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Monopole Equations on 8-Manifolds with Spin(7)
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On 8-manifolds with Spin(7) holonomy, we have written an action coupling the curvature of
a U(1) bundle to a negative spinor field determined by the Bonan 4-form. The minimizers
of this action are the inhomogeneous counterparts of the monopole equations of Corrigan
et al. [Corrigan E., Devchand C., Fairlie D. and Nuyts J., Nucl. Phys. B, 1983, V.214,
452–464].

1 Introduction

The setup for gauge theories is vector bundles over differentiable manifolds, which are equipped
with a fiber metric and a connection compatible with it. The curvature of this connection is
a 2-form taking values in the Lie algebra of the structure group of the vector bundle. The
connection and the curvature of the vector bundle are usually interpreted as potentials and
fields, respectively. Whenever globally meaningful, one can work with additional structures on
the base manifold such as other vector bundles, whose sections are also interpreted as physical
fields. An “action integral” is a functional of the fields involved, and the crucial point is to
write it globally on the manifold. The field equations can be derived either using variational
techniques or by determining conditions to attain “topological lower bounds”. These topological
lower bounds are the integrals of the characteristic classes of the vector bundle and, although
related intrinsically to the curvature of the connection, they are determined by topology of the
vector bundle [1].

The prototype of these structures is the Yang–Mills theory on four manifolds with an SU(2)
vector bundle: The action integral is the L2 norm of the curvature, which is minimized when
the curvature 2-form is self-dual in the Hodge sense, it reaches its topological lower bound and
the field equations form a first order elliptic system for the connection. Besides its importance
in physics, Yang–Mills theory is extensively used as a tool in low dimensional topology, to
compute differentiable invariants of 4-manifolds from the properties of the solution set of Yang–
Mills equations [2]. Later Seiberg and Witten [3] proposed to work with a U(1) bundle and
an associated spinor bundle, to get a set of inhomogeneous equations. These equations were
minimizers of a certain action involving a coupling of the spinor field to the curvature. It turned
out that the properties of the solution set of these new equations also yielded the differentiable
invariants of the base manifold, but with much ease. A concise review of the Seiberg–Witten
theory can be found in [4].

In a series of papers we studied the problem of extending these structures to higher dimen-
sional manifolds [5–7]. The starting point was the definition of “strong self-duality” of 2-forms,
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as one cannot talk of self-duality of 2-forms in dimensions other than four. Strong self-duality of
a 2-form is defined as the equality of the absolute values of the eigenvalues of the corresponding
matrix [5] and we have shown that (i) a 2-form ω in 2n dimensions is strongly self-dual if and
only if ωn−1 is proportional to the Hodge dual of ω, and (ii) a 2-form ω in 4n dimensions is
strongly self-dual if ωn is self-dual in the Hodge sense [8]. The first condition was used as a defi-
nition of self-duality by Trautman [9] and the second one was used in the work of Grossman
et al. [10].

Although this nonlinear criterion encompasses the definitions used in the literature and rea-
lizes topological lower bounds in many situations, it is not easily workable, hence a linear notion
of self-duality is preferable. The linear subspaces of the strong self-dual forms are closely related
to the representations of Clifford algebras and provide such a setting [11]. The dimension of the
maximal linear subspaces of strong self-dual 2-forms on R2n is equal to the number of linearly
independent vector fields on the sphere S2n−1, known as the Radon–Hurwitz number. These
structures however are quite restricted, for example the Radon–Hurwitz number in dimensions
N = 2(2a + 1) is just 1. It turns out that N = 8 is the most interesting dimension, and the
linear subspaces of strong self-dual 2-forms coincide with the linear self-duality definition given
first in [12] and [13]. The choice of a maximal linear subspace of strong self-dual 2-forms in
8 dimensions gives rise to a splitting of the 28 dimensional linear space of 2-forms into 7 and
21 dimensional subspaces. The 7 dimensional subspace, consisting of strong self-dual 2-forms,
are building blocks of the instanton solution of Grossman et al. [10], while the 21 dimensional
subspace leads to the equations given in Corrigan et al. [12]. The first set is overdetermined,
but the second one is shown to be an elliptic system for the connection [14]. The question
is now whether one can choose these subpaces consistently on the manifold, or whether the
equations given in local coordinates are globally meaningful. This question was addressed in
Corrigan et al. [12] by requiring that the fourth rank tensor defining self-duality be invariant
under a subgroup of the structure group of the tangent bundle of the base manifold. It turns
out that when the manifold has Spin(7) holonomy, there is a globally defined 4-form, called the
Bonan 4-form [15] or the “calibration form” [16] that gives rise to the self-duality equations.
The Bonan 4-forms appears also in a topological lower bound for the Yang–Mills action on
8-manifolds [17].

