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The fundamental solution is used for axial symmetric transient problems in BEM formulati
on. To check the formulation, a sample problem has been solved in plane strain. The strong
singularity of the resulting integral equation has been reduced to weak form. New formula-
tion provides to determine the initial velocity for a transient loading. Some differences have
been introduced for the use of generalized functions.

1 Introduction

The aim of this study is to construct an elastodynamic state in an unbounded medium. It
is appropriate to use for axial symmetric problems of elastodynamics in reciprocal theorem as
fundamental solutions. After finding this elastodynamic state, a problem was solved. For the
problem, the presented formulation leads to an integral equation. A numerical approximation
is introduced for the solution of this integral equation.

2 A singular elastodynamic state for the solutions
of axially symmetric elastodynamic problems

In plane elasticity, field variables are independent of the coordinate x3. Starting point for
construction of the necessary singular solution for plane problems will be a point load of magni-
tude δ(t) in the ek∼ (k = 1, 2) direction, at the position y

∼
(y1, y2, y3). Corresponding functions F k

∼
and Gk

∼ can be written as follows [1]:

F k
∼ =

1
4πr

{
H

(
t− r

c1

)(
t− r

c1

)}
ek∼ , (1)

Gk
∼ =

1
4πr

{
H

(
t− r

c2

)(
t− r

c2

)}
ek∼ , (2)

ρ-2 = (x1 − y1)2 + (x2 − y2)2, r =
√
ρ-2 + (x3 − y3)2. (3)

It is considered that body force f
∼

is acting along a line on which y3 varies only between the limits

−∞ and +∞. The corresponding functions F-
k

∼ and G-
k

∼ to this line load is obtained between the
limits [2]

F
- k

∼ =
∫ +∞

−∞
F k
∼ dy3, G

- k

∼ =
∫ +∞

−∞
Gk
∼ dy3. (4)

But in equations (4), the limits of the integrals are not exactly correct. At a position defined
by x∼ , signals propagating with velocities do, however, not arrive until c1t = r and c2t = r,
respectively, which implies that the limits of integration of equations (4) will be appropriately
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modified. By changing limits and performing integrals, F-
k

∼ and G
- k

∼ functions have been found
out as follows:

F
- k

∼ =
1
2π


H

(
t− ρ-

c1

)
t ln

c1t+
√
c21t

2 − ρ-2

ρ-
− 1
c1

√
c21t

2 − ρ-2




 ek∼

, (5)

G
- k

∼ =
1
2π


H

(
t− ρ-

c2

)
t ln

c2t+
√
c22t

2 − ρ-2

ρ-
− 1
c2

√
c22t

2 − ρ-2




 ek∼

. (6)

And, corresponding displacement vector and stress tensor are

u-∼
k = ∇

∼
∇
∼
· (F- k

∼ ) −∇
∼
×∇

∼
× (G-

k

∼ ), (7)

τ- k
ij = λu- k

l,l δij + µ(u- k
i,j + u- k

j,i). (8)

In an infinite medium, the pair of u-∼
k and τ-∼

k are the displacement vector and the stress tensor
at a point x∼(x1, x2) due to a body force acting at a specific point y

∼
(y1, y2) in the ek∼ direction

and of magnitude δ(t). This formulation can also be found in Achenbach’s book [2] in terms of
g(t) function. It is possible to construct a simpler formulation for axial symmetric problems.

Here, cylindrical coordinates will be used. Starting point will be F-
k

∼ and G
- k

∼ . In cylindrical
coordinates, the base vector eR1∼ on a point y1∼

(R1, θ1) can be expressed as in terms of cartesian
base vectors, e1∼

and e2∼
as follow:

eR1∼
= cos θ1 e1∼

+ sin θ1 e2∼
. (9)

Now, two singular body force, both having magnitude g(t)/2R1, acting at the points y1∼
and

y2∼
(R1, π+θ1) in the directions of eR1∼ and eR2∼ , respectively, are considered. F-

S

∼ and G-
S

∼ functions
at a point x

∼
(R, θ) due to these double forces become:

F
-S

∼ =
1

4πR1


H

(
t− ρ1

-

c1

) t ln
(
c1t+

√
c21t

2 − ρ1
2-
)

