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We put forward the multiple point principle as a fine-tuning mechanism that can explain why
the parameters of the standard model have the values observed experimentally. The principle
states that the parameter values realized in Nature coincide with the surface (e.g. the point)
in the action parameter space that lies in the boundary that separates the maximum number
of regulator-induced phases (e.g., the lattice artifact phases of a lattice gauge theory). We
argue that a mild form of non-locality – namely that embodied in allowing diffeomorphism
invariant contributions to the action – seems to appear in any fine-tuning problem. We
demonstrate that the multiple point principle solution to fine-tuning has the very special
property of avoiding the paradoxes that can arise in the presence of non-locality.

1 Introduction

The Multiple Point Principle (MPP) states that fundamental physical parameters assume values
that correspond to having a maximal number of different coexisting “phases” for the physically
realized vacuum. There is phenomenological evidence suggesting that some or all of the about
20 parameters in the Standard Model (SM) that are not predicted within the framework of the
SM correspond to the MPP values of these parameters [1–3]. That these parameters take on
special values (i.e., the multiple point values) poses from one viewpoint a fine tuning problem
(why do constants of Nature take the MPP values). From another viewpoint, assuming the
MPP as a law of Nature leads to a mechanism for fine-tuning. It is the latter viewpoint that
is developed here. Moreover, we shall argue that a mild form of non locality is inherent to
fine-tuning problems in general. We therefore develop a model for the relationship between
fine-tuning, non-locality and the MPP.

2 Fine-tuning seems to require some form of non-locality

Explaining the (dressed) value of the cosmological constant is an example of a fine-tuning prob-
lem that would seem to require the breakdown of locality at least in a mild sense. As with
any fine-tuning problem, the cosmological constant problem calls for a way to make the cou-
pling dynamical in such a way that the values of such couplings are maintained at constant
values (required for translational invariance). But this leads to a problem: if a coupling (e.g.,
the cosmological constant) is dynamical, the demands of a strictly local theory would be that
the bare coupling can only depend on the space-time point in question and indirectly on the
past but certainly not on the future. However, if the bare cosmological constant (that is to be
dynamically maintained at a constant value) immediately following the big bang is to already
have its value fine-tuned once and for all – to say 120 decimal places – to the value that makes
the dressed cosmological constant so small as suggested phenomenologically, we definitely have
a problem with locality.
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The problem is that the bare cosmological constant is relatable to the value of the dressed
cosmological constant only if the details of the dressed cosmological constant (that did not exist
when the bare value was already tuned to the valued required for the dressed vacuum) that will
evolve in the future are known at the time of big bang [4]. We are forced to conclude that a strict
principle of locality is not allowed if we want to have a dynamically maintained bare coupling
and renormalization group corrections of a quantum field theory with a well-defined vacuum.

This suggests models with a mild form of non-locality consisting of an interaction that is
the same between any pair of points in space-time independent of the distance between these
points. Assuming that this sort of non-locality is manifested through a non-local action Ŝnl, this
symmetry between any pair of space-time points (i.e., identical interaction regardless of sepa-
ration) is insured by requiring the invariance of Ŝnl under diffeomorphisms (reparameterization
invariance). The non-local action Ŝnl is a function of functionals Ifj [φ(x)]: Ŝnl = Ŝnl({Ifj [φ(x)})
where Ifj [φ(x)] def=

∫
dx4
√

g(x)fj(φ(x)) and fj(φ) might typically be a Lagrange density e.g.,
fj(φ) = Lj(φ(x), ∂µφ(x)). The symbol φ(x) stands for all the fields (and derivatives of same) of
the theory.

An example of a nonlocal action would be any nonlinear function of the (reparameterization
invariant) functionals Ifi , Ifj , . . .; e.g., a term

∫
d4x

∫
d4y
√

g(x)g(y)φ2(x)φ4(y). Another examp-
le of a non-local (and nonlinear) action term more relevant to this paper is associated with having
fixed values Ifixed fj (fixed in the sense of being a law of Nature) of some extensive quantities
Ifj [φ]. This amounts to having a δ-function term exp(Snl({Ifj}) =

∏
j

δ(Ifj [φ] − Ifixed fj ) in the

functional integration measure and results in the non-locality that, strictly speaking, is inherent
to any microcanonical ensemble (but which often is “approximated away” by using a canonical
ensemble when phase space volume (or functional integration measure) is a sufficiently rapidly
varying function of the extensive quantities).