The structures discussed so far involved a single usually non-Abelian vector bundle over
a base manifold. As mentioned above, the Seiberg–Witten theory involves a manifold equipped
with a U(1) vector bundle and a spinor bundle. A direct generalization of the Seiberg–Witten
theory to 8-manifolds was considered in [18], but leads to trivial results. An interpretation of the
Seiberg–Witten equations as projections resulted in a set of monopole equations for a coupling to
positive spinors [6]. Finally, in [7] we obtained a set of equations for a coupling to negative spinors
as minimizers of a quadratic action integral. In the present paper we outline the construction
of the action integral with an emphasis on local expressions.

2 Preliminaries

We start by introducing our notation. We define a Hermitian inner product on n × m matrices
by (A, B) = 1

n tr (ĀtB). It follows that if X is an m-vector and A is skew-symmetric matrix,
then (AX, X) = n

2 (A, XX̄t − X̄Xt). The point-wise norm of a real differential form is defined
as |ω|2 = (ω, ω) = ∗(ω ∧ ∗ω), where ∗ denotes Hodge dual.

A spinc structure on a 2n-dimensional real inner-product space V is a pair (W, Γ), where
W is a 2n dimensional Hermitian vector space, and Γ : V → End (W ) is a linear map satisfying

Γ(v)∗ = −Γ(v), Γ(v)2 = −|v|2
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for v ∈ V . Globalization of this construction on each fiber to the tangent bundle of a 2n-
dimensional oriented manifold M will be possible if and only if the second Stiefel–Whitney
class w2(M) has an integral lift, a condition which always holds for manifolds with Spin(7)
holonomy.

Given a spinc structure, the matrix Γ(e2ne2n−1 · · · e1) has eigenvalues ±in, and its eigenspaces
determine a splitting W = W+ ⊕ W−. The elements of W+ and W− are called respectively
“positive” and “negative” spinors. It follows that one can write the representation in block form
as

Γ(v) =
(

0 γ(v)
−γ(v)∗ 0

)
(1)

with Γ as given in (1), ρ is block diagonal and one can define the maps

ρ±(η) = ρ(η) |W± , (2)

for 2k-forms η.
The matrices γ(ei) = γi are characterized by

γ1 = I, γ2
j + I = 0, γjγk + γkγj = 0, for j ≥ 2, j �= k. (3)

In 8-dimensions, the γj ’s are real, skew-symmetric matrices and the set

{γ2, γ3, . . . , γ8, γ2γ3, . . . , γ7γ8} (4)

is orthonormal. The effects of the ρ± maps are given by

ρ±(e∗1 ∧ e∗j ) = ±γj , ρ±(e∗j ∧ e∗k) = γjγk,

ρ±(e∗1 ∧ e∗j ∧ e∗k ∧ e∗l ) = ±γjγkγl, ρ±(e∗j ∧ e∗k ∧ e∗l ∧ e∗m) = γjγkγlγm. (5)

The γj matrices satisfy the relations γ2γ3γ4γ5γ6γ7γ8 = −I, which allow the duality identifications

γ2γ3γ4γ5γ6 = γ7γ8, γ2γ3γ4γ5 = −γ6γ7γ8. (6)

A Hermitian connection on W , compatible with the Levi-Civita connection of the manifold
induces an imaginary valued connection on a certain associated line bundle. The corresponding
connection 1-form is denoted by A, its curvature 2-form is F and the Dirac operators D±

corresponding to A are differential operators mapping positive spinors to negative spinors and
vice versa. The Weitzenböck formula, which is the key in writing of the action integral for the
Seiberg–Witten equations, gives