ρ1
- − 1

c1

√
c21t

2 − ρ1
2-




 eR1∼

+
1

4πR1


H

(
t− ρ2

-

c1

) t ln
(
c1t+

√
c21t

2 − ρ2
2-
)

ρ2
- − 1

c1

√
c21t

2 − ρ2
2-




 eR2∼

, (10)

G
-S

∼ =
1

4πR1


H

(
t− ρ1

-

c2

) t ln
(
c2t+

√
c22t

2 − ρ1
2-
)

ρ1
- − 1

c2

√
c22t

2 − ρ1
2-




 eR1∼

+
1

4πR1


H

(
t− ρ2

-

c2

) t ln
(
c2t+

√
c22t

2 − ρ2
2-
)

ρ2
- − 1

c2

√
c22t

2 − ρ2
2-




 eR2∼

, (11)

ρ1
2- = R2 +R2

1 − 2RR1 cos(θ − θ1), (12)

ρ2
2- = R2 +R2

1 + 2RR1 cos(θ − θ1). (13)

After dividing equations (10) and (11)by πR1 and integrating on the half cylindrical surface
whose radius R1 from θ1 = 0 to θ1 = π, approaching R1 to zero under the integral sign before
performing the integration, the functions F

′
∼ and G

′
∼ which arise from a distributed body force in
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the direction of er∼
at every point on the cylindrical surface whose radius is R1 = 0, are obtained

as follows:

F ′
∼ =

1
4π

{
H

(
t− R

c1

)(
1
c1

)[√
c21 t

2 −R2

R

+ δ

(
t− R

c1

)(
1
c21

)[
c1t ln

(
c1t+

√
c21t

2 −R2

R

)
−
√
c21t

2 −R2

]]}
eR∼ , (14)

G′
∼ =

1
4π

{
H

(
t− R

c2

)(
1
c2

)[√
c22t

2 −R2

R

+ δ

(
t− R

c2

)(
1
c22

)[
c2t ln

(
c2t+

√
c22t

2 −R2

R

)
−
√
c22t

2 −R2

]]}
eR∼ . (15)

And, by substituting equations (14) and (15), the expressions of potentials ϕ
′
, ψ

′

∼
, nonzero

components of displacement vector, strain and stress tensor, corresponding to this loading, are
obtained as follows:

ϕ′ =
1
4π

{
H

(
t− R

c1

)(
1
c1

)[
− 1√

c21 t
2 −R2

]

+ δ

(
t− R

c1

)(
1
c21

)[
c1t ln

c1t+
√
c21t

2 −R2

R
− 3

√
c21t

2 −R2

R

]

+δ·
(
t− R

c1

)(
1
c31

)[
−c1t ln c1t+

√
c21t

2 −R2

R
+
√
c21t

2 −R2

]}
, (16)

ψ′
∼

= 0∼, (17)

u′R =
1
4π

{
H

(
t− R

c1

)(
1
c1

)[
− R√

c21t
2 −R2

3

]

+ δ

(
t− R

c1

)(
1
c21

)[
−c1t
R2

ln
c1t+

√
c21t

2 −R2

R
+ 2

√
c21t

2 −R2

R2
+

3√
c21 t

2 −R2

]

+ δ·
(
t− R

c1

)(
1
c31

)[
−c1t
R

ln
c1t+

√
c21t

2 −R2

R
+ 4

√
c21t

2 −R2

R

]

+ δ··
(
t− R

c1

)(
1
c41

)[
c1t ln

c1t+
√
c21t

2 −R2

R
−
√
c21t

2 −R2

]}
, (18)

ε′RR =
1
4π

{
H

(
t− R

c1

)(
1
c1

)[
− 1√

c21t
2 −R2

3 − 3R2√
c21t

2 −R2
5

]

+ δ

(
t− R

c1

)(
1
c21

)[
2
R3

c1t ln
c1t+

√
c21t

2 −R2

R
− 3

√
c21t

2 −R2

R3

− 1
R
√
c21t

2 −R2
+ 4

R√
c21t

2 −R2
3

]

