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Integration of Bi-Hamiltonian Systems

by Using the Dressing Method
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Carpathian Biosphere Reserve, Rakhiv, Ukraine
E-mail: yuri@rakhiv.ukrtel.net

The integration by the dressing method of integrable by Lax systems from the DHcmKP
hierarchy is considered. The applicability of this method to construction of exact solutions of
the nonlinear bi-Hamiltonian systems, also with nonstandart (recursive) Lax representations,
is shown.

1 Introduction

The paper [1] introduces the so-called scalar D-Hermitian constrained modified Kadomtsev–
Petviashvili (DHcmKP) hierarchy. The integrable systems of this hierarchy contain already
known nonlinear models of the soliton theory and their new modifications and vector (multi-
component) generalizations. The unified form of the Lax operator (4) allows to construct a gen-
eral method of the Lax flows investigation describing a group of transformation operators (group
of D-unital Volterra operators) which corresponds to the Lie algebra of the integro-differential
symbols of D-skew-Hermitian operators.

This paper continues integration of integrable systems from DHcmKP by using the method
of dressing transformations. For n = 2, under additional reduction, Lax operator (4) becomes
the generating operator for the modified Korteweg–de Vries equation (mKdV) in a real case.
The vector generalization of the mKdV equation can be reduced to common Korteweg–de Vries
equation (KdV).

In Section 2 we submit basic definitions in the DHcmKP hierarchy and reductions to well-
known dynamical systems.

In Sections 3 we propose the method of construction of exact solutions for the KdV equation
and the mKdV equation.

2 DHcmKP hierarchy and its reductions

Let us consider the algebra ζ of the micro-differential operators [2],

ζ :=


L =

n(L)∑
i=−∞

aiDi : ai = ai(x, y, tm); i, n(L) ∈ Z


 .

The coefficients ai are, in general, smooth (N×N)-matrix-valued functions of x ∈ R and of finite
quantity of the evolution parameters tm ∈ R, t2 := y, t3 := t. The micro-differential operator

L ∈ ζ satisfies additional constraints. The Hermitian-conjugated operator L∗ :=
n(L)∑

i=−∞
(−1)iDia∗i ,

where a∗i = ā�, (α∂y)∗ := −ᾱ∂y, (β∂tm)∗ := −β̄∂tm .

Definition 1. We say that an operator L ∈ ζ is D-Hermitian (D-skew-Hermitian) if L∗ =
DLD−1 (L∗ = −DLD−1).
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Definition 2. We say that an integral operator W ∈ ζ<1 :=
{

L<1 :=
0∑

i=−∞
uiDi

}
is D-unital if

W−1 = D−1W ∗D.

Lemma 1 ([1]). Let L be a D-Hermitian (D-skew-Hermitian) operator and W is a D-unital
operator. Then L̂ := WLW−1 is a D-Hermitian (D-skew-Hermitian) operator.

Let ϕ = ϕ(x, y, tm) be a matrix N ×K function, Ω := C +
∫ x
−∞ ϕ∗ϕxdx be a non-degenerate

K ×K function such that the improper integral
∫ x
−∞ ϕ∗ϕxdx converges absolutely, C be a con-

stant complex K × K-matrix.

Theorem 1 ([1]). 1. Let C∗ = −C = const ∈ MatK×K(C) and w0 := IN − ϕΩ−1ϕ∗ (where IN

is a unitary (N × N)-matrix. Then w−1
0 = w∗

0 = IN − ϕΩ∗−1ϕ∗, where Ω∗ = ϕ∗ϕ − Ω.
2. Operator W := w0 + ϕΩ−1D−1ϕ∗

x is a D-unital and the inverse operator is defined by the
formula W−1 := w−1

0 + ϕD−1(Ω∗−1ϕ∗)x.

Lemma 2 ([3]). The following property holds true:

det w0 = (−1)K det Ω∗

det Ω
.

Remark 1. Let ϕ ∈ MatN×K(R) and C� = −C. Then det w0 = det(IN − ϕΩ−1ϕ�) = (−1)K .

Let us consider the modified Korteweg–de Vries equation (mKdV)

ut = uxxx + au2ux,

where u = u(x, t) ∈ C(∞)(R2, R).

ut = L(∇H1) = M(∇H2),

where L = −D, M = D3 + 2
3auDuD−1uD is a Hamiltonian pair and the functionals

H1 =
∫

R

(
1
2
u2

x − 1
12

au4

)
dx, H2 =

∫
R

1
2
u2dx

are first integrals of the mKdV equation.
The generation operators ΛmKdV = L−1M and Λτ

mKdV = ML−1 have the form

Λ = −D2 − 2
3
auD−1uD, Λτ = −D2 − 2

3
aDuD−1u (1)

and satisfy the equation of Lax type Λtm = [Λ, K
′τ ], where K ′τ = −D3 − auD.

