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A discussion of integrable structures of complex analysis is presented. It is shown that
a conformal map z(w) of the exterior of the unit disc to the exterior of a simply-connected
domain and a map E(w’l) are conjugate variables with respect to some Poisson structure.
Deformations of the functions z(w), Z(w™") with respect to the harmonic moments of the
domain are described by the Hamiltonian equations. These equations are known as the
Lax—Sato equations.

1 Introduction

Basic notions of the complex analysis and the physics have deep inter-connections. It is well
known that an analytic function of complex variable may be considered as a complex potential
of plane vector field and this fact leads to construction of the conformal field theory. But it
is less known that a conformal map may be considered as an integrable Hamiltonian system,
although this connection between complex analysis and mechanics was established some years
ago. In our report we present a pedagogical introduction to this problem.

2 Moments of a curve (domain).
Generating function of moments

We designate a curve on complex plane z as a closed analytic curve if it is an analytic image
of circle, i.e. if it is parametrized by a function z(w) that is analytic in a ring a < |w| < b
containing a circle |w| = 1.

Let us consider on a complex plane z a closed analytic curve I' and designate by D4 and D_
internal and external domains with respect to this curve. We shall assume that the point z = 0
belongs to the domain D, .

For the curve I' (or domains Dy and D_) we introduce two sets of the harmonic moments,
namely, the external moments {to, 1, ...},

1 1
ty = —/ d?z, ty = —— 27 k%2, k>1,
T Jp_ 7k Jp_

and the internal moments {vg, vy, ...},

_2 2 1 k12
vy = log |z]d*z, v = 2¥d*z, k>1.
T JDy T JDy

Moments tg, vy are real numbers, other moments are complex numbers.
Let us introduce a generating function of moments F' and 7-function

1
leogT:——/ d22/ d?2'log
T JDy Dy

The following theorem is valid.
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Theorem 1. A differential of the generating function of moments F (or the logarithm of T-
function) is of a form

dF = dlogt = wodto + Y _ (vpdty + Tpdy) ,
k=1

and it allows to express the internal moments in terms of external ones,

_8_F_8log7 y _8_F_810g7 - _(9_F_810g7
oty oty Mot oty YT ot ot

Vo

Thus, the sets of external and internal moments are not independent, there is connection
between them. Any of these sets of moments defines uniquely the curve I' (or domains D
and D_) [1-3].

3 The Schwarz function S(z) and its potential (z)

Let us present the equation g(z, y) = 0 of an analytic curve I' in complex coordinates, g(3£2, 457)

= 0, and resolve the latter one with respect to the variable z. We obtain the equation of the
curve I' in the following form

zZ=95(2).

The function S(z) is called the Schwarz function of the curve I'. This function is analytic in
a strip that contains the curve [4].
The Schwarz function maps a point z into the conjugate one S(z) with respect to the curve I'.
On the curve itself the Schwarz function coincides obviously with the complex conjugation.
According to definition the Schwarz function cannot be an arbitrary one, it must satisfy the
so called unitary condition

z=5(5(2)),

i.e. the inverse function must coincide with with the complex conjugated one. We remark here
that if a function f(z) is defined with the Laurent series f(z) = Z]- f;#7, then f(z) = Ej szj.

Theorem 2. The Laurent series for the Schwarz function S(z) of a curve T is of the form

o0 o0 t o0

_ _ 0 ke

S(z) = E skzklzg ktkzk1+;+g vz Rl
k=1 k=1

k=—o00

i.e. the Laurent series coefficients of the Schwarz function are expressed in terms of the moments
of the curve.

Proof. Let us assume that a function f(z) is analytic in the domain D4 . Then for the function
9(z) = f(2)Z = f(2)S(z) the Green-Ostrogradskii formula

09(2) 5 1 /
— = :l:_
/i 5 d?z 5 Fg(z)dz,

leads to the relation

F(2)d%z = i% /F £(2)S(2)dz.

Dy
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Using this formula in the case f(z) = 2*, k € Z, we can express the moments of curve I in terms
of the Schwarz function S(z),

_ 1
- 27k

1
—k _ k
/Fz S(z)dz, Uk =5 Fz S(z)dz.

tx

Substituting in integrals the Schwarz function in the form of its Laurent series,

S(z) = Z szt L

k=—o0

and calculating integrals by means of the orthogonality relation

_— Jdz = 6.
[ Pdz =61
27 Jp P

we obtain
s0 = to, sk = ktg, Sk = Uk, kE>1.

