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This talk is devoted to the discussion of symmetries that arise in the high-order variational
equations. Such symmetries lead to a new class of nonlinear estimates on regularity. They
permit the work in the case of essentially non-Lipschitz nonlinear differential equations, i.e.
when the classical Cauchy–Liouville–Picard regularity scheme fails to work. These estimates
are applied to the problem of C∞ regularity of nonlinear differential flows on manifolds,
that could also contain random terms. In particular, we demonstrate that the geometrically
correct study of regularity problems for nonlinear flows on manifolds requires introduction
of a new type variations with respect to the initial data. These variations are defined via
a natural generalization of covariant Riemannian derivatives. We also find how the curvature
manifests in the structure of the high-order variational equations.

1 Nonlinear differential equation on manifold
with random terms

Origination of different type nonlinearities in differential equations often complicates the study
of regular dependence of solutions on the initial data and parameters. The well-known clas-
sical regularity scheme, usually attributed to Cauchy, Liouville and Picard, permits to obtain
a complete picture of regularity properties for quasi-linear equations (with globally Lipshitz
coefficients with all bounded derivatives). For a simple one-dimensional equation

yt(x) = x +
∫ t

0
F (ys(x))ds (1)

it applies the fixed point techniques for contractive for small t mapping x → yx
t to prove the exis-

tence and uniqueness of solutions. In a similar way, the application of results on differentiability
of implicit function leads to the C∞ dependence of solution yx

t on initial data x.
In the case of essentially nonlinear equations with coefficients with unbounded derivatives this

scheme does not work. Moreover, the traditional attempt to find good Lipschitz approximations
may fail due to the influence of geometry or infinite dimensions. In this talk we demonstrate that
the knowledge of symmetries of high-order differential calculus permits to work with regularity
problems in the essentially nonlinear case. Main attention is devoted to the influence of geometry
on regularity properties.

We consider stochastic generalization of equation (1)

yx
t = x +

∫ t

0
A0(yx

s )ds +
∑
α

∫ t

0
Aα(yx

t )δWα
t (2)

on non-compact smooth oriented connected Riemannian manifold M without boundary. Here
coefficients A0, Aα represent smooth globally defined vector fields, Wα

t denotes a family of one
dimensional independent Wiener processes, δWα means Stratonovich differential, range of index
α corresponds to the dimension of manifold.
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We intentionally use uncommon for stochastics notation yx
t for the process, because the results

are still valid for the ordinary differential equations (Aα = 0). The new geometric effects also
arise for this case, i.e. do not follow from the traditional arguments, previously developed in
attempts to construct the stochastic differential geometry, e.g. [4–10].

Equation (2) is understood in a sense, that for any C3 function on manifold equation

f(yx
t ) = f(x) +

∫ t

0
(A0f)(yx

s )ds +
∑
α

∫ t

0
(Aαf)(yx

t )δWα
t

holds as stochastic equation in R
1. In particular, one can take f(x) = xk to find its local

coordinates representations.
The corresponding semigroup

(e−tHf)(x) = E f(yx
t ) (3)

provides the solutions to the parabolic Cauchy problem

∂

∂t
u(t, x) + Hu(t, x) = 0, H = −1

2

∑
α

AαAα + A0 (4)

and gives therefore a set of actual applications to the problems of infinite dimensional functional
and nonlinear analysis, stochastics and mathematical physics, differential geometry and operator
theory. We remark that paper can be read in a simpler nonstochastic case for Aα = 0.

2 Nonlinear symmetries of differential calculus

The main idea of work in the essentially nonlinear case is to find a set of a priori estimates on
regularity. They are related with symmetries of high-order derivatives [1].

Let us consider some first order differentiation d on the algebra of states y. Then the high-
order differential of nonlinear functional is given by

dnf(y) = f ′(y)dny +
∑

j1+···+js=n, s=2,n−1

f (s)(y)dj1y · · · djsy + f (n)(y)[dy]n.

The main observation is that above terms dny ∼ [dy]n arise simultaneously. This symmetry
also manifests in the intermediate terms dj1y · · · djsy ∼ [dy]j1+···+js ∼ [dy]n and is present in all
differentials dmf , m ∈ N.

Returning to equation (1) and writing equations on high-order variations one gets

y
(n)
t = ∂(n)

x yx
t = ∂(n)

x x +
∫ t

0
∂(n)

x F (yx
s )ds = ∂(n)

x x +
∫ t

0

∑
j1 + · · · + js = n

s = 1, . . . , n

F (s)(yx
s )y(j1)

t · · · y(js)
t ds.

So the high-order variation y
(n)
t in the l.h.s. becomes proportional to the first order variation y

(1)
t

in nth power in the r.h.s. (for ji = 1). Therefore the behaviours are comparable n

√
y

(n)
t ∼ y

(1)
t .

If we introduce a homogeneous with respect to this symmetry expression

ρn(y, t) =
∑

j=1,...,n

pj(yx
t ) ||y(j)

t ||m/j

and impose some reasonable conditions on the behaviour of nonlinearity F and hierarchy of
weights pj , related with the behaviour of nonlinearity F , one comes to the quasi-contractive
estimate, e.g. [1,2].