+ δ·
(
t− R

c1

)(
1
c31

)[
2
c1t

R2
ln
c1t+

√
c21t

2 −R2

R
− 5

√
c21t

2 −R2

R2
− 6√

c21t
2 −R2

]
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+ δ··
(
t− R

c1

)(
1
c41

)[
c1t

R
ln
c1t+

√
c21t

2 −R2

R
− 5

√
c21t

2 −R2

R

]

+ δ···
(
t− R

c1

)(
1
c51

)[
−c1t ln c1t+

√
c21t

2 −R2

R
+
√
c21t

2 −R2

]}
, (19)

ε′θθ =
1
R
uR

′
, (20)

∆′ = ε′RR + ε′θθ, (21)
τ ′RR = λ∆′ + 2µε′RR, (22)
τ ′θθ = λ∆′ + 2µε′θθ, (23)
τ ′zz = λ∆′. (24)

The pair of u∼
′
and τ∼

′
forms an elastodynamic state S ′

which is appropriate for the solution
of the axial symmetric problems of elastodynamics.

3 Sample problem

An infinite medium, without body forces, having a cylindrical cavity is considered. At t = 0,
a constant pressure p0 is applied on the cavity and maintained. For this problem, cylindrical
coordinates (R, θ, z) will be used. And, the outward normal of the boundary is n

∼
= −eR∼ . The

surface tractions on the boundary for S and for the elastodynamic state S ′ are as follows:

TR(a, t) = p0H
+(t), (25)

T ′
R(a, t) = τ ′∼ (a, t)n

∼
= −τ ′∼ (a, t)eR∼

= −τ ′RR(a, t). (26)

And further, for every R ∈ [a,∞)

uR(R, 0) = 0. (27)

The expression of the dynamic reciprocal identity which is written between S and S ′ elastody-
namic states will be reduced to:∫

S
T ′
∼ ∗ u∼ dS =

∫
S
T∼ ∗ u′∼ dS. (28)

An integral equation arises substituting equations from (18) to (22) and (25) and (26) in equa-
tion (28). After this, changing the loading time of f ′

∼
from t = 0 to t = a/c1, this integral

equation converts to:

−
∫ t

0

{
(λ+ 2µ)

[
H(t− τ)g0(t− τ) + δ(t− τ)

1
c1
g1(t− τ)

+ δ·(t− τ)
1
c21
g2(t− τ) + δ··(t− τ)

1
c31
g3(t− τ) + δ···(t− τ)

1
c41
g4(t− τ)

]

+ λ

[
H(t− τ)f0(t− τ) + δ(t− τ)

1
c1
f1(t− τ) + δ·(t− τ)

1
c21
f2(t− τ)

+ δ··(t− τ)
1
c31
f3(t− τ)

]}
uR(a, τ)dτ

= ap0

∫ t

0

{
H(t− τ)f0(t− τ) + δ(t− τ)

1
c1
f1(t− τ) + δ·(t− τ)

1
c21
f2(t− τ)

+ δ··(t− τ)
1
c31
f3(t− τ)