An extensive quantity Ifj [φ(x)] has a value for each imaginable Feynman path integral history
of the Universe as it evolves from Big Bang to Big Crunch. The value Ifixed fj is by assumption
“frozen in” and cannot change during the lifetime of the Universe. This unchangeable “choice”
Ifixed fj then singles out a subset of all possible Feynman path integral histories that is consistent
with the space-time evolution of our actually realized Universe having Ifj [φ] = Ifixed fj .

An interaction that is the same between the fields at any pair of space-time points – regardless
of separation – would not likely be perceived as a non-local interaction. Rather such space-time
omnipresent fields – a sort of background that is forever everywhere the same – would likely be
interpreted as simply constants of Nature. This feature is reminiscent of baby universe theory
the essence of which is that a physical constant can depend on something and still be a constant
as a function of space-time.

3 The Multiple Point Principle (MPP)

The MPP was originally put forward in connection with theoretical predictions for the values
of the three gauge coupling constants [1, 2]. In addition to the assumption of the MPP, we
also assumed in this first application of MPP our so-called Anti-GUT gauge group GAnti−GUT

which consists of the 3-fold replication of the Standard Model Group (SMG): GAnti−GUT =
SMG⊗SMG⊗SMG def= SMG3 (in the extended version: (SMG×U(1))3) having one SMG factor
for each generation of fermions and gauge bosons. We postulate that GAnti−GUT is broken to
the diagonal subgroup (i.e., the usual SMG) at roughly the Planck scale.

In the original context of predicting the standard model gauge couplings using MPP (origi-
nally referred to as the principle of multiple point criticality), the principle asserts that the
Planck scale values of the standard model gauge group couplings coincide with the multiple
point, i.e., the point that lies in the boundary separating the maximum number of phases in
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the action parameter space corresponding to the gauge group GAnti−GUT. The (Planck scale)
predictions for the gauge couplings are subsequently identified with the parameter values at the
point in the action parameter space for the diagonal subgroup of GAnti−GUT that is inherited
from the multiple point for GAnti−GUT after the Planck scale breakdown of the latter.

The idea was developed in the context of lattice gauge theory and the phases to which we
refer are usually dismissed as lattice artifacts (e.g., a Higgsed phase, a confined or Coulomb-like
phase). Such phases have been studied extensively in the literature for simple gauge groups and
semi simple gauge groups with discrete subgroups (e.g. SU(2) and SU(3)). One typically finds
first order phase transitions between confined and Coulomb-like phases at critical values of the
action parameters.

Taking such lattice artifact phases as physical reflects our suspicion that such phases are inhe-
rent to having a regulator. As a regulator in some form (be it a lattice, strings or whatever)
is always needed for the consistency of any quantum field theory, it is consistent to assume the
existence of a fundamental regulator. The “artifact” phases that arise in a theory with such
a fundamental regulator (that we have chosen to implement as a fundamental lattice) are accord-
ingly taken as ontological phases that have physical significance at the scale of the fundamental
regulator (e.g., lattice). The assumption of an ontological fundamental regulator implies the
existence of monopoles in terms of which the regulator induced phase can also be studied [5].

Finding the multiple point in an action parameter space corresponding to the gauge group
GAnti−GUT is more complicated than for a single SU(2) or SU(3) say. The boundaries between
phases in the action parameter space (i.e., the phase diagram) must be sought in a high di-
mensional parameter space essentially because GAnti−GUT being a non-simple group has many
subgroups and invariant subgroups.

In fact, there is a distinct phase for each subgroup pair (K, H), where K is a subgroup and
H is an invariant subgroup such that H � K ⊆ GAnti−GUT. An element U ∈ GAnti−GUT can be
parameterized as U = U(g, k, h) where the Higgsed (gauge) degrees of freedom are elements g
of the homogeneous space GAnti−GUT/K. The (un-Higgsed) Coulomb-like and confined degrees
of freedom are respectively the elements k of the factor group K/H and the elements h ∈ H.