D−D+φ+ = ∇∗∇φ+ +
1
4
sφ+ + ρ+(F )φ+,

D+D−φ− = ∇∗∇φ− +
1
4
sφ− + ρ−(F )φ−, (7)

where s is the scalar curvature of M and ∇∗ is the L2-adjoint of ∇. Taking the inner product
of (7) with φ± and integrating over M , we obtain

∫
M

|D±φ±|2 dvol =
∫

M

[
|∇φ±|2 +

1
4
s|φ±|2 + (ρ±(F )φ±, φ±)

]
dvol. (8)

Hence if D−φ− = 0, from (8) we have
∫ [

|∇φ−|2 +
1
4
s|φ−|2

]
dvol = −

∫
(ρ−(F )φ−, φ−) dvol. (9)
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We have thus expressed the spinor coupling in terms of the ρ map. Now we will compute the
topological term.

The expression of the Bonan 4-form Φ in an orthonormal basis {ei}, i = 1, . . . , 8, is

Φ = [e1234 − e1256 − e1278 − e1357 + e1368 − e1458 − e1467

+ e5678 − e3478 − e3456 − e2468 + e2457 − e2367 − e2358]. (10)

where eijkl = e∗i ∧ e∗j ∧ e∗k ∧ e∗l . The form Φ is Spin(7) invariant, hence it can be extended to the
manifold. Φ is self-dual and it defines a linear map on 2-forms as

ω → ∗(Φ ∧ ω)

with eigenvalues 3 and −1. This map has 7 and 21 dimensional eigenspaces, and a basis consis-
ting of the corresponding eigenvectors are given below. The eigenvectors corresponding to the
eigenvalue 3 are

ω12 = e15 + e26 + e37 + e48,

ω13 = e12 + e34 − e56 − e78,

ω14 = e16 − e25 − e38 + e47,

ω15 = e13 − e24 − e57 + e68,

ω16 = e17 + e28 − e35 − e46,

ω17 = e14 + e23 − e58 − e67,

ω18 = e18 − e27 + e36 − e45. (11)

The ones corresponding to the eigenvalue −1 can be obtained by changing signs as given in [7].
The eigenvectors {ω1j} and {ωjk} for j, k = 2, . . . , 8 are a basis for local sections of 2-form
fields, and the curvature 2-form F has the splitting F = F (7) + F (21), where F (7) =

∑
iajω1j ,

F (21) =
∑

iaklωkl. It can be seen that

F (7) ∧ F (21) ∧ Φ = 0,

hence

F ∧ F ∧ Φ = F (7) ∧ F (7) ∧ Φ + F (21) ∧ F (21) ∧ Φ.

It follows that one can obtain

|F |2 =
4
3
|F (21)|2 − 2

3
∗ (F ∧ F ∧ Φ) (12)

that relates the norm of the curvature to the topological term.

3 Seiberg–Witten theory on 4-manifolds

In Seiberg–Witten theory over a 4-manifold, a U(1) connection is coupled to a spinor field. The
Seiberg–Witten equations are the minimizers of an action involving the curvature 2-form F and
a positive Dirac spinor φ+

I(A, φ+) =
∫

M

[
|F |2 + |∇φ+|2 +

1
4
s|φ+|2 +

1
4
|φ+|4

]
dvol ≥

∫
M

tr F 2, (13)

where s is the scalar curvature of the 4-manifold M and A and F are respectively the connection
and curvature of a line bundle associated with the spinc structure on M [4]. The Weitzenböck
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formula relates the covariant derivatives ∇φ± to D±φ±, compensating for the scalar curvature
term and bringing in the coupling (ρ±(F )φ±, φ±).

In 4 dimensions, ρ+(F ) is a 2× 2 traceless, Hermitian matrix such that ρ+(F−) is identically
zero. If D+φ+ = 0, the action (13) can be written as the sum of a topological term and an
integrand involving 2|F |2 + (ρ+(F+)φ+, φ+) + 1

4 |φ+|4. It turns out that the integrand vanishes
when

D+φ+ = 0, ρ+(F+) = [φ+(φ̄+)t]o, (14)

where the subscript o denotes the trace-free part of a matrix. From the details of the computation
as given in [7] it follows that the term 1

4 |φ+|4 is added just to complete the square. Choosing
ρ+(F+) as in (14) reduces the action to its topological lower bound. In some sense, the spinors
φ± are chosen in such a way that the coupling is independent of the part of F , which is expected
to be free. This was our idea in looking for Seiberg–Witten type equations on 8-manifolds.

