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A model of an abstract quantum system coupled to a multi-component Bose field is con-
sidered. Under suitable hypotheses, the model has a ground state even if the uncoupled
(zero-coupling) system has no ground state.

1 Introduction

A quantum system which has no ground states may be changed, through coupling to a quantum
field, to have a ground state. If such a change occurs, then we say that the coupled system
has enhanced binding with respect to ground state. The phenomenon of enhanced binding, if it
occurs, may be regarded as one of the evidences supporting the view point that quantum fields
are more fundamental objects underlying the material world.

From this point of view, as well as from a purely mathematical one, it is interesting to clarify
whether or not enhanced binding indeed occurs in models of a quantum system – typically
a system of nonrelativistic quantum particles – coupled to a quantum field.

The problem of enhanced binding was first discussed by Hiroshima and Spohn [11]. They
discussed the Pauli–Fierz model in nonrelativistic quantum electrodynamics in the dipole ap-
proximation and proved that, under suitable hypotheses, enhanced binding occurs for large
coupling constants. Hainzl, Vougalter and Vugalter [10] considered the Pauli–Fierz model with-
out the dipole approximation showing that it has enhanced binding for small coupling constants.
The results and the methods in [10] have been extended to the Pauli–Fierz model with spin [7,8]
(cf. also [9]).

In a previous paper [6] the enhanced binding problem was considered for a general class
of quantum field models, called the generalized spin-boson (GSB) model which describes an
abstract quantum system coupled linearly to a Bose field [3–5], and proved, under suitable
hypotheses, the existence of enhanced binding for a region of coupling constants. The GSB
model was extended to a more general one in [2], whose Hamiltonian is obtained by adding
quadratic self-interaction terms of the Bose field to the Hamiltonian of the GSB model, and it
was shown that results similar to those in [2] hold also in the extended GSB model.

In this paper we consider a slightly more general model than the extended GSB model in [2]
and show that, under suitable hypotheses, enhanced binding occurs in this model too.

The present paper is organized as follows. Section 2 is a preliminary section which recalls
basic objects and elementary facts in the theory of the abstract boson Fock space. In Section 3
we define quadratic operators acting in the abstract boson Fock space. In Section 4 we describe
the model considered in the present paper. The main theorems are stated in Section 5. The last
section is devoted to sketches of proofs of them.

2 Bose fields

We denote the inner product and the norm of a Hilbert space X by 〈·, ·〉X and ‖·‖X respectively,
where we use the convention that the inner product is antilinear (resp. linear) in the first (resp.
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second) variable. We sometimes omit the subscript X in 〈·, ·〉X and ‖ · ‖X , if there is no danger
of confusion.

For a linear operator T on a Hilbert space, we denote its domain by D(T ). For a subspace
D ⊂ D(T ), T |D denotes the restriction of T to D. If T is densely defined, then the adjoint of T
is denoted T ∗. For linear operators S and T on a Hilbert space, D(S + T ) := D(S) ∩ D(T )
unless otherwise stated.

For each complex Hilbert space X , the boson Fock space Fb(X ) over X is defined by

Fb(X ) := ⊕∞
n=0 ⊗n

s X ,
where ⊗n

s X denotes the n-fold symmetric tensor product of X with ⊗0
sX := C (the set of complex

numbers).
The annihilation operator a(f) (f ∈ X ) on Fb(X ) is defined to be a densely defined closed

linear operator such that, for all ψ = {ψ(n)}∞n=0 ∈ D(a(f)∗), (a(f)∗ψ)(0) = 0 and

(a(f)∗ψ)(n) =
√
nSn

(
f ⊗ ψ(n−1)

)
, n ≥ 1,

where Sn is the symmetrization operator on ⊗nX . The adjoint a(f)∗, called the creation ope-
rator, and the annihilation operator a(g) (g ∈ X ) obey the canonical commutation relations

[a(f), a(g)∗] = 〈f, g〉X , [a(f), a(g)] = 0, [a(f)∗, a(g)∗] = 0

for all f, g ∈ X on the dense subspace

F0(X ) := {ψ ∈ Fb(X ) | there exists a number n0 such that ψ(n) = 0 for all n ≥ n0},
where [X,Y ] := XY − Y X.

We denote by Ω := {1, 0, 0, . . .} the Fock vacuum in Fb(X ). For a subspace D ⊂ X we define
a subspace

Ffin(D) := L ({Ω, a(f1)∗ · · · a(fn)∗Ω |n ∈ N, fj ∈ D, j = 1, . . . , n}) ,
where L({·}) means the subspace algebraically spanned by the set {·}. If D is dense in X , then
the subspace Ffin(D) is dense in Fb(X ).

