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We suggest an approach for description of integrable cases of the Abel equations using the
procedure of increasing the order and equivalence transformations for the induced second-
order equations.

A diversity of methods were developed to date for finding solutions of nonlinear ordinary
differential equations (ODE). Everybody who encounters integration of a particular ODE uses,
as a rule, the accumulated databases (or reference books) of the classes of ODE and methods for
their integration (e.g. [12, 19]). But if an ODE does not belong to any of the described classes
then it does not mean that there is no approaches for finding solutions of this ODE in the closed
form.

The symmetry approach is one of the most algorithmic approaches for integration and lowe-
ring of the order of ODE that admit a certain nontrivial symmetry (see e.g. Lie’s book [13],
the books [10, 17, 18] and review papers [10, 25]). In the framework of the symmetry approach
(and its modifications) it is possible to obtain many of the known classes of integrable ODE.
However, the needs of the applications stimulate new research into development of new methods
for construction of ODE solutions in the closed form. The papers [2–10,14–16,18–25] may give
an idea of current developments and directions of research in the field of symmetry (algebraic)
methods for investigation of ODE.

In this paper we study Abel equations of the first and the second kind [1, 12,19]

ṗ = p3f4(y) + p2f3(y) + pf2(y) + f1(y), (1)

ṗ(p + f0(y)) = p3f4(y) + p2f3(y) + pf2(y) + f1(y), (2)

where p = p(y), ṗ = dp
dy , fi, i = 0, . . . , 4, are arbitrary smooth functions (with f1, f2, f3, f4 not

identically vanishing simultaneously). Equations (1), (2) along with the Riccati equation are
among the “simplest” nonlinear first-order ODE that have extensive applications. At the same
time the problem of description of integrable classes of these equations stays within the focus of
current research, and was previously considered in many papers (see e.g. [5–8,16,19,20,22–24].

Note that the Abel equations of the first and the second kind (1), (2) are related with each
other by a local change of variables (namely, the equation (2) can be reduced to the form (1)
by means of the change of variables p = 1/v(y)− f0). Besides, the well-known Riccati equation
is a partial case of equation (1).

The problem of finding Lie symmetries for the first-order ODE is equivalent to finding so-
lutions for these equations, and for this reason the direct application of the Lie method is
complicated in the general case. On of the well-known approaches in the cases when for a given
ODE it is not feasible (or not effective) to apply the Lie method directly, is increasing of the
order of the ODE under consideration (in particular, to obtain a second-order ODE related to
the respective ODE by a change of variables). For examples of utilisation of such approach we
can refer to papers [2–6,9,14–16]. In such cases, if the “induced” equation of a higher order ad-
mits a non-trivial Lie symmetry (that generated a non-local symmetry for the initial equation),
we can speak of so-called hidden symmetries for an initial equation (for more details see [2–4]).
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Further we will consider the following second-order ODE

ÿ = ẏ4f4(y) + ẏ3f3(y) + ẏ2f2(y) + ẏf1(y), (3)

ÿ(ẏ + f0(y)) = ẏ4f4(y) + ẏ3f3(y) + ẏ2f2(y) + ẏf1(y), (4)

where y = y(x), ẏ = dy
dx , ÿ = d2y

dx2 , related to the Abel equations (1) and (2).
The substitution ẏ = p(y) reduces equations (3) and (4) respectively to the Abel equations (1)

and (2) (reduction of the order for equations (3) and (4)). Such reduction is induced by the
Lie operator X1 = ∂x (that corresponds to invariance of equations (3) and (4) with respect
to translations by the variable x). This is exactly the fact that explains why we consider
equations (3) and (4).

In the case when (3) or (4) are invariant with respect to another operator (that is when (3)
or (4) admit two-dimensional Lie algebras), then equations (3) and (4) are integrable in the
framework of the Lie approach. And in this way we can obtain exact solutions of the equations (1)
and (2) respectively.

Further we will consider only the equation (4) (since equations (1)–(4) are interconnected –
see Remark 3). Let (4) admit a two-dimensional Lie algebra

L = 〈X1, X2〉, X1 = ∂x, X2 = ξ(x, y)∂x + η(x, y)∂y. (5)

We will consider a problem of description of inequivalent equations (4) that are invariant
with respect to two-dimensional Lie algebras of the form (5) (non-equivalent realisations of the
operator X2 in the algebra (5) will determine canonical representatives for equation (4)).

It is well-known that any two-dimensional Lie algebra in the general case, by means of
choosing the basis operators X1 and X2 in an appropriate manner, may be reduced to four
nonequivalent cases (see e.g. [13,17]). In the framework of our problem additional cases arise as
we have fixed the form of the operator X1.

So, it is quite straightforward to show that equation (4) may admit a two-dimensional Lie
algebra (5) only of one of the following types:

1. [X1, X2] = 0, rank L = 1;
2. [X1, X2] = 0, rank L = 2;
3. [X1, X2] = X1, rank L = 1;
4. [X1, X2] = X1, rank L = 2;
5. [X1, X2] = X2, rank L = 1;
6. [X1, X2] = X2, rank L = 2. (6)

Further, utilising classification of two-dimensional algebras (6), we obtain that equation (4)
may admit only the following realisations of two-dimensional Lie algebras (5):

1. X1 = ∂x, X2 = ξ(y)∂x, ξ(y) �≡ const;
2. X1 = ∂x, X2 = ξ(y)∂x + η(y)∂y,

ξ(y) �≡ const or ξ(y) ≡ 0, η(y) �= 0;
3. X1 = ∂x, X2 = (x + ξ(y))∂x, ξ(y) �≡ const or ξ(y) ≡ 0;
4. X1 = ∂x, X2 = (x + ξ(y))∂x + η(y)∂y,

ξ(y) �≡ const or ξ(y) ≡ 0, η(y) �= 0;
5. X1 = ∂x, X2 = exξ(y)∂x, ξ(y) �≡ 0;
6. X1 = ∂x, X2 = ex(ξ(y)∂x + η(y)∂y), η(y) �= 0. (7)
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It is clear that using these realisations we can describe equations of the form (4) that are
invariant with respect to two-dimensional Lie algebras (similarly as we have discussed in [22]).
However, this way is too cumbersome, and thus obtained types of equations (4) will be quite
complicated (functions fi, i = 0, . . . , 4 in (4) will be expressed through coefficients of the opera-
tor X2 from realisations (7)).