The coupling of a spinor field to the Yang–Mills action in 8-dimensions may follow different
paths. A direct generalization of the Seiberg–Witten theory in 4-dimensions has led to trivial
results [10]. In our previous paper [11], we defined a generalization by interpreting the right
hand sides of the Seiberg–Witten equations as a projection onto a subspace determined by the
map ρ+ and coupled positive spinors to the curvature. However, it was not possible to express
these equations as absolute minimizers of an action.

In [7], we defined monopole equations via a projection using the map ρ−, coupling the cur-
vature to negative spinors. These new set of equations are absolute minimizers of an action,
provided that the real and imaginary parts of the negative spinor belongs to certain compleme-
natary subspaces of negative spinors determined by the image of the Bonan 4-form under the
ρ− map, to be described below.

4 The action integral

We will now obtain monopole equations for F (7) and φ− derived from an action principle, when
φ− belongs to a certain subspace. The determination of this subspace in local coordinates is
almost trivial, as it imposes itself from the local expression of the ρ. The subtle point is the
invariant description of this subspace in terms of the Bonan 4-form, independently of a specific
choice of the spinc structure. We refer to [7] for the complete proof of Proposition 1, below.

Proposition 1. Let M be an 8-manifold with Spin(7) holonomy, with scalar curvature s and
Bonan 4-form Φ, (Γ, W ) be any spinc structure and W− and ρ− be defined in terms of Γ as
in (2). Define a section φ of W− by

φ = (1 − P )U + iPU

where U is a real section of W− and

P =
1
8
− 1

16
ρ−(Φ).

Then the monopole equations

D−φ = 0, ρ−(F (7)) =
1
2
(φφ̄t − φ̄φt), div A = 0

are absolute minimizers of the action

I(A, U) =
∫

M

[
|F |2 + |∇φ|2 +

1
4
s|φ|2 + |φφ̄t − φ̄φt|2

]
dvol

and I(A, U) ≥ 2
3

∫
M F ∧ F ∧ Φ.
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Proof. We give here only a brief outline of the proof, concentrating on local computations
which are more illustrative.

Using (9), (12), we can express the action as

I(A, U) =
2
3

∫
M

F ∧ F ∧ Φ +
∫

M

[
4|F (7)|2 − (ρ−(F )φ, φ) +

1
4
s|φ|2 + |φφ̄t − φ̄φt|2

]
dvol.

At this stage it is useful to have the expression of the ρ−(F ) for a specific choice of spinc

structure that we used in our computations. Other choices lead to similar expressions, and
the whole computation can be done in an abstract Clifford algebra setting using the relations
(2)–(6). The effect of ρ+ can be written similarly, but the resulting matrices are nonsingular.
This is the main reason for working with negative spinors.

ρ−(ω12) = −γ5 + γ26 + γ37 + γ48 = −4e68,

ρ−(ω13) = −γ2 + γ34 − γ56 − γ78 = −4e26,

ρ−(ω14) = −γ6 − γ25 − γ38 + γ47 = 4e46,

ρ−(ω15) = −γ3 − γ24 − γ57 + γ68 = 4e56,

ρ−(ω16) = −γ7 + γ28 − γ35 − γ46 = 4e67,

ρ−(ω17) = −γ4 + γ23 − γ58 − γ67 = −4e16,

ρ−(ω18) = −γ8 − γ27 + γ36 − γ45 = −4e36.

It is then possible to check that |F (7)|2 = |ρ−(F (7))|2. The orthonormality of the set (4) implies
that |ρ−(ω1j)|2 = 4. On the other hand, from (11) |ω1j |2 = 4, hence the ρ− map is an isometry.
It follows that

I(A, U) =
2
3

∫
M

F ∧ F ∧ Φ

+
∫

M

[
4|ρ−(F (7))|2 − (ρ−(F )φ, φ) +

1
4
s|φ|2 + |φφ̄t − φ̄φt|2

]
dvol.