}
H+(τ)dτ, (29)
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where

g0(t) = − 1√
c21(t+ a/c1)2 − a2

3 − 3a2√
c21(t+ a/c1)2 − a2

5 ,

g1(t) =
2
a3

(c1t+ a) ln
c1t+ a+

√
c21(t+ a/c1)2 − a2

a
− 3

√
c21(t+ a/c1)2 − a2

a3

− 1
a
√
c21(t+ a/c1)2 − a2

+
4a√

c21(t+ a/c1)2 − a2
3 ,

g2(t) =
2
a2

(c1t+ a) ln
c1t+ a+

√
c21(t+ a/c1)2 − a2

a

− 5

√
c21(t+ a/c1)2 − a2

a2
− 6√

c21(t+ a/c1)2 − a2
,

g3(t) =
1
a
(c1t+ a) ln

c1t+ a+
√
c21(t+ a/c1)2 − a2

a
− 5

√
c21(t+ a/c1)2 − a2

a
,

g4(t) = −(c1t+ a) ln
c1t+ a+

√
c21(t+ a/c1)2 − a2

a
+
√
c21(t+ a/c1)2 − a2,

f0(t) = − 1√
c21(t+ a/c1)2 − a2

3 ,

f1(t) = − 1
a3

(c1t+ a) ln
c1t+ a+

√
c21(t+ a/c1)2 − a2

a

+ 2

√
c21(t+ a/c1)2 − a2

a3
+

3
a
√
c21(t+ a/c1)2 − a2

,

f2(t) = − 1
a2

(c1t+ a) ln
c1t+ a+

√
c21(t+ a/c1)2 − a2

a
+ 4

√
c21(t+ a/c1)2 − a2

a2
,

f3(t) =
1
a
(c1t+ a) ln

c1t+ a+
√
c21(t+ a/c1)2 − a2

a
−
√
c21(t+ a/c1)2 − a2

a
. (30)

The kernel of equation (29) is strongly singular. The following equalities will be used to reduce
the integral equation given in equation (29) to a simpler form

δ(x)f(x) ≡ 0 for f(0) = 0, (31)

δ(n)(x)f(x) ≡ 0 for
dnf(x)
dxn

∣∣∣
x=0

= 0, (32)∫ t

0
δ(t− τ)f(t− τ)u(τ)dτ = −H(t− τ)f(t− τ)u(τ) |τ=t

τ=0

+
∫ t

0
H(t− τ)[−f ·(t− τ)u(τ) + f(t− τ)u·(τ)]dτ, (33)∫ t

0
δ(n)(t− τ)f(t− τ)u(τ)dτ = −δ(n−1)(t− τ)f(t− τ)u(τ) |τ=t

τ=0

+
∫ t

0
δ(n−1)(t− τ)[−f ·(t− τ)u(τ) + f(t− τ)u·(τ)]dτ. (34)

And the new form of the integral equation becomes:

(λ+ 2µ)
{∣∣∣∣δ··(t− τ)

1
c41
uR(τ)[−c1(t− τ + a/c1)L(t− τ) +Q(t− τ)]

+ δ·(t− τ)u·R(τ)
1
c41

[−c1(t− τ + a/c1)L(t− τ) +Q(t− τ)]
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+ δ(t− τ)
1
c21

[
u·R(τ)

1
ac1

{c1(t− τ − 2a/c1)L(t− τ) − 5Q(t− τ)}

+
1
c21
u··R(τ){−c1(t− τ + a/c1)L(t− τ) +Q(t− τ)}

]

+H(t− τ)
1
c1

[
− 1
c1
u·R(τ)

1
Q(t− τ)

+ uR(τ)
{
− 1
aQ(t− τ)

+
c1(t− τ + a/c1)

Q3(t− τ)

}]∣∣∣∣
t

0

+
∫ t

0
H(t− τ)

[
1
c21
u··R(τ)

1
Q(t− τ)

+
1
c1
u·R(τ)

1
aQ(t− τ)

+ uR(τ)
c1(t− τ)
aQ3(t− τ)

]
dτ

}

+ λ

{∣∣∣∣δ·(t− τ)
1
ac31

uR(τ)[c1(t− τ + a/c1)L(t− τ) −Q(t− τ)]

+ δ(t− τ)
1
c21

1
ac1

u·R(τ){c1(t− τ + a/c1)L(t− τ) −Q(t− τ)}

+H(t− τ)
1
c1

1
aQ(t− τ)

uR(τ)
∣∣∣∣
t

0

−
∫ t

0
H(t− τ)

[
uR(τ)

c1(t− τ)
aQ3(t− τ)

+ u·R(τ)
1
c1

1
aQ(t− τ)

]
dτ

}

= p0

{∣∣∣∣−δ·(t− τ)
1
c31

[c1(t− τ + a/c1)L(t− τ) −Q(t− τ)]

− δ(t− τ)
1
ac21

[−c1(t− τ)L(t− τ) + 4Q(t− τ)] −H(t− τ)
1
c1

1
Q(t− τ)

∣∣∣∣
t

0

+
∫ t

0
H(t− τ)

c1(t− τ)
Q3(t− τ)

dτ

}
, (35)

where

Q(t− τ) =
√
c21(t− τ + a/c1)2 + a2, (36)