Let

φ(f) :=
a(f) + a(f)∗√

2
, f ∈ X ,

which is called the Segal field operator. It is shown that φ(f) is essentially self-adjoint on
F0(X ) [13, § X.7]. We denote its closure by the same symbol φ(f). The “conjugate momentum”
of φ(f) is defined by

π(f) := φ(if), f ∈ X .
We have

[φ(f), π(g)] = iIm (i〈f, g〉X ) .

For every symmetric operator S on X , one can define a closed symmetric operator dΓ(S),
called the second quantization of S, by

dΓ(S) := ⊕∞
n=0S

(n),

with S(0) = 0 and S(n) is the closure of
 n∑

j=1

I ⊗ · · ·⊗
jth
�
S ⊗ · · · ⊗ I


 ∣∣∣∣ ⊗n

alg D(S),

where I denotes identity and ⊗n
alg algebraic tensor product. If S is self-adjoint, then so is dΓ(S).
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3 Quadratic operators

In the boson Fock space Fb(X ), one can define, in a general manner, linear operators quadratic
in the annihilation and the creation operators. Let C be a conjugation on X , i.e., C is an anti-
linear, isometric mapping on X such that C2 = I. Let K be a Hilbert–Schmidt operator on X .
Then there exist orthonormal sets {fn}M

n=1, {gn}M
n=1 in X and a sequence {λn}M

n=1 of positive

numbers (M <∞ or M is countably infinite) such that
M∑

n=1
λ2

n <∞ and

K =
M∑

n=1

λn〈fn, ·〉X gn,

where, in the case M = ∞, the sum on the right hand side converges in operator norm [12, Theo-
rems VI.17 and VI.22]. Using this representation of K, we define linear operators (a∗|K|a∗)N

and (a|K|a)N (N ∈ N) acting in Fb(X ), with domain Ffin(X ), by

(a∗|K|a∗)N :=
N∧M∑
n=1

λna(Cfn)∗a(gn)∗, (a|K|a)N :=
N∧M∑
n=1

λna(fn)a(Cgn).

where N ∧M := min{N,M} if M < ∞ and N ∧M := N if M = ∞. It is easy to see that, for
all Ψ ∈ Ffin(X ), the strong limit

(a#|K|a#)Ψ := s- lim
N→∞

(a#|K|a#)NΨ

exists, where a# denotes either a∗ or a. Moreover, the operator (a#|K|a#) with domain Ffin(X )
is closable and

(a∗|K|a∗)∗ ⊃ (a|K∗|a), (a|K|a)∗ ⊃ (a∗|K∗|a∗).

4 Definition of the model

We consider a model of an abstract quantum system S coupled to an N -component Bose field
over R

d (d,N ∈ N). We denote the Hilbert space of the system S by H, which is taken to be
an arbitrary separable complex Hilbert space. In concrete realizations, S may be a system of
nonrelativistic quantum particles or a quantum field system.

The one-particle Hilbert space of the Bose field is taken to be

M := ⊕NL2
(
R

d
)
,

the N direct sum of L2
(
R

d
)
. Then the Hilbert space for the Bose field is given by the Fock

space Fb(M) over M.
Let µ be a Borel measurable function on R

d such that 0 < µ(k) < ∞ for almost every-
where (a.e.) k ∈ R

d with respect to the Lebesgue measure on R
d. Then µ defines a multiplica-

tion operator on L2
(
R

d
)
, which is nonnegative, injective and self-adjoint. We denote it by the

same symbol. We define an operator

µ̂ := ⊕Nµ

acting in M.
The Hilbert space of the coupled system of S and the Bose field is given by the tensor product

F := H⊗Fb(M).
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Let A be a self-adjoint operator on H, which denotes physically the Hamiltonian of the
quantum system S.

We say that a densely defined linear operator on a Hilbert space is Hilbert–Schmidt if it is
bounded and its closure is Hilbert–Schmidt. We denote the closure by the same symbol.

In what follows, we denote by C the complex conjugation on M. For a bounded linear
operator T on M, we define TC by

TC := CTC.

Let S and T be bounded linear operators on M. We assume the following.

Hypothesis (I).
(I.1) The operators T µ̂S∗ and T µ̂1/2 are densely defined and Hilbert–Schmidt.
(I.2) The operator Sµ̂S∗ + TC µ̂T

∗
C is densely defined.