The main difficulty is to show that (ρ−(F (21))φ, φ) = 0 for φ given as in the hypothesis of the
theorem. If we use the specific spinc structure corresponding to γj = ω1j , P is the diagonal
matrix with the only nonzero entry, P66 = 1. It can also be seen that the 6th row and the 6th
column of ρ−(ωjk)’s are zero, while in ρ−(ω1j)’s non-zero elements are only in the 6th row and
the 6th column. Thus, in a local formulation it can be seen that

ρ−(F (21))P = 0, ρ−(F (7))P + Pρ−(F (7)) = ρ−(F (7)).

As F is pure imaginary and the representation is real, ρ−(F ) is Hermitian but skew-symmetric.
Now using ρ−(F (21))P = 0, we have

(ρ−(F (21))φ, φ) = (ρ−(F (21))U, (1 − P )U + iPU) = (U, ρ−(F (21))U) = 0,

where the second equality follows from hermiticity and the third from skew-symmetry. Then

(ρ−(F (7))φ, φ) = 4(ρ−(F (7)), φφ̄t − φ̄φt),

and it can be seen that the action reduces to

I(A, U) =
2
3

∫
M

F ∧ F ∧ Φ +
∫

M
|2ρ−(F (7)) − (φφ̄t − φ̄φt)|2dvol
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which gives the monopole equations. As the left hand side of the matrix equation

ρ−
(
F (7)

)
=

1
2
(φφ̄t − φ̄φt)

belongs to a 7-dimensional subspace, we need to check its compatibility. For this we use the
orthogonal decomposition of any skew-symmetric matrix A in the form

A = (PA + AP ) + (I − P )A(I − P ).

and write

1
2
(φφ̄t − φ̄φt) =

1
2
[−i(I − P )UU tP + iPUU t(I − P )] = i[−UU tP + PUU t].

Using the properties of the projection operator P , it can be seen that both sides of the equation
belong to the same linear subspace. �

5 The monopole equations

In [6], we have given monopole equations using a projection with ρ+(F (7)), where we denoted
F (7) as F+, and ω1j by fj−1. The same formula (equation (26) in [6]) can be applied as well
using a projection with ρ−. Hence we can write

ρ±(F (7)) =
8∑

j=2

〈ρ±(ω1j), φ±(φ±)∗〉|ρ±(ω1j)|−2ρ±(ω1j),

where ω1j ’s are an orthonormal basis for the subspace F (7). We may choose the ω1j ’s as above,

and with respect to this basis we can write F (7) =
8∑

j=2
ia1jω1j , then ρ±(F (7)) =

8∑
j=2

ia1jρ
±(ω1j),

the monopole equations are

ia1j = |ρ±(ω1j)|−2〈ρ±(ω1j), φ±(φ̄±)t〉, j = 2, . . . , 8.

We give below the monopole equations for the coupling to a negative spinor

4a12 = F15 + F26 + F37 + F48 = (1/2)(−φ6φ̄8 + φ8φ̄6),
4a13 = F12 + F34 − F56 − F78 = (1/2)(−φ2φ̄6 + φ6φ̄2),
4a14 = F16 − F25 − F38 + F47 = (1/2)(φ4φ̄6 − φ6φ̄4),
4a15 = F13 − F24 − F57 + F68 = (1/2)(φ5φ̄6 − φ6φ̄5),
4a16 = F17 + F28 − F35 − F46 = (1/2)(φ6φ̄7 − φ7φ̄6),
4a17 = F14 + F23 − F58 − F67 = (1/2)(−φ1φ̄6 + φ6φ̄1),
4a18 = F18 − F27 + F36 − F45 = (1/2)(−φ3φ̄6 + φ6φ̄3).

When the spinor belongs to the subspace determined by the Bonan 4-form, we put

φ̄6 = −φ6, φ̄j = φj , for j �= 6.

The final step is to show that the resulting equations are elliptic. To check ellipticity of
a system of first order partial differential equations in the independent variables x1, . . . , xk and
dependent variables u1, . . . , un, we replace ∂ui

∂xj
by ξjui, where ξj ’s are indeterminates, and obtain

a linear homogeneous system of equations for the ui’s. The characteristic determinant of the
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system is the determinant of the coefficient matrix of the corresponding linear system. The
system is called elliptic if its characteristic determinant has no real roots. As this property is
independent of the inmogeneous part, the elipticity of the new set of equations follows from
the ellipticity of the equations of Corrigan et al. [12] after checking a nondegeneracy condition
arising from the projection of the spinor field to a subspace.
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