L(t− τ) = ln
c1(t− τ + a/c1) +

√
c21(t− τ + a/c1)2 + a2

a
. (37)

It must be emphasized that the kernels of the integrals in equation (35) are weakly singular.
Using equations (27), (31) to (34) and equating to zero, the multiplier of δ·(t) in the remaining
term out of the integral in equation (35), the initial velocity u·R(a, 0) is found as follow:

u·R(a, 0) =
p0

λ+ 2µ
c1. (38)

For convenience of notation two new dimensionless quantities are introduced as

t∗ =
c1t

a
, U(t∗) =

2µ
ap0

uR(a, t) (39)

the new form of the integral equation in terms of U and t∗ becomes

λ+ 2µ
2µ

∫ t∗

0
H(t∗ − τ∗)

{
U

[
(t∗ − τ∗)√ 3

]
+ U ·

[
1√
]

+ U ··
[

1√ 3

]}
dτ∗ (40)

− λ

2µ

∫ t∗

0
H(t∗ − τ∗)

{
U

[
(t∗ − τ∗)√ 3

]
+ U ·

[
1√
]}

dτ∗ =
∫ t∗

0
H(t∗ − τ∗)

(t∗ − τ∗)√ 3
dτ∗,

where
√ =

√
(t∗ − τ∗ + 1)2 − 1. (41)
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And the dimensionless initial velocity is

U ·(0) =
2µ

λ+ 2µ
. (42)

It is known that U function and first derivative of it being continuous. Using partial integration
and substituting equation (42), the last form of the integral equation can be written as follow.

∫ t∗

0
U ··
[
λ+ 2µ

2µ
1√ + √

]
dτ∗ =

t∗√
(t∗ + 1)2 − 1

− 2µ
λ+ 2µ

√
(t∗ + 1)2 − 1. (43)

Equation (43) is a Volterra integral equation of the first kind [3]. At the same time, it is
also an integro-differential equation with a degenerate kernel having 1/

√
t∗ − τ∗ singularity.

This integral equation can be solved by transform techniques, but because of degenerate kernel,
solution yields to an integral for every specific value of t. This integral must also be calculated
numerically. Instead of this, another numerical method is introduced. The approximation
function for uR(a, t) has been selected to be the same with the problem given in [1] substituting
equation (39) in equation (43) the following equation is obtained between the end values of U
of the j-th interval

j∑
k=1

{{
[Uk+1 − Uk]

2
(t∗k+1 − t∗k)2

− U ·
k

2
(t∗k+1 − t∗k)

}

×


∫ t∗k+1

t∗k


√(t∗j+1 − τ∗ + 1)2 − 1 +

λ+ 2µ
2µ

1√
(t∗j+1 − τ∗ + 1)2 − 1


 dτ∗






=
t∗j+1√

(t∗j+1 + 1)2 − 1
− 2µ
λ+ 2µ

√
(t∗j+1 + 1)2 − 1. (44)

It is noted that:

t∗1 = 0, U1 = 0, U ·
1 = U ·(0). (45)

From first interval, U2 can be calculated because U1 and U ·
1 are known. Then writing t∗ =

t∗k+1 [1], U ·
2 are calculated. With these values, U3 becomes the only unknown of equation (44)

for j = 2. The obtained results (Poisson’s ratio = 0.3) are given in Figs. 1 and 2.

Figure 1. Variation of U on the surface of
cylindrical cavity versus t∗.

Figure 2. Variation of τθθ/p0 on the surface
of cylindrical cavity versus t∗.
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4 Conclusions

A fundamental elastodynamic state has been derived. An integral equation is obtained by writing
the reciprocal identity between one fundamental state and another state which represents the
problem. The elastodynamic state can be used for the solutions of the problems having axial
symmetry. And, the reciprocal identity which is written for axial symmetric problems is reduced
to a Volterra integral equation whose kernel is strongly singular. The resulting integral equation
of this problem has been converted to another form whose kernel is weakly singular and has
been solved using a simple numerical technique. The most interesting part of the formulation is
that it gives the exact value of the initial velocity.
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