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The work is devoted to the generalization of the Dirac equation for a flat locally anisotropic,
i.e. Finslerian space-time. At first we reproduce the corresponding metric and a group of
the generalized Lorentz transformations, which has the meaning of the relativistic symmetry
group of such event space. Next, proceeding from the requirement of the generalized Lorentz
invariance we find a generalized Dirac equation in its explicit form. An exact solution of the
nonlinear generalized Dirac equation is also presented.

1 Introduction

In spite of the impressive successes of the unified gauge theory of strong, weak and electromag-
netic interactions, known as the Standard Model, one cannot a priori rule out the possibility that
Lorentz symmetry underlying the theory is an approximate symmetry of nature. This implies
that at the energies already attainable today empirical evidence may be obtained in favor of
violation of Lorentz symmetry. At the same time it is obvious that such effects might manifest
themselves only as strongly suppressed effects of Planck-scale physics.

Theoretical speculations about a possible violation of Lorentz symmetry continue for more
than forty years and they are briefly outlined in [1]. Nevertheless we note here that, along
with the spontaneous breaking [2], one of the first and, as it appeared subsequently, fruitful
ideas relating to a possible violation of Lorentz symmetry was the idea [3] according to which
the metric of event space differs from Minkowski metric and the physically equivalent inertial
reference frames are linked by some transformations which differ from Lorentz ones. In [4]
such transformations were called generalized Lorentz transformations. Note also that the idea
about the existence of generalized Lorentz transformations was suggested in connection with the
situation in the physics of ultra-high energy cosmic rays, namely, with the absence of the Greisen–
Zatsepin–Kuz’min effect (the so-called GZK cutoff) predicted [5,6] on the basis of conventional
relativistic theory. The absence of the GZK cutoff has yet not been explained convincingly and
still remains the main empirical fact which indirectly speaks in favor of violation of Lorentz
symmetry.

Interest in the problem of violation of Lorentz and CPT symmetries has revived in recent
years [7] in connection with the construction of a phenomenological theory reffered to as the
Standard-Model Extension [8].

In the present work, which is in essence devoted to the same problem, we proceed from the
assumption [9] that phase transitions with breaking of gauge symmetries should be accompanied
by phase transitions in the geometric structure of space-time.

Our study is based on the fact [10] that the Lorentz symmetry is not the only possible realiza-
tion of the relativistic symmetry. Another admissible realization of the relativistic symmetry is
obtained with the aid of nonunimodular matrices belonging to a group of the generalized Lorentz
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transformations. In contrast to the conventional Lorentz transformations, the generalized ones
conformally modify Minkowski metric but leave invariant the corresponding Finslerian metric
which describes a flat locally anisotropic space-time. Thus, from the formal point of view the
locally anisotropic space-time appeares as the necessary consequence of the existence of a group
of the generalized Lorentz transformations. As for the physical nature of the anisotropy, there are
some reasons to suppose that a fermion-antifermion condensate, which may arise [11] (instead of
elementary Higgs condensate) in the spontaneous breaking of initial gauge symmetries, turns out
to be anisotropic and its anisotropy determines the local anisotropy of event space. Obviously,
verification of this hypothesis is far from being trivial. Therefore the opening investigations in
this direction, as presented here, are aimed at the most fundamental problem, namely, at the
generalization of the Dirac equation for the locally anisotropic space-time.

2 Flat locally anisotropic space-time as a geometric invariant
of a group of the generalized Lorentz transformations

Consider the metric [4] of a flat locally anisotropic space-time

ds2 =
[
(dx0 − νdx)2

dx2
0 − dx2

]r (
dx2

0 − dx2
)
. (1)

Being not a quadratic form but a homogeneous function of the coordinate differentials of degree
two, this metric falls within the category of Finsler metrics [12]. It depends on two constant
parameters r and ν, in which case the unit vector ν indicates a preferred direction in 3D space
while r determines the magnitude of space anisotropy, characterizing the degree of deviation
of the metric (1) from the Minkowski metric. Thus the anisotropic event space (1) is the
generalization of the isotropic Minkowski space of conventional special relativity theory.