It is straightforward to show that the most general transformations that preserve the form
of the operator X1 we look as follows:

t = x + ω(y), u = g(y), (8)

where ω(y), g(y) are arbitrary smooth functions, g(y) �≡ const.
After substitution (8) equation (4) takes the form

ü((1 − ω′f0)u̇ + f0g
′)g′2 =

(
f4 − ω′′(1 − ω′f0) − ω′f3 + ω′2f2 − ω′3f1

)
u̇4

+
(
g′f3 − ω′′g′f0 + g′′(1 − ω′f0) − 2ω′g′f2 + 3ω′2g′f1

)
u̇3

+
(
g′2f2 + g′′g′2f0 − 3ω′g′2f1

)
u̇2 + f1g

′3u̇, (9)

where ω′ = dω
dy , ω′′ = d2ω

dy2 , g′ = dg
dy , g′′ = d2g

dy2 (in addition in (9) all functions of the variable y

should be expressed as functions of the variable u).
With (1 − ω′f0) �≡ 0 equation (9) belongs again to the class of equations (4).

Remark 1. With (1 − ω′f0) ≡ 0 after the substitution (8), equation (4) is transformed to the
equation (3), that is reduced to the Abel equation of the first kind (1).

Remark 2. It is possible to regard that (1 − ω′f0) �≡ 0 for the equation (4) as a result of the
substitution (8) (we attain that by combination of transformations (8)).

Thus (8) are equivalence transformations for (4), and, besides, these transformations preserve
the form of the operator X1 = ∂x in the algebra (5).

Remark 3. So, the transformations (8) are equivalence transformations for the class of equations
(3)–(4). Moreover, if we prolongate these transformations for u̇ = p then these transformations
form an equivalence transformation group for (1)–(2).

Thus, by means of transformations (8), realisations (7) of the algebra (5) may be reduced to
the simplest canonical form. The transformations (8) in that process will not take us out of the
class of equations (4).

By means of transformations (8) the realisations (7) of two-dimensional Lie algebras (5)
admitted for equation (4) are reduced to the following canonical realisations:

1. X1 = ∂x, X2 = y∂x;
2. X1 = ∂x, X2 = ∂y;
3. X1 = ∂x, X2 = x∂x;
4. X1 = ∂x, X2 = x∂x + y∂y;
5. X1 = ∂x, X2 = ex∂x;
6. X1 = ∂x, X2 = ex(∂x + ∂y). (10)

In accordance to (10) we obtain the following integrable cases for equation (4) that are non-
equivalent with respect to (8):

1. ÿ = α(y)ẏ3;
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2. ÿ(ẏ + e) = dẏ4 + cẏ3 + bẏ2 + aẏ;

3. ÿ = α(y)ẏ2;

4. yÿ(ẏ + e) = dẏ4 + cẏ3 + bẏ2 + aẏ;

5. ÿ(ẏ + β(y)) = α(y)ẏ3 + (1 − α(y)β(y))ẏ2 − β(y)ẏ;
6. a) f0 = 0 :

ÿ = deyẏ3 + (−3dey + c)ẏ2 + (−dey − (2c + 1) + be−y)ẏ

+ (−dey + (c + 1) − be−y + ae−2y);
b) f0 �= 0 :

ÿ(ẏ + α(y)) = −ẏ3 + (1 − α(y))ẏ2 + α(y)ẏ, (11)

where α(y), β(y) are arbitrary smooth functions, a, b, c, d, e are constants.
The case 6a in (11) may be simplified by means of the substitution t = x, u = ey (see (8)

and (9)).
Equations (11) determine non-equivalent cases of the form (4) that admit two-dimensional

algebras (10) up to equivalence transformations (8).
Thus, summarising the above, we come to the following scheme for integration of the Abel

equation (2):

• we increase the order of equation (2), considering a second-order equation (4);

• if a corresponding equation (4) admits a two-dimensional Lie algebra, then we reduce
this algebra to one of the canonical forms (10), and thus the equation is reduced to the
respective canonical forms (11);

• we integrate the canonical form (11);

• making reverse changes of variables we obtain the solution of the Abel equation (2).

It is obvious from the above that there is an alternative way for generation of new integrable
cases of the Abel equation based on utilisation of the relation between the Abel equations of
the first and the second kind, and relation between the equations (3) and (4) by means of
the transformations (8). Thus, starting from some integrable Abel equation (that is of such
equation for which the solution is known) it is possible to obtain new integrable cases of the
Abel equations (solutions of these equations will be related through transformations (8)). It
would be possible to use for this purpose even the well-known Riccati equation that is a partial
case of the equation (1) (for generation of integrable Riccati equations an approach that is
proposed in [20] may be used).

We hope that new results for classification of integrable classes of ODE may be obtained also
using our classification of inequivalent realizations of real low-dimensional Lie algebras [21].
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