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Asymptotic Irrelevance of the KdV Hierarchy
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All the equations of the KdV hierarchy share many common features, like single and multiple
soliton solutions, singular algebraic potentials, etc.; in particular the phase shifts for soliton-
soliton scattering are all the same in the chain KdV1, KdV2, etc., depending only on the
momenta. We exhibit the reason for this behaviour: as these equations are originated as
isopectral deformations of the Schrödinger equation in one dimension, the above features are
really properties of the Schrödinger operator, and the different KdV equations just prescribe
different “speeds”, given by the dispersion law, for reaching the asymptotic regime. In
particular, we show how the “interaction” is sum of two-body forces, what is the key for the
solubility of these equations in the first place, and then calculate the phase shifts from inverse
scattering (as a double-Darboux factorization), obtaining the known result, independent of
the hierarchy, without ever using any of the KdV equations. We also obtain the Hirota
formula for N solitons as a Wronskian, by creating them one by one from the u(x) = 0
potential.

1 Isospectral problem for finite matrices

Consider a Hermitian n×n matrix M and an automorphism M → M#; as in any mathematical
category, we are interested in the orbit M/{Aut}. Now in a complete matrix algebra any
automorphism is inner, that is

M → M# = UMU−1 (1)

with U unitary to preserve Hermiticity. The spectrum of M , SpecM , is preserved, and we call
it a hard datum. The orbit of a prefixed M is

{M} = U(n)/(isotropy subgroup for M) ≡ U(n)/H(M); (2)

e.g. if Spec M is nondegenerate, that is for a generic M ,

H(M) = U(1) × · · · × U(1) and {M} = Flag manifold = U(n)/(U(1)n). (3)

So a generic Hermitian matrix is characterised by n different real numbers, the Spectrum, the
hard datum, which is deformation invariant and n2−n real numbers, variable under deformation,
which specify the Orientation of M , and constitute the soft datum. The isospectral deformation
changes the orientation but maintains the spectrum; it translates the matrix along the flag
manifold.

At any moment the spectrum is retrieved from the powers of traces of the matrix by

Ik = (1/k) Tr Mk, (4)

i.e. c1 :=
∑

λi = I1, c2 :=
∑
i<j

λiλj = I2
1/2 − I2, etc., where ci are the elementary symmetric

polynomials on the eigenvalues. Alternatively the spectrum is given by the poles of the resolvent

Res M(λ) = [M − λ]−1. (5)

In the following we apply this analysis to the Schrödinger operator as a (infinite dimensional
local) Hermitian operator.
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2 Hard and soft data for the Schrödinger operator

Consider the Schrödinger equation on the real line R; the operator is

H = −D2 + u(x), (6)

where x ∈ R, D ≡ d/dx, and u(x) is a real function decaying “fast enough” at x → ±∞.
There are three differences with the above finite case: infinite dimension, presence of continuous
spectrum, and differential operator (the most general operator would be an integral operator).
The data for the Discrete Spectrum are the bound states

HΨj(x) = EjΨj(x), Ej < 0, j : 1, 2, . . . , N, N + 1 ∈ N. (7)

For x → +∞

Ψj(x) → cj exp(−κjx), ‖Ψ‖ = 1, κ2
j = −Ej . (8)

The eigenvalues Ei are the (discrete) hard data; the norming constants cj localise the bound
states; there are position (soft data), not spectral data. Note we take normalised discrete
eigenfunctions.

Continuous Spectrum. It is contained in the S-matrix, which in our 1D case is a 2 × 2
matrix: we have forward/backward amplitudes for the direct and the zurdo scattering (zurdo
or ˆ: incoming particle form the right):

S(k) =
(

t(k) b(k)
b̂(k) t̂(k)

)
, k ∈ [0,∞). (9)

Our potential is real so time reversal holds; hence t(k) = t̂(k); also by causality t(k) is related to
the discrete spectrum [1]; hence the forward amplitude is a hard datum, as part of the spectral
density. There are also restrictions coming from the unitarity of S:

S†S = 1 = SS† ⇒ |t|2 + |b|2 = |t̂|2 + |b̂|2 = 1,

Arg t + Arg t̂(= 2Arg t) − Arg b − Arg b̂ = π. (10)

Hence the argument of either reflected amplitude (say, in direct scattering) is the soft datum for
the continuous spectrum. Hence the complete data for the Schrödinger operator are

κj(j : 1, . . . , N) and |b(k)| are hard data, fixed by SpecH,

cj and Arg b(k) are soft data, fixed by the Orientation of H.

