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For the autonomous kth order difference equation xn+k = f(xn, xn+1, . . . , xn+k−1), where
f ∈ C1[U ] with domain Uopen ⊂ R

k, a global first integral/invariant for this difference
equation is a nonconstant function H ∈ C1[U ], with H : U → R, which remains invariant on
the forward orbit Γ+(x0, x1, . . . , xk−1). If a first integral exists, then it satisfies a particular
functional difference equation and a method of finding solutions is presented. Furthermore,
the first integral is constant along the characteristic curves of the associated infinitesimal
generator for the Lie group symmetries of the difference equation.

1 Introduction

Example 1. Consider the second order, autonomous difference equation

xn+2 = (xn+1)
2 + xn+1 − (xn)2 .

It will be useful to view this difference equation as the iteration of the mapping

F :
(

x
y

)
−→

(
y

f(x, y)

)
,

where x ↔ xn, y ↔ xn+1, z := f(x, y), and f(x, y) = y2 + y − x2. A first integral/invariant is
a nonconstant mapping H, which remains invariant on the forward orbit, that is,

H(y, z) = H(x, y).

For this example, the function H(x, y) := y − x2 is a first integral for this difference equation as
is shown here

H(y, z) = z − y2

=
(
y2 + y − x2

) − y2

= H(x, y).

In other words, a first integral is a conservation law for the difference equation.

In this paper, we discuss the existence and construction of first integrals/invariants and the
relationship to the one parameter, Lie group symmetries of the difference equation.

2 Notation

Consider the autonomous, kth order ordinary difference equation

xn+k = f(xn, xn+1, . . . , xn+k−1) (1)
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where un := (xn, xn+1, . . . , xn+k−1) ∈ Uopen ⊂ R
k and f ∈ C1[U ]. The forward orbit Γ+ of the

initial condition u0 = (x0, x1, . . . , xk−1) is the sequence Γ+(u0) = {x0, x1, x2, . . .}. The difference
equation given in equation (1) can be viewed as the iteration of the mapping F : R

k → R
k, where

F :




xn

xn+1
...

xn+k−1


 −→




xn+1

xn+2
...

xn+k = f(xn, xn+1, . . . , xn+k−1)


 , (2)

that is,

un+1 = F (un). (3)

A first integral [1,2] is a nonconstant function H ∈ C1[U ] which remains invariant on the forward
orbit, that is,

H(xn+1, xn+2, . . . , xn+k) = H(xn, xn+1, . . . , xn+k−1), ∀ n ∈ Z
+,

or more concisely,

H(un+1) = H(un), ∀ n ∈ Z
+. (4)

Let Djf := ∂f/∂xn+j−1, for j = 1, . . . , k, in which case the Jacobian of F is given by the
companion matrix

F ′(un) =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0

0 0 0 1
... 0 0

. . .

0 0 0 0 0
. . . 1

D1f(un) D2f(un) D3f(un) D4f(un) D5f(un) · · · Dkf(un)




. (5)

Additionally, we will have need for the forward shift operator Ψ, which acts on functions g ∈
C1[U ], where g : R

k → R and is defined as

Ψ [g(un)] := g(un+1). (6)

Inductively, we define

Ψn+1 := Ψ [Ψn] , (7)

where Ψ0 := I and where I is the identity operator. Using this notation, a first integral is
defined by the condition

Ψ ◦ H = H. (8)

Lastly, define X to be the infinitesimal generator of the one parameter Lie group symmetry Φ
as the operator [3–5]

X := ξ · ∇ =
k∑

j=1

ξjDj . (9)
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3 Determining equation of H

Lemma 1. Let H be a first integral for un+1 = F (un), then

∇H(un+1) = F ′(un)T · ∇H(F (un)). (10)

Proof. Since H is a first integral where H ∈ C1[U ], take the exterior derivative of equation (4),
and use the chain rule to obtain the desired result. �

Theorem 1. The function

α := DkH, (11)

is a solution to the functional equation

α =
k−1∑
j=0

(
Ψk−j−1Dj+1f

)(
Ψk−jα

)
. (12)

Proof. Expanding the result given in Lemma 1 and examining the coefficient functions of the
differentials dxn+i−1, for i = 1, . . . , k, we obtain the alternative form

D1H = (D1f)(ΨDkH), (13)
DjH = ΨDj−1H + (Djf)(ΨDkH), (14)

for j = 2, . . . , k. These k equations can be reduced to a single equation as follows. For j = 2,
equation (14) becomes

D2H = ΨD1H + (D2f)(ΨDkH).

Now take the forward shift of equation (13) to get

ΨD1H = (ΨD1f)(Ψ2DkH),

and substitute into equation (14) to get

D2H = (ΨD1f)(Ψ2DkH) + (D2f)(ΨDkH),

in which case

ΨD2H = (Ψ2D1f)(Ψ3DkH) + (ΨD2f)(Ψ2DkH).