Let us consider also the KdV equation

ut = uxxx + auux = K[u]. (2)

Similarly to the previous equation, the operators will have the form

ΛKdV = D2 +
2
3
au − 1

3
aD−1ux, Λτ

KdV = D2 +
2
3
au +

1
3
auxD−1,

K ′ = D3 + auD + aux, K ′τ = −D3 − auD. (3)

The operators Λ, K ′τ are D-Hermitian and D-skew-Hermitian respectively. These operators
are partial cases of the D-Hermitian constrained modified Kadomtsev–Petviashvili (DHcmKP)
hierarchy introduced in the paper [1] and determined in the following form: let

ζ � LDHcmKP := Ln = Dn + un−1Dn−1 + · · · + u1D − qMD−1q∗D, (4)
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M∗ = (−1)nM is a complex constant (l × l)-matrix, q(x, tm) = (q1, . . . , ql), k, l ∈ N, and an
additional reduction for operator Ln: L∗

n = µDLnD−1, µ = ±1.
We consider the evolution equations

αmLntm
= [Bm, Ln] , (5)

where Ln := LDHcmKP, and Bm are fractional powers m/n of Ln; n, m ∈ N.
Let n = 2. For L2 = D2 + iuD − qMD−1q∗D we obtain that B2 = (L2)>0 = D2 + iuD,

B3 = D3 + 3
2 iuD2 − (3

8u2 − 3i
4 ux + 3

2qMq∗)D, M∗ = M. For α2 = i, α3 = 1 the following
systems of equations are consequences of (5)

iqt2 = qxx + iuqx, ut2 = 2(qMq∗)x (6)

and

qt3 = qxxx +
3
2
iuqxx −

(
3
8
u2 +

3
2
qMq∗ − 3

4
iux

)
qx,

ut3 =
1
4
uxxx +

3
8
u2ux − 3

2
(qMq∗u)x +

3
2
i(qxMq∗ − qMq∗

x)x. (7)

System (6) is a multi-component modification of the integrable Yajima–Oikawa model [4], which
describes the interaction of the Laengmur wave packets in the physics of plasma. System (2)
is a modification of a higher Yajima–Oikawa model. Note that equation (2) admits some inte-
resting reductions on invariant sub-manifolds, where evolution is introduced by known dynamical
systems. So, for qMD−1q∗D ≡ 0 we have the scalar mKdV equation ut3 = 1

4uxxx + 3
8u2ux. For

u ≡ 0 the complex multi-component mKdV equation obtained

qt3 = qxxx − 3
2
qMq∗qx (8)

with the differential condition

(qMq∗
x − qxMq∗)x = 0, (9)

and for q̄ ≡ q, M ∈ Matl×l(R) its real version is

qt3 = qxxx − 3
2
qMq�qx. (10)

In this case, the differential constraint is satisfied.

Remark 2. The vector generalization of the complex mKdV equation can be obtained from
system (8)–(9), if we satisfy condition (9) in such a way: let us q = (�q, �̄q), �q = (q1, . . . , qk) be
a k-component vector-function (l = 2k) and the matrix M have a block form

M =
(

B A
Ā B̄

)
, A� = A, B∗ = B. (11)

Condition (9) is satisfied similarly.

3 Integration of some bi-Hamiltonian systems

Theorem 2. Let: 1) ϕ(x, t3) be a real K-component solution of the system of equations

ϕt3 = ϕxxx, ϕxx = ϕΛ. (12)

2) C� = −C is a real skew-symmetric matrix.
3) Matrix function Ω := C +

∫ x
−∞ ϕ�ϕxdx is non-degenerate on the left semi-axis.

Then the function q(x, t3) := ϕΩ−1 satisfies mKdV equation (10), where M = CΛ − Λ�C.
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Proof. Let L0 := D2, then using Theorem 1

L := WD2W−1 = D2 − 2w0xw−1
0 D −

[
ϕxx − ϕΩ−1

∫ x

−∞
ϕ∗ϕxxxdx

]
D−1Ω∗−1ϕ∗D

− ϕΩ−1D−1

[
ϕ∗

xx −
∫ x

−∞
ϕ∗

xxxϕdxΩ∗−1ϕ∗
]
D.

Under conditions a)–b) we obtain that

L = D2 − 2w0xw−1
0 D − ϕΩ−1(CΛ − Λ∗C)D−1Ω∗−1ϕ∗D.