In particular κj and |b(k)| fix the spectral density. It is to be remarked that the natural “ob-
servables”: energies Ej and scattering coefficients σ+ = |t(k) − 1|2 and σ− = |b(k)|2 are hard
data.

3 Inverse problem

We just recall the usual procedure to recover the potential from the scattering data, cf. e.g. [2].
There are three steps:

1) Fourier transform of the total (soft + hard) data:

B(x) ≡ 1
2π

∫
b(k) dk exp(ikx) +

∑
j

c2
j exp(−κjx). (11)
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2) Solve for the kernel K(x, y) in the Marchenko integral equation

K(x, z) + B(x + z) +
∫ ∞

x
K(x, y)B(y + z)dy = 0. (12)

3) Retrieve the potential by

u(x) = −2Kx(x, x), where Kx ≡ dK/dx. (13)

Notice the solution is complete, i.e. we recover the full potential, and hence both the hard
and the soft data are used. For example, for the solitonic potentials (defined as reflectionless
potentials by b(k) ≡ 0 ), it is

u(x) = −2
(
d2/dx2

)
log detA, (14)

where

Amn = δmn + c2
n[exp−(κm + κn)x]/(κm + κn), (15)

where the discrete spectrum data κj , cj are given arbitrarily, subject only to all eigenval-
ues κj different. For example for N = 1 {κ, c} we recover the one soliton potential u(x) =
−2κ2 sech2κ(x − x0), where E = −κ2 and c =

√
2κ exp(κx0).

The exponential part in (15) is related to the soliton scattering phase shift for any of the
KdV hierarchy equations (see later); we have approached it here from inverse scattering theory,
with no reference to the hierarchy at all! (15) was first obtained by Kay and Moses [3] from
inverse scattering and later by Hirota [4] from his bilinear method. We shall obtain it below
also by the Darboux method.

4 General isospectral problem

We know that the KdV equations are isospectral evolution equations; hence, their solutions
u(x) = u(x, t = 0) → u(x, t) are a particular case of the general isospectral problem. It is
this: given a potential u(x), find the most general potential v(x) with the same hard data. The
formal solution of the inverse problem sketched above allows us to set and solve, in principle,
the general isospectral problem: There are again three steps:

1) Solve the direct problem for u(x): find

κj , cj , |b(k)| and Arg b(k). (16)

2) Change arbitrarily the soft data cj and Arg b(k).
3) Solve the inverse problem from the new c and b(k).
Then the new potential v(x) is the most general potential strictly isospectral to u(x).
Some restrictions apply: for example, the new b(k) has to be “nice”, i.e. to admit Fourier

transform guaranteeing that the new potential v(x) falls off at infinity fast enough. Also cj have
to be positive (by an initial convention).

From the above it is clear that the KdV equations realize part of this program; before seeing
it in detail, let us consider the simplest case: to obtain the most general potential isospectral to
the standard one-soliton potential

u(x) = −2 sech2(x); (17)

it has a single bound state with κ = 1, c =
√

2 and it is reflectionless, b(k) = 0. To change
the soft data means just to change

√
2 to an arbitrary c; then the inverse method produces

inmediately

v(x) = −2 sech2(x − x1), with x1 = log
(
c/
√

2
)
. (18)
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The only effect on the potential is just a traslation of the “well”, where the soliton is located.
We shall see now that two methods: the Double Darboux method (DD) and the KdV hierar-

chy are equivalent to finding deformed isospectral potentials in somewhat complementary ways
from a given potential. We first dispose of the DD method [5].

In the simplest application of the DD method one kills the ground state and reinserts it in
another “position”; therefore, it changes only the first norming constant c1. The procedure is
constructive, i.e. the new ground state wavefunction is calculated completely from the original
one (see e.g. [6]):

Ψ(x, λ) = Ψ(x)/[1 + λ

∫ x

−∞
Ψ2(x) dx], (19)

and therefore the new norming constant is (as ‖Ψ‖ = 1)

c′1 = c1/(1 + λ). (20)

The iterated DD method repeats the process changing simultaneously the positions of two
or more arbitrary bound states (by killing and reinstating them somewhere else), and leaving
the phases of the reflection amplitudes unchanged. The procedure can be always implemented
(and indeed, not only for fast-decaying potentials), and the solutions are also algebraic, but the
procedure is cumbersome and tedious!