Similarly,

D3H = (Ψ2D1f)(Ψ3DkH) + (ΨD2f)(Ψ2DkH) + (D3f)(ΨDkH),

ΨD3H = (Ψ3D1f)(Ψ4DkH) + (Ψ2D2f)(Ψ3DkH) + (ΨD3f)(Ψ2DkH).

In general,

DjH =
j−1∑
i=0

(
Ψj−i−1Di+1f

)(
Ψj−iDjH

)
, (15)

and for j = k, we obtain the single functional equation

DkH =
k−1∑
j=0

(
Ψk−j−1Dj+1f

)(
Ψk−jDkH

)
. (16)

Defining α = DkH and substituting into equation (16) gives the desired result. �
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Assuming the functional equation given in equation (12) can be explicitly solved, then an auto-
nomous first integral is given by

H =
k∑

j=1

∫
DjH dxn+j−1. (17)

With this result, we now provide some examples as to how to construct first integrals by finding
solutions to equation (12).

Example 2. Recall that xn+2 = (xn+1)
2+xn+1−(xn)2 has a first integral given by H(xn, xn+1)

= xn+1 − (xn)2. The functional equation given in equation (12) reduces to

−2yα(z, u) + (2y + 1) α(y, z) − α(x, y) = 0,

where x = xn, y = xn+1, z = xn+2, and u = xn+3. By inspection, a solution is α(x, y) = c,
where c is an arbitrary constant. Using the fact that α(x, y) = D2H = Hy(x, y), then a first
integral is

H(x, y) = cy + ϕ(x),

where ϕ is an arbitrary function of x. Forcing the condition H(x, y) = H(y, z) gives

ϕ(x) = −cx2,

in which case a first integral is

H(x, y) = y − x2,

as was found above.

This example is unusual in that a solution can be found by inspection. In general, this is not
the case, and therefore we present a technique which can sometimes find solutions to nontrivial
problems.

Example 3. Consider the difference equation xn+2 = xn+1 (xn + 1) / (xn+1 + 1). The function
α = Hy(x, y) is a solution of the functional equation

z

z + 1
α(z, u) +

x + 1
(y + 1)2

α(y, z) = α(x, y),

where z = f(x, y) = y(x + 1)/(y + 1) and u = f(y, z). Define the extended solution space as

Ω :=
{

α

∣∣∣∣ z

z + 1
α(z, u) +

x + 1
(y + 1)2

α(y, z) = α(x, y)
}

,

and the actual solution space as

Ω̃ :=
{

α

∣∣∣∣ z

z + 1
α(z, u) +

x + 1
(y + 1)2

α(y, z) = α(x, y), z = f(x, y), u = f(y, z)
}

,

in which case Ω̃ ⊆ Ω. We seek candidates for solutions by finding solutions in Ω and checking
whether they satisfy the condition Ψ ◦ H = H. We begin by taking ∂

∂x

∣∣
y,z,u fixed

which gives

α(y, z) = (y + 1)2αx(x, y).
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Next, taking ∂
∂z

∣∣
x,y fixed

gives αz(y, z) = 0, followed by a backward shift Ψ−1αz(y, z) = 0,
gives αy(x, y) = 0, which has solution α(x, y) = η(x). Therefore, Hy(x, y) = η(x), and after
integrating we find that

H(x, y) = y η(x) + ϕ(x),

for some arbitrary functions η(x) and ϕ(x). Forcing H to be a first integral means that

H(y, z) = H(x, y),
zη(y) + ϕ(y) = yη(x) + ϕ(x).

Replacing z ↔ y(x + 1)/(y + 1) gives

y(x + 1)
y + 1

η(y) + ϕ(y) = yη(x) + ϕ(x).

Next, take ∂
∂x

∣∣
y fixed

followed by ∂2

∂y2

∣∣∣
x fixed

, we obtain the second order differential equation in
the single variable y

y(y + 1)2η′′(y) + 2(y + 1)η′(y) − 2η(y) = 0,

which has solution η(y) = c1(y + 1). If we force H to be a first integral, then

H(y, z) = H(x, y),
c1z(y + 1) + ϕ(y) = c1y(x + 1) + ϕ(x),

c1
y(x + 1)

y + 1
(y + 1) + ϕ(y) = c1y(x + 1) + ϕ(x),

c1y(x + 1) + ϕ(y) = c1y(x + 1) + ϕ(x),
ϕ(y) = ϕ(x),

in which case ϕ(x) = c2. It is easily verified that the function H as was found here, namely

H(x, y) = y(x + 1)

is a first integral.

As this example shows, ad hoc methods such as cleverly choosing the sequence of differen-
tiations, followed by checking to see if the condition Φ ◦ H = H can be satisfied, can lead
to finding a first integral. A future direction of work is to utilize symbolic packages such as
MATHEMATICA in order to automate this procedure.

4 Symmetries & first integrals

Let us now examine the relationship between symmetries of a difference equation and first
integrals. Recall that a symmetry Φ of a dynamical system F maps solutions into solutions,
that is,

U
F−−−−→ U

Φ

� �Φ

U −−−−→
F

U,
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in which case the commutator bracket is zero

[Φ, F ] = 0.