4 A familiar analogy to the MPP as a fine-tuning mechanism

Some important features of the MPP as a fine-tuning mechanism can be illustrated using an
analogy to the familiar system in which the solid, liquid and vapor phases of water coexist.
This occurs at the “triple point” of water, i.e., at the “triple point” values of temperature and
pressure. Because the transitions between these three phases are all first order, there is a whole
range of combinations of the extensive variables energy and volume for which the system can only
be realized by having the coexistence of the ice, liquid and vapor phases. But these three phases
coexist only for the triple point values of temperature and pressure, so there is a whole range
of combinations of energy and volume that map onto the triple point values of the conjugate
intensive variables temperature and pressure with the result that these variables are fine-tuned
to the triple point values. In this illustrative analogy, the triple point of water in the phase
diagram spanned by the intensive parameters temperature and pressure is analogous to the
multiple point. As already stated, the multiple point is the (or a) point in the phase diagram
that “touches” the maximum number of phases. In a phase diagram spanned by D intensive
parameters (couplings), a generic multiple point can be in contact with up to D + 1 phases (in
the illustrative example, D = 2 and the triple point is in contact with the D + 1 = 3 phases ice,
liquid and vapour). In a non-generic situation, the multiple point can be in contact with more
than D + 1 phases (e.g., accidently or due to symmetries).
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For ease of illustration, consider now an even simpler system consisting of nH2O moles of
H2O in which just the ice and liquid phases coexist (at constant pressure). Such a system is
unavoidably realized (and the temperature fine-tuned to 0◦ C = 273.15◦ K) for any value of the
energy density ρE = E/VnH2O (E and VnH2O are respectively the energy and volume of the nH2O

moles of H2O) in the finite interval

nH2O

VnH2O

∫ 273◦ K

0◦ K
Cp,ice(T )dT < ρE <

nH2O

VnH2O

(∫ 273◦ K

0◦ K
Cp,ice(T )dT + (molar heat of melting)

)

(Cp,ice is the molar heat capacity of ice at constant pressure (e.g., 1 atm.)). (1)

For any ρE in this interval, the system cannot be realized as a single phase but rather only as
an equilibriated mixture of ice and liquid water. Even choosing ρE at random there is a finite
chance of landing in this interval in which case the temperature will be fine-tuned to 273.15◦ K.

5 The history of our universe as a fine tuner

Consider an analogy between the (3-dimensional) ice-water system with ρE in the interval of
equation (1) and our 4-dimensional universe with the value of an extensive variable Ifj [φ(x)] def=∫

dx4
√

g(x)fj(φ(x)) (with fj any function of φ – see also Section 2 for notation) primordially
fixed at a value Ifixed fj that can only be realized as a combination of two (for the sake of
example – really there could be more than two) coexisting phases i.e., two degenerate vacuum
states at field values that we denote as φus and φother where we take φus < φother. Here we are
anticipating the introduction of an effective potential Veff that has relative minima at the field
values φus and φother. In 4-space, one generic possibility for having coexistent phases would be
to have a phase with φus in an early epoch including, say, the universe as we know it and a
phase with φother in a later epoch:

Ifixed fj = fj(φus)(tignit − tBB)V3 + fj(φother)(tBC − tignit)V3, (2)

where tignit is the “ignition” time (in the future) at which there is a first-order phase transition
from the vacuum at φus to the later vacuum at φother. V3 is the 3-volume of the universe. The
value of the “coupling constant” conjugate to Ifixed fj gets fine-tuned (unavoidably by assumption
of the coexistence of the two phases separated by a first order transition) by a mechanism that
also depends on a phase that will first be realized in the future (at tignit). Such a mechanism is
non-local. Note, in particular, that the right-hand side of equation (2) depends on tignit.

In order to formally define a “coupling constant” (intensive quantity) conjugate to some
extensive quantity (e.g., Ifixed fj ), we introduce non-locality more abstractly. Let us restrict the
non-local action Ŝnl = Ŝnl({Ij [φ(x)]}) to being a (also reparameterization invariant) non-local
potential Vnl that is a function of (not necessarily independent) functionals

Vnl
def= Vnl(Ifi [φ], Ifj [φ], . . .).