The original method was devised by Darboux (1882) [5] to relate linear differential operators,
not necessarily of second order. The general application to solutions of the Schrödinger equation
was found by Abraham and Moses (1980) [6], Mielnick (1984) [7] and others.

5 The KdV hierarchy

The Korteweg–de Vries equation (KdV = KdV1) was discovered in 1895 as an equation exhibit-
ing soliton behaviour, and the hierarchy KdVn was first presented by P. Lax (1968) [8]. The time
evolution of the solutions of the equations of the KdV hierarchy, u(x) → u(x, t) represents the
isospectral change of the Hamiltonian of the Schrödinger equation by an uniparametric group
of automorphims whose generator is polynomial in the derivatives.

In the beautiful exposition of Lax (1970) [8], we have

H → H(t) = U(t)HU−1(t). (21)

Define B(t) by B(t) = (dU(t)/dt)U−1(t). Then

Ht = [B, H], ut = K[u], and Ψt = BΨ (22)

with at = ∂a/∂t throughout. Then the first equation defines the problem (i.e., to find B). The
second equation is the Non-Linear evolution equation (KdV hierarchy). The third equation is
important for the evolution of the scattering data.

The KdV hierarchy obtains solving for B order by order in derivatives:
B = D: The equation is ut = ux; the chiral wave equation.
B = D3 + {u, D}. The equation is, of course

ut = 6uux − uxxx, (Korteweg–de Vries, 1895) (23)

with a cubic dispersion law. There are at least one equation of each odd order of dispersion; for
systematics we just write the (natural) quintic equation [9]

ut = −30u2ux + 20uxuxx + 10uuxxx − uxxxxx. (24)
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The key point why these hierarchical equations can be solved inspite of being partial and non-
linear is that the scattering data of the potential change with the linear part of the operator B
only, which has the highest derivative: the rest is function of the potential u, and goes to zero
faster, as u itself decays fast.

Let us interpret the evolution in the original KdV equation, with cubic dispersion law, as an
one-parameter isospectral deformation; at time t (=deformation parameter), the hard data are
of course invariant:

κj(t) = κj(0), |b(k, t)| = |b(k, 0)|, (25)

but the soft data evolve in a simple manner:

cj(t) = exp
(
4κ3

j t
)
cj(0), b(k, t) = exp

(
8ik3t

)
b(k, 0), (26)

i.e. the “bumps” of the bound state wavefunctions move all harmonically, and only the phase of
the reflected amplitudes changes. As it is expected, the other equations in the KdV hierarchy
just trade, as far as soft data are concerned, the cubic “3” of KdV1 for any greater odd number.

It is interesting the comparison of the Double Darboux method and the KdV solutions for
new potentials:

– In the DD method, we change one position of the discrete spectrum at a time arbitrarily.
– With the KdV equations, we change all the soft data with a particular dispersion law.

6 Irrelevance of the KdV hierarchy

It is common lore that the “nonlinear” character of the KdV equations is the agent responsible for
the phase shift in soliton-soliton scattering; the shift is obtained from the asymptotic behaviour,
of course; now the motion of the solitons through space means the centers xi (or the norming
constants ci) move with a particular dispersion law, but of course they are irrelevant at the
asymptotic limit: initial xi → −∞, final xi → +∞. We conclude, therefore, that the phase shift
is a hard datum; hence, we should be able to get it directly from the Schrödinger equation; this
we show next, limiting ourselves to the case of two solitons.