For autonomous ordinary difference equations, this means that

un = Fn(u0)
F−−−−→ un+1 = F ◦ Fn(u0)

Φ

� �Φ

Φ ◦ Fn(u0) −−−−→
F

F ◦ Φ ◦ Fn(u0) = Φ ◦ F ◦ Fn(u0).

In the case where we seek continuous one–parameter symmetries, that is, Lie group symmetries,

then the associated generator is given by X := ξ · ∇ =
k∑

j=1
ξjDj , in which case

Φ = I + εX + O (
ε2

)
.

Consider the second order case

F :
(

x
y

)
	→

(
y

z = f(x, y)

)
,

and let

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂z

be the generator of the Lie group symmetry for z = f(x, y), in which case

ξ3 = fxξ1 + fyξ2. (18)

Examining the characteristic equation of the generator X gives the relationships

dx

ξ1
=

dy

ξ2
=

fxdx + fydy

fxξ1 + fyξ2
, (19)

which has solutions

ξ2dx − ξ1dy = 0. (20)

We now show that if H exists and Φ is a Lie group symmetry of z = f(x, y), then Φ is also
a symmetry of H, in which case H remains constant along the characteristic curve

dy

dx
=

ξ2

ξ1
. (21)

Consider the one–parameter Lie group transformations

x̂ = x + ε ξ1 + O(
ε2

)
,

ŷ = y + ε ξ2 + O(
ε2

)
,

ẑ = z + ε
(
fxξ1 + fyξ2

)
+ O(

ε2
)

and define

∆H(x, y, z) := H(y, z) − H(x, y),
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in which case

∆H(x̂, ŷ, ẑ) = H(ŷ, ẑ) − H(x̂, ŷ)

= H(y, z) − H(x, y) + ε
[(

fx(x, y)Hz(y, z) − Hx(x, y)
)
ξ1

+
(
Hy(y, z) + fy(x, y)Hz(y, z) − Hy(x, y)

)
ξ2

]
+ O(

ε2
)
.

Since H is a first integral, the determining equations given in equations (13) and (14) are

Hx(x, y) = fx(x, y)Hz(y, z),
Hy(x, y) = Hy(y, z) + fy(x, y)Hz(y, z),

in which case, up to terms of O(
ε2

)
,

∆H(x̂, ŷ, ẑ) = 0,

and therefore Φ is also a symmetry of H. Since H exists, then H(x, y) = c, where c is a constant
which only depends on the initial condition (x0, x1). Taking the exterior derivative gives the
equation

Hx dx + Hy dy = 0. (22)

Since the 1–forms dx and dy are not identically zero, equations (20) and (22) will have nontrivial
solution provided the linear PDE

ξ1Hx + ξ2Hy = 0 (23)

is satisfied. In other words, H remains constant along the characteristic curve given in equa-
tion (21).

Let us now discuss some implications of equation (23). If specific symmetries of z = f(x, y)
are desired, a first integral may be constructed by solving this PDE. In other words, the inverse
problem can be studied, that is, given a set of Lie group symmetries, we want to find manifolds
z = f(x, y) and the associated first integral.

Example 4. Consider the group of translations defined as the one–parameter transformations

x̂ = x + εa + O(
ε2

)
,

ŷ = y + εb + O(
ε2

)
,

ẑ = z + ε(afx + bfy) + O(
ε2

)
,

where f unspecified. Integrating equation (23) gives

H(x, y) = η(r),

where η is an arbitrary smooth function and

r = bx − ay.

Consider the identity function η(r) = r, in which case Φ ◦ H = H gives

f(x, y) = (1 + γ)y − γx,

where γ = b/a. In other words, the class of linear difference equations

xn+2 = (1 + γ)xn+1 − γxn

has the above Lie group symmetries and has an associated first integral given by

H(x, y) = γx − y.

Although this example is somewhat simplistic, it does illustrate how the inverse problem may
be studied.
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5 Summary & future directions

In this paper we have constructed a functional equation, which if solved, will give a first integral.
A method of solving this equation is given. Furthermore, a first integral is constant along the
characteristic curve associated with the generator of the Lie group symmetries of the difference
equation.

Future work is to construct and implement algorithms using symbolic packages such as
MATHEMATICA in order to search for solutions of the determining functional equation, and
hence find first integrals. Furthermore, the solution of the determining functional equation can
be thought of as a fixed point of an operator equation. For example, the difference equation
xn+2 = f(xn, xn+1) has the associated functional equation

(ΨD1f)(Ψ2α) + (D2f)(Ψα) = α.

Define the operator

L := (ΨD1f)Ψ2 + (D2f)Ψ,

in which case the solution α to the functional equation is the fixed point of the operator equation

L[α] = α.

A sequence of approximations to the solution can be made by using fixed point iteration, that
is, defining

αn+1 := L[αn],

where α0 is an initial guess. The obvious question is to determine what are the conditions on
the function f that insure that L is a contraction operator, and hence guarantee that fixed point
iteration converges.
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