Define now an effective potential Veff such that

∂Veff(φ(x))
∂φ(x)

def=
δVnl({Ifj [φ]})

δφ(x)

∣∣∣
near min

=
∑

i

(
∂Vnl({Ifj})

∂Ifi

δIfi [φ]
δφ(x)

) ∣∣∣
near min

=
∑

i

∂Vnl({Ifj})
∂Ifi

∣∣∣
near min

f ′
i(φ(x)). (3)
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The subscript “near min” denotes the approximate ground state of the whole universe, up to
deviations of φ(x) from its vacuum value (or vacuum values for a multi-phase vacuum) by any
amount in relatively small space-time regions. The solution to equation (3) is

Veff(φ) =
∑

i

∂Vnl({Ifj})
∂Ifi

fi(φ). (4)

We can identify the
∂Vnl({Ifj

})
∂Ifi

as intensive quantities conjugate to the Ifi .

Consider now the effective potential (4) in the special case that Vnl({Ifj}) = Vnl(I2, I4)
def=

Vnl(
∫

d4x
√

g(x)φ2(x),
∫

d4y
√

g(y)φ4(y)) in which case, (4) becomes

Veff =
∂Vnl(I2, I4)

∂I2
φ2(x) +

∂Vnl(I2, I4)
∂I4

φ4(x) def=
1
2
m2

Higgsφ
2(x) +

1
4
λφ4(x), (5)

where the right-hand side of this equation, which also defines the (intensive) couplings m2
Higgs

and λ, is recognised as a prototype scalar potential at the tree level. Of course, the form of Vnl

is, at least a priori, completely unknown to us, so – for example – the coupling constant m2
Higgs

cannot be calculated from equation (5). The potential of equation (5) with m2
Higgs < 0 has an

asymmetric minimum – at, say, the value φus resulting in spontaneous symmetry breakdown in
the familiar way. This is just standard physics (without non-locality).

Actually, we want to consider the potential Veff having the two relative minima φus and φother –
both at nonvanishing values of φ – alluded to at the beginning of this section. The second
minimum comes about at a value φother > φus when radiative corrections to (5) are taken into
account and the top quark mass is not too large [6,7,3]. Which of these vacua – the one at φus

or φother – would be the stable one in this two-minima Standard Model effective Higgs field
potential, depends on the value of m2

Higgs. Since I2 and I4 are functions of tignit (as seen from

equation (2) with fj = φ2 or φ4), m2
Higgs

def= ∂Vnl({I2,I4})
∂I2

is also a function of tignit.
Let us first use “normal physics” to see how the relative depths of the two minima of the

double well are related to m2
Higgs and to tignit. It can be deduced from [7] that a large negative

value of m2
Higgs corresponds to the relative minimum Veff(φother) being deeper than Veff(φus)

(in which by assumption the Universe starts off following Big Bang) than for smaller negative
values of m2

Higgs (see Fig. 1). It can also be argued quite plausibly that a minimum in Veff at
φother much deeper than that at φus would correspond to an early (small) tignit inasmuch as
the “false” vacuum at φus would be very unstable. However, as the value of the potential at
φother approaches that at φus, tignit becomes longer and longer, and approaches infinity as the
values of Veff at φus and φother become the same. The development of the double well potential
and m2

Higgs as a function of tignit is illustrated in Fig. 1. Note that the larger the difference
|Veff(φother) − Veff(φus)| the more the realization of, say, Ifixed 2 will in general depend on tignit.
If Veff(φus) = Veff(φother), tignit plays no role in realizing e.g. Ifixed 2, and the value of m2

Higgs

becomes independent of tignit.

6 Avoiding paradoxes arising from non-locality

In general, the presence of non-locality leads to paradoxes. While the form of the non-local
action (or potential Vnl in this discussion) is unknown to us, we make the 4 generically represen-
tative guesses portrayed as the 4 non-locality curves in Fig. 1. In particular, non-locality curves
having a negative slope as a function of tignit lead to paradoxes in the following manner. Con-
sider the non-locality curve in Fig. 1 drawn with bold line that is redrawn in a rotated position
in Fig. 2. Let us make the assumption that tignit is large and see that this leads to a contra-
diction. Assuming that tignit is large, it is seen from the non-locality function in Fig. 2 (call it
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Figure 1. The development of the double well
potential and mHiggs as a function of tignit. Note
that all the more or less randomly drawn non-
locality curves intersect the “normal physics”
curve near where the vacua are degenerate (i.e.,
the MPP solution).