To create two arbitrary solitons we use the direct Darboux method twice starting from the
u(x) = 0 solution, the vacuum [10]. The procedure is well known, so we just quote some formulas
and results:

Take the E1 = −κ2
1, unphysical solution φ1(x) = cosh κ1(x − x1). Factorize H − E1 = A†A,

where A = D + W ′ = φ1 · D · φ−1
1 with φ1(x) = exp(−W ). The new, first step potential is

v1(x) = −2κ2
1 sech2(x − x1). (27)

To create the second solution, with E2 < E1, take now the free solution φ2(x) = sinhκ2(x−x2),
which becomes a zeroless unphysical solution of the first step potential by

φ̃2(x) = Aφ2(x) = (D − tanhκ1(x − x1))φ2(x) = φ1 · D · φ−1
1 φ2(x). (28)

The new potential is now

v2(x) = −2D2 log φ1(x) − 2D2 log φ̃2(x) = −2D2 log W (φ1(x), φ2(x)), (29)

where W is the Wronskian W = φ1(x)φ′
2(x) − φ2(x)φ′

1(x).
This is an exact solution of the two soliton potential; to compute the phase shift we let now

x2 → −∞ and compare the new center of the remaining (original) soliton x′
1 with the original x1;

the phaseshift is twice this value times κ1 (as Φ is dimensionless): as the second soliton is created
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at x = −∞, the first gets repelled and moves a distance x′
1 − x1: when the bigger soliton moves

to +∞, the old one recedes to −x′
1 − x1.The messy algebra leads to a well known expression

(recall κ2 > κ1)

Φ = log(κ2 + κ1)/(κ2 − κ1) (30)

checked numerically (it is enough to take κ1 = 1, and x1 = 0). The second soliton repels the
first by a sort of exclusion principle: the bound eigenvalues of the Schrödinger equations are
nondegenerate, hence κ1 = κ2 would lead to an infinite phase shift, and “by continuity” we
get (30); writing it in the form

Φ = 2 Arg tanh(κ1/κ2) (31)

looks like a very common formula is scattering theory (with arc tan instead; recall κ is like an
imaginary wavenumber; our shift is not really a phase shift, as it is not periodic; it is more
a space (vs time) delay). For instance, scattering for a point impurity of strength g produces an
even phase shift [11] tg δ+ = g/k.

Formula (30) is of course obtained from the KdVn equations: the generalization for n solitons
leads, from KdV, to the Hirota formula [4]; in our method we get directly the Wronskian for
n independent E < 0 free solutions; the identity of the Kay–Moses & Hirota formula with the
Wronskian we leave to the reader to check; for this is essential to use the affine invariance of the
equation (14), namely detA = det BA, where B is a column matrix with entries exp(aix + bi),
up to terms which die in calculating the potential.

Notice also the full n-soliton interaction is sum of independent two-body “forces”, which
accounts for the completely solubility of the system.

7 Singular solutions

We can see also how many special solutions, common to all KdV hierarchy equations, are
obtained directly by the Darboux method starting again from the u(x) = 0 potential. For
example, the first step of the u(x) = 0, E = 0 solution φ(x) = ax + b produces the centrifugal
potential

u(x) = +2/(x − x1)2 (32)

which is also a rational solution of KdV. Iteration with the φ2(x) = x2 solution produces e.g.

u(x) = 6x
(
x3 − 24x1

)
/
(
x3 + 12x1

)2 (33)

which again is a rational solution of KdV (with t = x1) (cf. [9]).

8 Final remarks

Soliton properties, including scattering, are really properties of the Schrödinger operator. In par-
ticular, the one-soliton potential is just the partner potential to the vacuum potential u(x) = 0
doubled by the (unphysical, negative energy) solution φ(x) = cosh(x). The iteration, always
with negative energy, will produce the most general multi-soliton solution at any x, hence should
reproduce the phase shifts, as we checked for the two soliton case; solitons “forces” are exclusively
the effect of non-degeneracy of the normalizable eigenfunctions.

As the solitons move in one direction only, they behave as chiral fields. In the Lagrangian
formulation, these chiral fields are rather peculiar, because the space of potentials {u} (or rather
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of the integrals ϕ =
∫

u, which is what enters in the local Lagrangian) is already the phase space,
not the configuration space. This implies, in particular, that in the quantum version the solitons
should behave like fermions (Jackiw proved this directly for the chiral, KdV0 case [12]). This
fermi character is a translation, we believe, of the purely classical effect: namely two solitons
of close wavenumber cannot superpose (P. Lax), reflecting the case that for equal wavenumber
they should be at infinite distance, because the Schrödinger equation does not allow degeneracy
in the bound states in one dimension.

We believe also that upon quantization these solitons should behave like nonrelativistic
Majorana–Weyl fermions, reflecting the “chiral” behaviour of the classical counterpart. But
we have not looked carefully yet to the quantization problem.
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