Then we can define an operator Hb(µ, S, T ) by

Hb(µ, S, T ) := dΓ(Sµ̂S∗ + TC µ̂T
∗
C) + (a|T µ̂S∗|a) + (a|T µ̂S∗|a)∗.

It is easy to see that Hb(µ, S, T ) is a symmetric operator with

D(Hb(µ, S, T )) ⊃ Ffin (D(Sµ̂S∗) ∩D(TC µ̂T
∗
C)) .

We denote the closure of Hb(µ, S, T ) by H̄b(µ, S, T ).
The Hamiltonian of the model we consider in the present paper is defined by

H := A⊗ I + I ⊗ H̄b(µ, S, T ) +
J∑

j=1

Bj ⊗ φ(gj) +
J∑

j=1

Kj ⊗ π(hj),

where Bj (j = 1, . . . , J ; J ∈ N) is a symmetric operator on H such that ∩J
j=1D(Bj) is dense in

H, Kj (j = 1, . . . , J) is a bounded self-adjoint operator on H and gj , hj ∈ M, j = 1, . . . , J .

Remark 1. (i) The operator H with T = 0, hj = 0 (or Kj = 0) and Sµ̂S∗ = ω̂ := ⊕Nω (ω is
a nonnegative Borel measurable function on R

d) yields

HAH := A⊗ I + I ⊗ dΓ(ω̂) +
J∑

j=1

Bj ⊗ φ(gj).

This is the Hamiltonian of the GSB model [3]. The existence of ground states of HAH with
N = 1 was discussed in [3] under the assumption that A has a ground state (cf. also [4] for
further extensions). The problem of enhanced binding in the GSB model was considered in [6].
For the absence of ground states of HAH, see [5].

(ii) The problem of enhanced binding in the modelH with hj = 0 (j = 1, . . . , J) was discussed
in [2]. The results presented below are extensions of those in [2] to the case where hj �= 0.

Example 1. The Pauli–Fierz Hamiltonian in the dipole approximation [11] is a special case
of H with d = 3, N = 2, J = 3. In this sense our model is an abstract generalization of the
Pauli–Fierz model in the dipole approximation.



1248 A. Arai

5 Main results

For a self-adjoint operator L on a Hilbert space, we denote its spectrum (resp. essential spec-
trum) by σ(L) (resp. σess(L)).

Definition 1. Let L be a self-adjoint operator on a Hilbert space bounded from below and set

E0(L) := inf σ(L),

which is called the ground state energy of L. We say that L has a ground state if E0(L) is an
eigenvalue of L. In that case, each non-zero vector in ker(L − E0(L)) is called a ground state
of L.

To state the main results of this paper, we formulate additional hypotheses. For this purpose,
we first recall an important notion on commutativity of self-adjoint operators:

Definition 2. We say that two self-adjoint operators S1 and S2 on a Hilbert space strongly
commute (or S1 strongly commutes with S2) if their spectral measures commute.

A family of self-adjoint operators {Sj}n
j=1 on a Hilbert space is said to be strongly commuting

if Sj strongly commutes with Sl for all j, l = 1, . . . , n with j �= l.

In what follows, we assume that A is of the form

A = A0 +A1

with A0 a nonnegative self-adjoint operator and A1 a symmetric operator on H.
We introduce g̃j , h̃j ∈ M (j = 1, . . . , J) by

g̃j := S∗gj − T ∗Cgj , h̃j := S∗hj − T ∗Chj ,

where S, T and C are operators introduced in the preceding section.

Hypothesis (II). g̃j , g̃j/µ
3/2, h̃j , h̃j/µ ∈ M (j = 1, . . . , J) and

〈g̃j(k), g̃l(k)〉CN , 〈g̃j(k), h̃l(k)〉CN ∈ R, a.e. k ∈ R
d (j, l = 1, . . . , J).

Remark 2. Hypothesis (II) implies that (i) {φ(ig̃j/µ)}J
j=1 is a family of strongly commuting

self-adjoint operators and each φ(ig̃j/µ) strongly commutes with each π(h̃l) (j, l = 1, . . . , J);
(ii) [φ(g̃j), π(h̃l)] = i〈g̃j , h̃l〉M on F0(M).

Hypothesis (III). The operator A1 is A0-bounded, i.e., D(A0) ⊂ D(A1) and there exist
constants a, b ≥ 0 such that, for all u ∈ D(A0),

‖A1u‖H ≤ a‖A0u‖H + b‖u‖H.