Figure 2. Many non-locality curves could lead
to paradoxes similar to the “matricide” paradox.
Such paradoxes are avoided if the value of mHiggs

is fine-tuned to the multiple point critical value.
This corresponds to the intersection of the “nor-
mal physics” curve with the “possible non-loca-
lity” curve.

m2
Higgs nl(tignit) to distinguish it from the “normal physics” m2

Higgs(tignit)) that this implies that
the “normal physics” m2

Higgs has a large negative value. But a large negative value of m2
Higgs

corresponds in “normal physics”to a (false) vacuum at φus that is very unstable and therefore to
a very short tignit corresponding to a rapid decay to the stable vacuum at φother. So the paradox
appears: the assumption of a large tignit implies a small tignit. This happens because in general
m2

Higgs(tignit) �= m2
Higgs nl(tignit) and is akin to the “matricide” paradox encountered for example

when dealing with “time machines”. It is well-known [8–10] that Nature avoids such paradoxes
by choosing a very clever solution in situations where these paradoxes lure.

In the case of the paradoxes that can come about due to non-locality of the type considered
here, a clever solution that avoids paradoxes is available to Nature in the form of the Multi-
ple Point Principle (MPP). The MPP solution corresponds to the intersection of the “normal
physics” curve and the “non-locality curve” in Fig. 2. because here the vacua at φus and φother

are (essentially) degenerate. But at this intersection point, m2
Higgs(tignit) = m2

Higgs nl(tignit) so
the paradox is avoided. So the paradox is avoided at the multiple point. But at the multiple
point, an intensive parameter has its value fine-tuned for a wide range of values of the conjugate
extensive quantity. Fine-tuning can therefore be understood as a consequence of Nature’s way
of avoiding paradoxes that can come about due to non-locality.

It should be pointed out that the paradox-free solution corresponding to the intersection of
the two curves in Fig. 2 occurs for a value of m2

Higgs corresponding to “our” vacuum at φus

being very slightly unstable. The value of m2
Higgs corresponding to the vacua at φus and φother

being (precisely) degenerate is slightly less negative than that corresponding to the multiple
point value of m2

Higgs at the intersection of the curves. Note that the multiple point value of
m2

Higgs is very insensitive to which “guess” we use for the non-local action. Indeed all the “non-
locality” curves in Fig. 1 intersect the “normal physics” curve at values of m2

Higgs that are tightly
nested together. The reason for this is that m2

Higgs is a very slowly varying function of tignit as



The Multiple Point (Criticality) Principle 635

m2
Higgs(tignit) approaches the value corresponding to degenerate vacua. The more nearly parallel

the “normal physics” and the “non-locality” curves at the point of intersection, the smaller are
the (paradoxical) effects of non-locality. For a point of intersection at values of tignit sufficiently
large that (the “normal physics”) m2

Higgs(tignit) ≈ m2
Higgs(∞), the non-locality effects disappear

as the curves become parallel since both curves become independent of tignit. If the curves were
parallel, there would also be the possibility that these do not intersect, in which case there would
be no “miraculous solution” that could avoid the paradoxes imbued in having non-locality.

If the interval |φ2
other–φ2

us| is large (e.g. of the order of the largest physically conceivable scale
(Planck?) if tuning is to be maximally effective) and if Ifixed 2 falls not too close to the ends of
this interval, then tignit will be something of the order of half the life of the universe. Actually,
the approximate degeneracy of the vacua Veff(φus) ≈ Veff(φother) may be characteristic of the
temperature of the post-Big Bang universe in the present epoch and not characteristic of the
high temperature that prevailed immediately following the Big Bang. At high temperatures, the
free energy is considerably smaller than the total energy if the entropy is large enough. A phase
with a large number of light particles – for example a Coulomb-like vacuum such as the “us”
phase in which we live – could very plausibly be so strongly favoured at high temperatures that
other phases – for example the “other” vacuum – simply disappeared at the high temperature
of the universe immediately following the Big Bang.

If this were to have depleted the universe of the phase having φother at high temperatures, it
would indeed be difficult to re-establish it in a lower temperature universe even if the vacuum
at φus were to be only meta-stable and the vacuum at φother were the true vacuum at the lower
temperature. Such an exchange of the true vacuum is indeed a possibility in going to lower
temperatures inasmuch as the difference between the total energy and the free energy decreases
in going to lower temperatures. Accordingly, this difference becomes less effective in favoring a
Coulomb-like phase at the expense of a phase with heavier particles.