Let M0 := ∂t3 −D3, similarly we proceed to the operator

M := WM0W
−1 = ∂t3 −D3 + 3w0xw−1

0 D2

− [w0(w−1
0 )xx − 2w0ϕxxΩ∗−1ϕ∗ − w0ϕx(Ω∗−1ϕ∗)x

+ ϕΩ−1ϕ∗
x(w−1

0 )x − ϕΩ−1ϕ∗
xxw−1

0 − ϕΩ−1ϕ∗
xϕxΩ∗−1ϕ∗]D

−
[
ϕt3 − ϕxxx − ϕΩ−1

∫ x

−∞
ϕ∗(ϕt3 − ϕxxx)xdx

]
D−1Ω∗−1ϕ∗D

+ ϕΩ−1D−1

[
ϕ∗

t3 − ϕ∗
xxx −

∫ x

−∞
(ϕ∗

t3 − ϕ∗
xxx)xϕdxΩ∗−1ϕ∗

]
D.

Under condition a) the integral parts are equal to zero. With Remark 1 the formulas for the
“dressed” operators L and M are:

L = D2 − qMD−1q�D, M := ∂t3 −D3 +
3
2
qMq�D. (13)

For l = 1 (that is q = q is a scalar function) the operators L and M (13) constitute the recursive
Lax pair for the mKdV equation (1). �

Let us consider Lax operators (13) for the K-component real mKdV equation (10),

[L, M ] = 0 ⇔ qt3 = qxxx − 3
2
qMq�qx = K[q]. (14)

The operator L is a K-generalization [5] of the generating operator ΛmKdV (1) for the scalar
mKdV equation and M τ is its linearization (M τ = ∂t3 − K ′[q]).

Let K = 2k, q = (�α,�q), �α ∈ R
k, �q = �q(x, t3),

M =
(

0 −Λ�

−Λ 0

)
, (15)

where Λ is a constant real (k × k)-matrix. In this case, operators (13) reduce to the form

L = D2 − (�α,�q)M(�α,�q)� + (�α,�q)MD−1(�α,�q)�x
= D2 + 2�αΛ��q� −D−1(�αΛ��q�)x = D2 + 2u −D−1ux =: ΛKdV , (16)

M = ∂t3 −D3 − 3uD, (17)

where u = �αΛ��q�, and constitute a recursive Lax pair for KdV equation (see (2)–(3) for a = 3)

[∂t3 + K ′τ [u], ΛKdV ] = 0 ⇔ ∂

∂t3
ΛKdV = [ΛKdV , K ′τ ]

⇔ ut3 = K[u] = uxxx + 3uux. (18)

Described process of reduction of the real version of the vector mKdV equation (14) to scalar
KdV equation (18) allows to formulate the following statement.
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Theorem 3. Let: 1) ϕ(x, t3) = (�ϕ, �α), where �ϕ = �ϕ(x, t3) is a k-component real field, R
k � �α

is a k-component real vector.
2) �ϕ is a solution of the linear system

�ϕt3 = �ϕxxx, �ϕxx = �ϕΛ, Λ ∈ Matk×k(R).

3) Ω := C+
∫ x
−∞ ϕ�ϕxdx is a non-degenerate on the left semi-axis (2k)×(2k)-matrix function,

where C =
(

0 Ik

−Ik 0

)
.

Then the function

u(x, t3) := �αΛ�(�ϕ��α − Ik)−1

(
�ϕ� +

∫ x

−∞
�ϕ�

x �ϕ dx�α�
)

is a solution of KdV equation (18).

Proof. We consider

Ω := C +
∫ x

−∞
ϕ�ϕx dx =



∫ x

−∞
�ϕ��ϕx dx Ik

�α��ϕ − Ik 0


 .

In order to prove the Theorem we use the known formula for the matrix A−1 that is inverse the
matrix for the block (2k) × (2k)-matrix A

A =
(

A11 A12

A21 A22

)
→ A−1 =

(
A−1

11 (I + A12T
−1A21A

−1
11 ) −A−1

11 A12T
−1

−T−1A21A
−1
11 T−1

)
,

where T = A22 − A21A
−1
11 A12. In our case A12 = Ik, A22 = 0 := 0k, T = −A21A

−1
11 ⇒

T−1 = −A11A
−1
21 , whence we derive the simple formula for the matrix Ω−1

Ω−1 =

(
0 A−1

21

Ik −A11A
−1
21

)
=




0 (�α��ϕ − Ik)−1

Ik −
∫ x

−∞
�ϕ��ϕx dx (�α��ϕ − Ik)−1


 .

Thus q := ϕΩ−1 = (�α,�q), where

�q =
(

�ϕ + �α

∫ x

−∞
�ϕ��ϕx dx

)
(�α��ϕ − Ik)−1. (19)

The matrix M = CΛ̂− Λ̂�C is of the form M =
(

0 −Λ�

−Λ 0

)
, as Λ̂ =

(
Λ 0
0 0

)
. For the

completion of the proof it is sufficient to refer to formulas (15)–(19) and to the corresponding
results of Theorem 3 for the mKdV equation (14). �

The possibility of application of other reductions in DHcmKP hierarchy requires further
research.
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