as we see,
intersects each space Ck in a straight line. The well-posedness of our problem, i.e. expansion in
the direct sum C(Lλ) = B ⊕ C(kerLλ), means now that

∃ A > 0, ∀ k ∈ Z, | sin(Bk, Ck(kerLλ))| > A,

i.e.

∀ k, |βkλJ
′
k(λ) − αkJk(λ)|√|λJ ′
k(λ)|2 + |Jk(λ)|2 > A > C at λ �= 0

and
|kβk − αk|√
k2 + 1

> A > 0 at λ = 0.

Proposition 1. The problem (2), which is well-posed for the equation ∆u = g, is well-posed for
the equation ∆u+ λ2u = g at λ �= 0 if and only if the following condition holds

∀ k, |kβkJ
1
k (λ) − αkJ

2
k (λ)| �= 0.

Proposition 2. Spectrum of the operator of well-posed boundary value problem (2) for the
equation ∆u = g is a set ∪

k
Σk, where Σk is the set of proper values of a form −λ2 and λ runs

all zeros of the equation

βkλJ
′
k(λ) − αkJk(λ) = 0 at λ �= 0. (3)

Proposition 3. Spectrum of the operator of well-posed boundary value problem (2) for the
equation ∆u = g is finite-to-one.

Proposition 4. Every well-posed G-invariant boundary value problem for the Poisson equation
is quite correct, i.e. its solving operator is compact.

Propositions concerning the same equation on n-dimensional ball have similar formulations
but the equation (3) has the following form:

β1
l λJ

′
ν+l(λ) − β1

l νJν+l(λ) − α1
l Jν+l(λ) = 0,

where ν = n
2 − 1, l ∈ N ∪ 0.

And the corresponding equivariant boundary value problem must have the following form:

u|∂Ω ∗ α+ u′ν̄ |∂Ω ∗ β = 0,

where α =
∞∑
l=0

∑
k

αk
l H

k
l , β =

∞∑
l=0

∑
k

βk
l H

k
l are functions on sphere Sn−1, which are decomposed

in Fourier series, ∗ is convolution on ∂Ω: ψ ∗ α =
∞∑
l=0

∑
k

ψk
l α

1
lH

k
l , what means, in particular,

that we can omit tesseral (not zonal) parts in decomposition α and β.
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