At this point we point out that when we say the “vacuum at φus” and “vacuum at φother” we
are thinking of the approximation φ = φus and φ = φother almost everywhere, and at all times
in respectively the early and late epochs of the universe in our discussion. More correctly, we
should talk about vacuum densities 〈φ(x0, �x)〉us and 〈φ(x0, �x)〉other where

〈φ(x0, �x)〉us
def=

1
Vus

∫ tignit

tBB

dx0

∫
d3�x
√

g(x)φ(x0, �x),

where Vus denotes the the 4-volume of the universe in the first epoch. 〈φ(x0, �x)〉other is defined
analogously. The more correct 〈φ(x0, �x)〉us is mentioned here so as not to confuse the reader
when we talk about changes in Veff(φus(x0, �x)) as the universe cools following Big Bang.

Recall now that the value of say of Ifixed 2 can easily (i.e. as a generic possibility) assume
a value that requires that the universe to be in the “phase” with 〈φ(x0, �x)〉other during a sizeable
part of its life, if the universe is to have multiple point parameters in the course of its evolution
(as required for avoiding the paradoxes that accompany non-locality). How can Nature overcome
the energy barrier that must be surmounted in order to bring about the decay of the slightly
unstable (false) vacuum with 〈φ(x0, �x)〉us to the vacuum with 〈φ(x0, �x)〉other? Even producing
just a tiny “seed” of the “true” vacuum having 〈φ(x0, �x)〉other would be very difficult. What
miraculously clever means can Nature devise so as to avoid deviations from a multiply critical
evolution of the universe? One ingenious master plan that Nature may have implemented is
the creation of life with the express “purpose” of evolving some (super intelligent?) physicists
that could ignite a “vacuum bomb” by first creating in some very expensive accelerator the
required “seed” of the “correct” vacuum having 〈φ(x0, �x)〉other that subsequently would engulf
the universe in a (for us) cataclysmic transition to the “other” phase thereby permitting the
continued evolution of a “paradox-free” universe!
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7 Conclusion

We attempt to justify the assertion that fine-tuning in Nature seems to imply a fundamental
form of non-local interaction. This could be manifested in a phenomenologically acceptable form
as everywhere in space-time identical interactions between any pair of space-time points. This
would be implemented by requiring the non-local action to be diffeomorphism invariant.

Next we put forth our multiple point principle which states that coupling parameters in
the Standard Model tend to assume values that correspond to the values of action parameters
lying at the junction of a maximum number of regulator induced phases (e.g., so-called “lattice
artifact phases”) separated from one another in action parameter space by first order transitions.
The action which of course is defined on a gauge group (e.g., the non-simple SM gauge group)
governs fluctuation patterns along the various subgroup combinations (K, H) with H � K ⊆ G
that characterize the phases that come together at the multiple point. We then consider extensive
quantities that are functions of functionals Ifj [φ(x)] that are essentially Feymann path histories
of the Universe for functions fj(φ) of the fields φ(x) and derivatives of these fields. We then think
of the generic situation in which these extensive quantities can happen to be fixed at values that
require the universe to be realized as two or more coexisting phases. We draw on the analogy
to the forced coexistence of ice and liquid water that occurs for a whole range of possible total
energies because of the finite heat of melting (first order phase transition). With our multiple
point principle, the intensive quantities (couplings) conjugate to extensive quantities fixed in this
way become fine-tuned in a manner analogous to the fine tuning of temperature to 0◦ C when
the total energy of a system of H2O can only be realized as coexisting ice and liquid phases.

One generic way of having coexisting phases in a quantum field theory in 3+1 dimensions
would be to have different phases in different epochs of the lifetime of the Universe with phase
transitions occurring at various times in the course of the lifetime of the Universe. If the
transitions were first order, one would have fine-tuning of (intensive) couplings conjugate to
extensive quantity values that can only be realized by having coexisting (i.e., more than one)
phases. But such a fine-tuning would involve non-locality: the fine-tuned values of coupling
constants would depend on future phase transitions into phases that do not even exist at the
time such couplings are fine-tuned.

Even non-locality of this sort (i.e., non-locally manifested as a diffeomorphism invariant
non-local action) can lead to paradoxes of the “matricide paradox” type. We argue that such
paradoxes are avoided when Nature chooses the multiple point principle solution to the problem
of fine-tuning.
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