Hypothesis (IV). The operator A0 strongly commutes with each Bj (j = 1, . . . , J) and

D(A0) ⊂ ∩J
j,l=1D(BjBl).

Moreover, there exist constants cj , dj ≥ 0 such that, for all u ∈ D(A1/2
0 ),

‖Bju‖H ≤ cj‖A1/2
0 u‖H + dj‖u‖H (j = 1, . . . , J).

Hypothesis (V). The set {Bj}J
j=1 is a family of strongly commuting self-adjoint operators.
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Hypothesis (VI). D(A0) ⊂ ∩J
j=1D(BjA1) ∩ D(A1Bj) and [Bj , A1]|D(A0) is bounded (j =

1, . . . , J). We denote the operator norm of [Bj , A1] by ‖[Bj , A1]‖.
We introduce an operator

RB :=
1
2

J∑
j,l=1

〈
g̃j√
µ
,
g̃l√
µ

〉
M
BjBl.

and define

Aren := A−RB.

Under Hypotheses (II)–(IV), we have D(Aren) = D(A0).

Hypothesis (VII). The operator Aren is self-adjoint and bounded from below.

Hypothesis (VIII).
(VIII.1) The operator T is Hilbert–Schmidt.
(VIII.2) The operators S and T satisfy the following relations:

S∗S − T ∗T = I, SS∗ − TCT
∗
C = I, ST ∗ = TCS

∗
C , S∗TC = T ∗SC .

One can prove the following fact:

Theorem 1. Assume Hypotheses (I)–(VIII). Then H is self-adjoint and bounded from below.

We set

µ0 := ess. inf
k∈Rd

µ(k),

where ess. inf means essential infimum.

Theorem 2. Assume Hypotheses (I)–(VIII). Suppose that

{µ(k)|k ∈ R
d} = [µ0,∞) (1)

Then the following (i) and (ii) hold.
(i) If µ0 > 0, then [E0(H) + µ0,∞) ⊂ σess(H).
(ii) If µ0 = 0, then σ(H) = [E0(H),∞).

To establish an existence theorem of a ground state of H without the assumption that A has
a ground state, we need additional conditions.

Hypothesis (IX). The function µ is continuous on R
d with

lim
|k|→∞

µ(k) = ∞

and there exist constants γ > 0 and c0 > 0 such that

|µ(k) − µ(k′)| ≤ c0|k − k′|γ(1 + µ(k) + µ(k′)), k, k′ ∈ R
d.

For s ≥ 0, we introduce constants Cs(g̃), Ds(h̃) (g̃ := (g̃1, . . . , g̃J), h̃ := (h̃1, . . . , h̃J)) by

Cs(g̃) :=
√

2
J∑

j=1

‖[Bj , A1]‖
∥∥∥∥ g̃j

µs

∥∥∥∥
M
, Ds(h̃) :=

√
2

J∑
j=1

‖Kj‖
∥∥∥∥∥ h̃j

µs

∥∥∥∥∥
M
.
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Provided that g̃j/µ
s ∈ M and h̃j/µ

s ∈ M (j = 1, . . . , J) respectively. We define constants
Fα (α = 1, 2, 3) by

F1 := C1(g̃) +D0(h̃), F2 := C2(g̃) +
1
2
D1(h̃), F3 := C3/2(g̃) +D1/2(h̃).

We set

Σ(Aren) := inf σess(Aren).

Generally speaking, the existence of a ground state ofH may depend on whether µ0 is positive
or zero [5]. We first state a result on the existence of enhanced binding in the case µ0 > 0.

Theorem 3. (Enhanced binding in the case µ0 > 0). Consider the case µ0 > 0. Assume
Hypotheses (I)–(IX) and that

Σ(Aren) − E0(Aren) > µ0 +
1
2
F 2

3 + F1. (2)

Then H has purely discrete spectrum in the interval [E0(H), E0(H) + µ0). In particular, H has
has a ground state.

Remark 3. Condition (2) implies that E0(Aren) is a discrete eigenvalue of Aren and hence Aren

has a finite number of ground states. But A does not necessarily have a ground state.

Corollary 1. Under the assumption of Theorem 3 and condition (1),

σess(H) = [E0(H) + µ0,∞).