The 3-parameter noncompact group of the generalized Lorentz transformations, which leave
the metric (1) invariant, appears as

x′i = D(v,ν)Ri
j(v,ν)Lj

k(v)xk, (2)

where v denotes the velocities of moving (primed) inertial reference frames; the matrices Lj
k(v)

represent the ordinary Lorentz boosts; the matrices Ri
j(v,ν) represent additional rotations of

the spatial axes of the moving frames around the vectors [v ν] through the angles

ϕ = arccos

{
1 −

(
1 −√1 − v2/c2

)
[vν]2

(1 − vν/c)v2

}

of relativistic aberration of ν; and the diagonal matrices

D(v,ν) =

(
1 − vν/c√
1 − v2/c2

)r

I,

the additional dilatational transformations of the event coordinates. The structure of the trans-
formations (2) ensures the fact that in spite of a new geometry of event space the 3-velocity
space remains Lobachevski space.

With the inclusion of the 1-parameter group of rotations about ν and of the 4-parameter
group of translations the inhomogeneous isometry group of the Finslerian event space (1) turns
out to have eight parameters. If the third spatial axis is chosen along ν, then its generators can
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be written as

X1 = − (x1p0 + x0p1

)− (x1p3 − x3p1

)
,

X2 = − (x2p0 + x0p2

)
+
(
x3p2 − x2p3

)
,

X3 = −rxipi −
(
x3p0 + x0p3

)
,

R3 = x2p1 − x1p2; pi = ∂/∂xi.

These generators satisfy the commutation relations

[X1X2] = 0, [R3X3] = 0,
[X3X1] = X1, [R3X1] = X2,
[X3X2] = X2, [R3X2] = −X1;
[pipj ] = 0;
[X1p0] = p1, [X2p0] = p2, [X3p0] = rp0 + p3, [R3p0] = 0,
[X1p1] = p0 + p3, [X2p1] = 0, [X3p1] = rp1, [R3p1] = p2,
[X1p2] = 0, [X2p2] = p0 + p3, [X3p2] = rp2, [R3p2] = −p1,
[X1p3] = −p1, [X2p3] = −p2, [X3p3] = rp3 + p0, [R3p3] = 0.

As one can see the 8-parameter inhomogeneous isometry group of the space-time (1) is a sub-
group of the 11-parameter extended Poincaré (similitude) group [13] whereas the homogeneous
one is isomorphic to the corresponding 4-parameter subgroup (with the generators X1, X2,
X3|r=0, R3) of the homogeneous Lorentz group. It is shown in [14] that the 6-parameter homoge-
neous Lorentz group has no 5-parameter subgroup while the 4-parameter subgroup is unique (up
to isomorphisms). Thus, the transition from Minkowski space to the Finslerian event space (1)
implies a minimum of symmetry-breaking of the Lorentz symmetry. However the relativistic
symmetry is maintained in the form of the generalized Lorentz symmetry.

3 Covariant formulation of the theory.
Generalized relativistic point mechanics

Because of nonunimodularity of the matrices Li
k = DRi

jL
j
k representing the generalized Lorentz

transformations (2), the transformational properties of some geometric entities turn out to be
changed as compared with conventional special relativity theory. For instance, a 4-volume el-
ement dx0d3x is no longer invariant but is a scalar density of weight −1, i.e., it transforms as
follows: dx′0d3x′ = J−1dx0d3x, where J is the Jacobian, J = |∂xk/∂x′j | = |L−1k

j | = D−4.

Similarly, matrices ηik and ηik having the identical forms ηik = diag (1,−1,−1,−1) and ηik =
diag (1,−1,−1,−1) in all frames of reference related by the transformations (2) are no longer
invariant tensors but are, respectively, a covariant tensor density of weight −1/2 and a contravari-
ant tensor density of weight 1/2. This statement signifies that η′ik = J−1/2L−1l

iL−1m
k ηlm = ηik

and η′ik = J1/2Li
lLk

mη
lm = ηik. Then it is clear that ηikη

kl = δl
i is a unit tensor. Later on we

shall be using ηik and ηik to lower and raise indices. The process, however, will be accompanied
by a change in weight. We shall be also in need of an entity νi which indicates a preferred direc-
tion in 4D space-time and whose components have the same values,

{
ν0 = 1,ν

}
, in all frames of

reference related by the transformations (2). It is easy to verify that ν′i = J (1+r)/(4r)Li
kν

k = νi,
i.e., that νi is a contravariant vector density of weight (1 + r)/(4r), in which case νiν

i = 0 is an
invariant equation.