Thus the moments of the curve I' are the coefficients of the Laurent series for the Schwarz
function S(z),

[o.¢] o t o
_ _ 0 ke
S(z) = E skzklzg ktkzk1+z+g vz R |
k=1 k=1

k=—o00
Now we introduce the function 2(z) that is a potential for the Schwarz function,
S(z) = 0.(z).
According to definition we can present the function ©(z) in a form of the Laurent series,

= 1 v
Qz) = Ztkzk — 5% +tologz — fz*k,
k=1 k=1

and hence as a sum of the following functions,
1
Q(z) = A (2) + Q) (z) - 5005

where the functions Q(i)(z) are analytic in domains D4 appropriately. Here we have used the
notations

S 1
Q) (z) = Ztkzk = /D log <1 — 5) d?,
k=1 -

- 1
Q) (2) = tglog z — Ok =k — 2 / log (= — 2') d?z.
el k 7T Dy

At the curve I' we can write down the potential £2(z) in the form
1
Qz) = §]z|2 +i2A(z2), zel,

where |z]| is the distance from the origin of coordinates to the point z, and A(z) is the area of
the domain D, bounded with a ray ¢ = arg z and a real line.
The following theorem is valid.
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Theorem 3. The differential of the function (z) is of the form

dQ = Sdz + logwdto + Y (Hy dty — Hy, dty)
k=1

where

Hy(2) = 0, Q(2) = (" (w)), + = (F(w)),,

Ty(2) = ~0,,0(2) =~ ((w))_ ~ 3 (W),

Here the symbol (f(w))+ designates the part of the Laurent series that contains summands only
with positive (negative) powers w, and (f(w))o designates the summand with w®.

4 Conformal maps as Hamiltonian systems
with respect to moments

Let us consider the disc of unit radius U(0,1) on a plane w, and the domain D on a plane z.
Let us consider the univalent analytic function z(w), that maps conformally a complement of
the unit disc to a complement of the domain D. In order to emphasize a dependence of this
function on the domain D it would be reasonable to write down the function in the form z(w, D)
or z(w, tg, t1,...) since moments (tg,t1,...) of the domain D define it uniquely. We shall use the
latter designation.

For arbitrary functions f(w,tg), g(w,to) let us define the Poisson brackets as follows

of Og dg ﬁ_w(afag 09(%")_

8logw8_tg_8logw8to N dwdty Ow oty

{fi9} =

It is easy to verify that according to definition these Poisson brackets have the following pro-
perties:
1)Antisymmetry

{fag} = _{ga f}7

2) Linearity

{1+ fo 9} ={f1.9} +{f2, 9},
3) The Jacobi identity

{£i{g,n}} =A{g,{h. f1} = {h, {f, 9}}-

We can present the functions

by means of series
oo [e.e]
_ ap~d = (w1 = pop— 1 o)
Z(w) =rw+ Y ujw 7, Z(w ™) =rw T ) wud,
j=0 7=0

where 7 is the so called conformal radius.
Using the latter expressions we can prove the following theorem.
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Theorem 4 ([5]). A pair of variables (logw,ty) and (z(w,to),f(w_l,to)) are canonical va-
riables with respect to the Poisson brackets defined above,

{z(w, o),z (wil, to)} =1.

Proof. According to definition of the Poisson bracket

ooy (92w, t0) 0% (wTt o) 97 (' to) Dz(w, to)

Now using the formula z(w™',t9) = S(z(w, to)) we get

0z (w1, 1) _08(z, 1) n 05(z,t0) 0z(w, tp) 9z (w1, 1) _ 0S(2,t0) 0z(w, to)
Oto Ot 0z oty ow 0z ow

and substituting these expressions in the Poisson bracket we obtain the equality

0S(z,tg) 0z(w, tg)
Jto ow

{z(w, o),z (wil, to)} =w
The r.h.s. of this equality due to

o0 o0 o
-1, to ke —j
S(z) =Y k4 DS g d —rw+ > ujw
(2) 2 Kz B (% , an z(w) = rw 2 ujw 7,

is 1 plus positive powers in w.
Similarly using the formula z(w) = S(z(w™')), we prove that

95 ty) 02 (w™t,t0) .

{z(w,t0),Z (w " t0) } = — dto ow

The r.h.s. of this equality due to
o0 t o [e.9]
G(2) = [ = —k—l, d S (=) — yorpy—1 = j’
(2) ,;_1 k2T A+ . + kg_l V2 an Z(w™) =rw Tt + jg_o ujw

is 1 plus negative powers of w.
Comparing two expressions for the Poisson bracket we prove the theorem. |

Thus we established the symplectic structure of the conformal map.