Theorem 4. (Enhanced binding in the case µ0 = 0). Consider the case µ0 = 0. Assume
Hypotheses (I)–(IX) with g̃j/µ

2 ∈ M (j = 1, . . . , J) in addition. Suppose that

Σ(Aren) − E0(Aren) >
1
2
F 2

3 + F1. (3)

and

F 2
1

[Σ(Aren) − E0(H)]2
+

{
2F 2

1

[Σ(Aren) − E0(H)]2
+ 1

}
1
2
F 2

2 < 1. (4)

Then H has a ground state.

Remark 4. In Theorems 3 and 4, the existence of a ground state of A is not assumed.

6 Proofs of the main theorems

We give only sketches of proofs of the main theorems stated in the preceding section.

6.1 Proof of Theorem 1

Lemma 1. There exists a unitary operator W on Fb(M) such that

(I ⊗W )H(I ⊗W )−1 = H1 − ‖T µ̂1/2‖2
HS,

where

H1 := A⊗ I + I ⊗ dΓ(µ̂) +
J∑

j=1

Bj ⊗ φ(g̃j) +
J∑

j=1

Kj ⊗ π(h̃j)

and ‖ · ‖HS denotes Hilbert–Schmidt norm.
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Proof. Similar to the proof of [2, Lemma 12]. �

We introduce a unitary operator

U :=
J∏

j=1

e−iBj⊗φ(ig̃j/µ).

Let

H0 := Aren ⊗ I + I ⊗ dΓ(µ̂),

V1 := U(A1 ⊗ I)U−1 −A1 ⊗ I, V2 :=
J∑

j=1

(
U(Kj ⊗ I)U−1

)
I ⊗ π(h̃j).

and

H̃1 := H0 + V1 + V2.

Lemma 2. Assume Hypotheses (I)–(VIII). Then UD(H0) = D(H0) and, for all Ψ ∈ D(H0),

UH1U
−1Ψ = H̃1Ψ.

Proof. Similar to the proof of [6, Lemma 3.7]. �

Using [6, Lemma 3.10] and the well-known estimates

‖a(f)Ψ‖ ≤
∥∥∥∥ f√

µ

∥∥∥∥
M

‖dΓ(µ̂)1/2Ψ‖, ‖a(f)∗Ψ‖ ≤
∥∥∥∥ f√

µ

∥∥∥∥
M

‖dΓ(µ̂)1/2Ψ‖ + ‖f‖M‖Ψ‖

holding for all Ψ ∈ D
(
dΓ(µ̂)1/2

)
and f, f/

√
µ ∈ M, one can easily see that V1 and V2 are

infinitesimally small with respect to H0. Hence, by the Kato–Rellich theorem, H̃1 is self-adjoint
with D(H̃1) = D(H0) and bounded from below. By this fact and Lemma 2, H1 is self-adjoint
with D(H1) = D(H0) and bounded from below. Theorem 1 now follows from this fact and
Lemma 1.

6.2 Proof of Theorem 2

By the self-adjointness of H (Theorem 1), H1 and Lemma 1, we have

σ(H) = σ(H1) − ‖T µ̂1/2‖2
HS, σess(H) = σess(H1) − ‖T µ̂1/2‖2

HS.

In particular

E0(H) = E0(H1) − ‖T µ̂1/2‖2
HS.

On the other hand, one can show in the same way as in [1, Theorem 3.3],

[E0(H1) + µ0,∞) ⊂ σess(H1) (µ0 > 0)

and

σ(H1) = [E0(H1),∞) (µ0 = 0).

These facts imply Theorem 2.
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6.3 Proofs of Theorems 3 and 4

By Lemma 1 and Theorem 1, it is sufficient to prove that H1 or H̃1 has a ground state. This is
done by using Lemma 2. Indeed, one sees that the methods developed in [6] work in the present
case too (in [6], H̃1 with V2 = 0 is considered). This is due to the fact that the new perturbation
term V2 has properties similar to those of V1, e.g.,

‖V2Ψ‖ ≤ D1/2‖I ⊗ dΓ(µ̂)1/2Ψ‖ +
1
2
D0‖Ψ‖, Ψ ∈ D

(
I ⊗ dΓ (µ̂)1/2

)
,

[V2, I ⊗ a(f)]Φ = − i√
2

J∑
j=1

U(Kj ⊗ I)U−1〈f, h̃j〉MΦ, Φ ∈ D(I ⊗Nb),

where Nb := dΓ(I) is the number operator on Fb(M). It turns out that we need only to shift
the constants cs(g) (s = 1, 3/2, 2) used in Theorems 2.2 and 2.3 in [6], which yields conditions
(2)–(4) in the present context.
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