Using the νi and ηik one can represent the metric (1) as an explicit invariant of the transfor-
mations (2): ds2 =

[
(νidx

i)2/dxjdx
j
]r
dxkdx

k. With the aid of this expression we arrive at the
relativistically invariant action for a free particle in the flat anisotropic space. The action and
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its variation appear as

S = −m
∫ b

a
ds, δS = −

∫ b

a
pi dδx

i.

Hereafter we put c = � = 1. The principle of least action under the condition (δxi)|a = (δxi)|b = 0
leads to pi = const, i.e., to rectilinear inertial motion. And if one varies the coordinates of point b
under the condition pi = const, then pi = −∂S/∂xi, i.e., pi is a canonical 4-momentum. Since ηik

is a contravariant tensor density of weight 1/2 and since pk is a covariant vector it is clear that
the 4-momentum pi = (p0,p) = ηikpk is transformed as a contravariant vector density of 1/2,
i.e.,

p′i = J1/2Li
kp

k = D−1Ri
lL

l
kp

k. (3)

Thus we have arrived at the generalized Lorentz transformations for 4-momenta. Note that the
dilatational transformations of pi are inverse to those of xi (cf. (2)). In an explicit form

pi = m

(
νldx

l√
dxjdxj

)r(
(1 − r)

dxi

√
dxadxa

+ r
νi
√
dxbdxb

νndxn

)
. (4)

Since the direction of pi is not aligned with the direction of dxi we introduce (apart from pi)
the so-called kinematic 4-momentum ki which has the same transformational properties as pi.

ki = m(1 − r)
dxi

√
dxndxn

(
νldx

l√
dxjdxj

)r

. (5)

Taking into account the equation νiν
i = 0 we obtain the following relations

pi = ki +
rklk

l

(1 − r)knνn
νi, ki = pi − rplp

l

(1 + r)pnνn
νi. (6)

As for the 3-velocity of a particle, it is determined by the formula v = k/k0.
The components of canonical 4-momenta satisfy the mass shell equation[

(νip
i)2/pjp

j
]−r

pap
a = m2(1 − r)(1−r)(1 + r)(1+r). (7)

This equation is an invariant of the transformations (3). The same mass shell but in a space of
kinematic 4-momenta is described by the equation[

(νik
i)2/kjk

j
]−r

kak
a = m2(1 − r)2. (8)

The latter two equations lead us to the important conclusion, namely, that the motion of free
massless particles in anisotropic space is similar to their motion in isotropic space, i.e., mass-
less particles do not perceive the space anisotropy whereas the motion of massive particles is
analogous to that of quasiparticles in a crystalline medium.

According to (8), the mass shell for r �= 0 is a deformed two-sheeted hyperboloid inscribed
into a light cone. In order to show how its deformation changes with the magnitude r of space
anisotropy it is reasonable to proceed from the relations (5) which determine four-dimensional
coordinates of points belonging to the upper sheet of the deformed hyperboloid as explicit
functions of 3-velocities v = dx/dx0. The results of calculations, presented in Fig. 1, clearly
demonstrate the fact that, if r → 1, the mass shell in a space of kinematic 4-momenta converges
(nonuniformly) to a light cone. As for the canonical momenta pi, there is nonuniform conver-
gence: pi → ki +mνi, where kik

i = 0. Physically this means that the effective inertial mass of
a particle present in anisotropic (Finslerian) space depends on the magnitude r of a constant
anisotropy field and disappears at all if r reaches the value equal to unity.

Thus, with a view to generalizing the Dirac Lagrangian for the Finslerian space-time, we have
arrived at the following guiding principle: a generalized Lagrangian, in the limit r = 1, must be
reducible (up to a 4-divergence) to the standard massless Dirac Lagrangian.
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Figure 1. Parametric 3D plots of the mass shells in a space of kinematic 4-momenta.

4 Transformational properties of fermion-antifermion fields
in the flat Finslerian space-time.
Generalized Dirac equation and its planewave solutions

Starting to generalize the Dirac Lagrangian for the anisotropic Finslerian space-time (1), first
consider the standard massless one (i/2)

(
ψ̄γn∂nψ − ∂nψ̄γ

nψ
)
. In the preceding Section we have

drawn the conclusion that massless particles do not perceive the space anisotropy. This means
that the Lagrangian considered need not be modified and it can be used as the kinetic term
of a massive generalized Dirac Lagrangian. Since under the generalized Lorentz transforma-
tions (2) the 4-volume dx0d3x behaves as a scalar density of weight −1 and the action must
remain invariant, it follows that the kinetic term (just as the entire Lagrangian) must be a scalar
density of weight 1. This condition is fulfilled in the case where the generalized Lorentz transfor-
mations (2) of the coordinates are accompanied by the following transformations of the fields ψ
and ψ̄:

ψ′(x′) = D−3/2SRSLψ(x) = J3/8Sψ(x), (9)

ψ̄′(x′) = ψ̄(x)J3/8S−1, (10)

where the matrices S = SRSL satisfy the standard condition S−1γiS = Λi
kγ

k, in which case
Λi

k = Ri
jL

j
k; the matrices SL and SR represent, respectively, the Lorenz boosts and additional

rotations of bispinors. In an explicit form

SL =

√
1 +

√
1 − v2

2
√

1 − v2
I −

√
1 −√

1 − v2

2
√

1 − v2

γ0vγ

|v| , (11)

SR =

√
1 −

(
1 −√

1 − v2
)
[vν]2

2(1 − vν)v2
I + i

√
1 −√

1 − v2

2(1 − vν)
[vν]
|v| Σ, (12)

where v denotes the velocities of moving (primed) reference frames, γn are the Dirac matrices,
Σ = diag (σ,σ) and σ are the Pauli matrices. Thus in the flat Finslerian space-time (1) the
fields ψ and ψ̄ are, according to (9) and (10), bispinor density fields of weight 3/8.
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In order to generalize the massive term −mψ̄ψ of the Dirac Lagrangian we remind that
a generalized massive term, like the kinetic one, must be a scalar density of weight 1. It can
be verified that for the bispinor density fields: ψ̄ψ is a scalar density of weight 3/4, ψ̄γnψ is
a contravariant vector density of weight 1, [(νnψ̄γ

nψ/ψ̄ψ)2]r/2ψ̄ψ is a scalar density of weight 1
and [(νnψ̄γ

nψ/ψ̄ψ)2]−3r/2ψ̄ψ is a scalar, in which case the latter Finslerian form generalizes the
scalar bilinear form ψ̄ψ of conventional theory.

Now we are able to write down a Lagrangian for the bispinor density fields representing such
a generalization of the standard Dirac Lagrangian that the corresponding field equations turn
out to be invariant under the group of generalized Lorentz transformations. It appears as

L =
i

2
(
ψ̄γn∂nψ − ∂nψ̄γ

nψ
)−m

[(
νnψ̄γ

nψ

ψ̄ψ

)2
]r/2

ψ̄ψ.

This Lagrangian leads to the following generalized Dirac equations:

iγa∂aψ −m

[(
νnj

n

ψ̄ψ

)2
] r

2 {
(1 − r)I + r

(
ψ̄ψ

νnjn

)
νaγ

a

}
ψ = 0, (13)

i∂aψ̄γ
a +m

[(
νnj

n

ψ̄ψ

)2
] r

2

ψ̄

{
(1 − r)I + r

(
ψ̄ψ

νnjn

)
νaγ

a

}
= 0, (14)

where jn = ψ̄γnψ. The operation: ψ̄ (13) + (14) ψ provides the equation ∂nj
n = 0. Thus jn is a

preserved current. And at last, owing to the operation: ψ̄ (13)–(14) ψ, we conclude that L = 0
on the solutions of equations (13) and (14).

Due to translational invariance, the generalized Dirac equations (13), (14) must admit solu-
tions in the form of plane waves ψ(x) = u(p) exp (−ipax

a). This means that the amplitude u(p)
must satisfy the equations:

pa

[
γa −

(
ūγau

ūu

){
(1 − r)I + r

(
ūu

νlūγlu

)
νnγ

n

}]
u = 0, (15)

ūpa

[
γa −

(
ūγau

ūu

){
(1 − r)I + r

(
ūu

νlūγlu

)
νnγ

n

}]
= 0, (16)

paūγ
au = m

[(
νlūγ

lu

ūu

)2
]r/2

ūu. (17)

Equations (15)–(17) lead to the invariant dispersion relation

√
papa/(1 − r2) = ±m [(1 + r)(νip

i)2/((1 − r)pjp
j)
]r/2

, (18)

where the sign + corresponds to positive frequency states whereas the sign− corresponds to
negative ones. It is worth mentioning that the mass shell equation (7) can be obtained from (18).
In order to find the planewave solutions in a general form, i.e. at arbitrary momentum pa we,
for a start, confine ourselves to the rest frame and try the following ansatz:

ψ+(x) =
√

2m(1 − r)
(
ϕ
0

)
e−i(mx0−mrνx), ψ−(x) =

√
2m(1 − r)

(
0
χ

)
ei(mx0−mrνx),

where
√

2m(1 − r) is a normalizing multiplier and ϕ, χ are arbitrary 3-spinors normalized by
means of ϕ†ϕ = 1, χ†χ = 1. It is easy to verify that the corresponding positive and negative
frequency bispinor density amplitudes satisfy equations (15)–(17). Note once more that these
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solutions are found in the rest frame, in which pa = {m, rmν}, whereas kinematic 4-momentum
ka = {m(1 − r),0} and, respectively, v = k/k0 = 0. Taking into account the transformational
properties (9)–(12) we find planewave solutions of equation (13) in the final form:

ψ+(x) =

√
k2

0 − k2

m(1 − r)



√
k0 +

√
k2

0 − k2 ϕ√
k0 −

√
k2

0 − k2 (nσ)ϕ


 e−ipaxa

,

ψ−(x) =

√
k2

0 − k2

m(1 − r)



√
k0 −

√
k2

0 − k2 (nσ)χ√
k0 +

√
k2

0 − k2 χ


 eipaxa

,

where the unit vector n indicates the direction of k, in which case ka and pa are related
by (6). The bispinor density fields ψ± are normalized with the help of the invariant conditions:
[(νnψ̄±γnψ±/ψ̄±ψ±)2]−3r/2ψ̄±ψ± = ±2m(1 − r). As for the dispersion relation (18), in terms
of ka it takes the form

√
kaka = ±m(1 − r)

[
(νik

i)2/kjk
j
]r/2

. One of its solutions corresponds
to massive fermions and, according to (5), admits the parametric representation by means of 3-
velocities v. Another solution corresponds to massless fermions and has the form ka ∝ νa. Note
at last that, in the limit r = 1, equation (13) takes the form iγa∂aψ −mνaγ

aψ = 0 and, after
the local gauge transformation ψ → exp (−imνax

a)ψ, reduces to the massless Dirac equation.

5 Conclusion

Summing up the results of the present work, we would like to emphasize that the spontaneous
breaking of Lorentz symmetry does not necessarily signify the breaking of relativistic symme-
try and may turn out to be a secondary effect induced by the spontaneous breaking of gauge
symmetry. Here, the 10-parameter Poincaré group of an initial massless gauge-invariant theory
is reduced to the 8-parameter inhomogeneous group of the generalized Lorentz transformations,
which assumes in this case the role of the relativistic symmetry group of the corresponding
vacuum solution of the theory. And vacuum itself, if it is regarded as space-time filled with
a fermion-antifermion condensate, assumes anisotropic Finslerian geometry instead of Minkowski
geometry. Within the framework of this picture the rearrangement of initial vacuum and the
appearance of masses in the initial massless fields are not due to the standard Higgs mechanism
but result from collective quantum effects peculiar to nonlinear dynamic systems.

Reverting to the translationally invariant generalized Dirac equation (13), which was obtained
from the requirement of the generalized Lorentz symmetry, we see that it is essentially nonlinear.
However this nonlinearity disappears in two cases: firstly, if the anisotropy field, constant over
the whole space (and more exactly, its magnitude r) tends to zero (in this case (13) changes to
the standard massive Dirac equation), and secondly, if r tends to its maximally attainable value
equal to unity. In the latter case the anisotropy field turns out to be purely gauge while the
massive fermion-antifermion field proves itself as the corresponding massless one. This means
that the equation (13) describes the dynamics of the massive fermion-antifermion field in an
anisotropic medium (in a relativistically invariant anisotropic condensate), in which case the
effective inertial mass of the fermion-antifermion field has the dynamic origin and depends on
the degree of order of the condensate, which should be a function of temperature.

Concluding the discussion of the nonlinear generalization of the Dirac equation, we note in
addition that so far we have succeeded in constructing only simple, namely, planewave solutions
of this equation. However, efficient algebraic-theoretical methods of constructing exact solutions



644 G.Yu. Bogoslovsky and H.F. Goenner

for a wide class of nonlinear spinor equations have already been evolved [15]. Using these
methods, one can in principle obtain, also, other and, which is especially important, nongenerable
families of exact solutions of the equation (13). As for the general conceptual problems relating
to nonlinear generalizations of the Dirac equation [16], we hope to give more attention to them
in our subsequent publications.
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