Theorem 5 ([5]). The deformation of the conformal map z(w) as a result of variation of
moments {t}72, is described with the so called Laz—Sato equations

0z(w)
Otk

9% (w)
Oty

= {Hg, z(w)}, = {Hk,i(w_l)}.

Self-consistency conditions of the Laz—Sato equations are

atkHl — 8tlHk + {Hk, Hl} =0.
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5 An example: ellipse

Let us consider an example when the curve I' is ellipse and is characterized with three external
moments tg, t1, ta, all other moments are equal to zero, t3 =t4 =--- = 0.

An ellipse with center at a point z = 0 and half-axes a, b along coordinate axes x, y is
described by the equation

Three non-zero external moments of the ellipse in terms of half-axes a, b looks as follows,

_lafb
 2a+0b

tg = ab, t1 = 0, ta

All internal moments of the ellipse are non-zero and the first two of them are of the following
form,

2t2t5
v1 =0 Vg = e,
1 y 2 1—4t%

The Schwarz function of ellipse is

a? + b? 2ab
2027 2

S(z) =

22 — (a2 — b?),
and its Laurent series looks as follows,
t(] (%)
S(z)=2tez+—+ 5+
z oz

A logarithm of 7-function is

1 to 3
logT = =2 (1 -2 .
8T 20(°g1—t§ 2)

The conformal map of a complement of unit disc to a complement of ellipse is the function

z(w) = rw + ugw !

with coefficients

t
2 0
re =

1
4

(a+b)?  ui=

The first two Hamiltonians are
H; = rw, Hy = rw? + UL,

and the appropriate Hamiltonian flows do not change the form of disc. The Lax—Sato equations
with the Hamiltonians Hs, Hy, ... describe a deformation of the disc into the ellipse.
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6 The Dirichlet boundary problem

The Dirichlet boundary problem
Au(z) = 40,0zu(z) = f(z), =z € D; u(z)|op = g(2),

has a solution
1 - 1 0
u) = 5= [ 10GE 0w+ 5 [ a05n6 O

where G(z, () is the Green function which is uniquely defined by the following properties:

1) G(z,¢) — log |z — ¢| is a symmetric, bounded and harmonic function in both arguments
everywhere in the domain D,

2) G(z,¢) = 0 if any one of their arguments is at the boundary of the domain D.

We can present the Green function by the expression

G(z,¢) = |w(z )],

where w(z, () is the analytic function which describe a conformal map of the domain D to the
unit disc U.

According to J. Hadamard [6,7] variations of the Green function under small deformations
of the domain looks as follows

1

6620 =5 [

OnG(2,1)0nG(¢,n)0h(n)|dn,

where dh(n) is a shift from the curve 9D to the deformed curve along the normal n at the point
n € ab.

It is possible to write down the deformations dh(n) of the domain boundary in terms of
harmonic moments of the domain and as a result of that to express the variations of the Green
function in these terms.

7 Quantization

Now let us quantize the above Hamiltonian structure and introduce respectively basic quantities
of the quantized theory.
The Lax operators are

0 = d
L = r(tg) exp (ﬁa—to) + kZOUk(tO) exp <—k:ha—to) ,

_ ) > 9\ _
L =exp <_h6_to> r(to) + g::oexp <kh6—t0> ug(to)-
The Hamiltonians are
1 _ _
Hy = (L%, + (L%, Hi= (L") +5(T),

where the symbol (L"’) . means positive (negative) parts of series for the shift operator exp (h(%) .

The Lax—Sato equations attain now the following form

OL oL —
hf)—tk = [Hy, L], ha—fk = [Hy, L].
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The spectrum of Lax operator is defined by the equation
LY =2V,

and the appropriate wave function can be presented as follows,

2k

- 1 0
\IJ(Z,t(),t17...) :Zﬁ 1t07{1(t0,t1,...)exp ﬁkzwtkzk exp hkz>0 Ta—tk Tﬁ(t()ytla'--)-

By means of the last expression we introduce the function
Tr(to, t1, .. .).
The commutator
[L,L]=h

is called the selection rule or the string equation
In the semiclassical limit 7 — 0 we get the following correspondence with the notions con-
sidered above:

W = exp <hi> — w, L — z(w),

Q
U — exp <%> , Th — exp <log %) ,
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