∃K ρn(y, t) ≤ eKtρn(y, 0),
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i.e. essentially nonlinear (different powers m/j) a priori estimate on the regularity of
solution yx

t with respect to the initial data x (recall that y
(n)
t = ∂

(n)
x yx

t ). Because in the very
basis of nonlinear estimates lie monotone methods of nonlinear analysis, such estimates become
applicable even in the infinite dimensions.

We also remark, that in the case of globally Lipschitz coefficients with bounded derivatives
weights pj = 1. This leads to a qualitively different understanding of the Cauchy–Liouville–
Picard regularity scheme, that does not ground on the implicit function techniques.

Turning to our model of stochastic equation on manifold (2), one can also hope to get similar
a priori estimates on regularity. Here, however, arises a new fundamental problem: how to define
the high-order variations in a geometrically correct way.

3 Generalization of Riemannian covariant derivative
or invariance of variations with respect to (yx

t ) coordinate

Today the procedure of the geometrically correct construction of differential flows on manifolds
is quite clear. Adding the stochastic terms does not change the picture: in spite of the addi-
tional terms, arising in Ito formula, the stochastics could be agreed with the geometry, e.g. via
Stratonovich differentials, special second order bundles or orthoframe liftings of diffusions [4–10].

However the further problem of consistency with problematics of differential geometry,
namely how the geometrically invariant differentials are constructed from geometrically invariant
objects, in fact, was not considered yet. The attempts to consider variations as defined via
derivatives in directions of vector fields, covariant Riemannian derivatives lose an important
property of geometric invariance with respect to the process yx

t .
Let us explain what is meant. Suppose that some process on manifold yt (of diffusion or any

other nature) travels over manifold and enters some vicinity U ⊂ M with coordinate functions
ϕ = (ϕi)dim M

i=1 , ϕ : U → R
dim M . Then one can speak about the coordinates of process yi

t =
(ϕi) ◦ yt when it stays in this vicinity.

Let D be some first order differentiation operation, correctly defined on diffusion process yt.
It could be of any nature, like ∂x or stochastic derivative with respect to the random parameter,
the principal moment is that the first order differentiation obeys chain rule

D(f ◦ y) = (f ′ ◦ y)Dy.

Because the local coordinate changes yi′ = ϕi′(yt) = (ϕi′ ◦ ϕinv)(yi)dim M
i=1 represent a particular

case of locally defined functions, one gets rule

Dym′
=

∂ym′

∂ym
Dym.

Therefore the expression Dy becomes a vector field with respect to the “coordinate” changes
(y) → (y′) of diffusion “variable” y, though, of course, the diffusion process yt does not determine
some coordinate system, like local coordinate mappings ϕ, ϕ′ do.

By similar to the classical differential geometry arguments, related with the construction of
covariant derivatives, there is no other way to define correctly the high-order derivatives (D̃)iy,
but introduce additional terms with connection Γ(yt).

The correct recurrent definition of the invariant high-order derivative then becomes

D̃ym = Dym, D̃[ (D̃)iym ] = D[ (D̃)iy ] + Γ m
p q(y) [ (D̃)iyp ]Dyq,

here must also arise factors Dyq in the term with Γ(yt).
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These additional terms in definition of higher-order derivatives D̃n guarantee the preservance
of vector transformation law with respect to the (y) → (y′) coordinate transformations:

(D̃)nym′
=

∂ym′

∂ym
(D̃)nym, ∀n ≥ 1.

Such (y) → (y′) invariance, or, if one returns to the very beginning, the invariance with
respect to changes of local coordinates (y) → (y′) in vicinity, where travels yt, represents a new
purely geometric requirement, which for a long time remained in the shadow.

As a final remark let us also observe that the way to introduce the new type derivatives
is independent on particular approach we choose to define the differential flow on manifold,
actually it works for any differential equations (high-order, etc) on manifolds, because,
by consideration above, symbol y ∈ M must have values in manifold, but nothing more.

Now we can turn to the correct construction of high-order variations of process yx
t (2) and

develop nonlinear estimates on variations to this setting.

4 High order variations on initial data.
Tensors on (x) and (yx

t ) coordinates

Consider the first order variation ∂(yx
t )m

∂xk , that represents a vector field on index m for (y) → (y′)
“coordinate” transformations and covector field on index k for (x) → (x′) coordinate changes.

From arguments above we can immediately conclude that the definition of geometrically
invariant high-order variations must include terms with Γ(x) and Γ(y) to guarantee the preser-
vance of tensorial character on both image (y) → (y′) and domain (x) → (x′) coordinate changes
of mapping x → yx

t .

Definition 1. Variations of differential flow yx
t with respect to the initial data are defined

recurrently by

1st order. ∇∇x
kym =

∂(yx
t )m

∂xk

vector on m in (y),
covector on k in (x).

High order. For γ = (j1, . . . , jn) the high-order variation ∇∇x
γym = ∇∇x

jn
· · ·∇∇x

j1y
m is de-

fined by

∇∇x
k(∇∇x

γym) = ∇x
k(∇∇x

γym) + Γ m
p q(y

x
t )∇∇x

γyp ∂yq

∂xk

= ∂x
k (∇∇x

γym) −
∑
j∈γ

Γ h
k j(x)∇∇x

γ|j=h
ym

old covariant derivative

+ Γ m
p q(y

x
t )∇∇x

γyp ∂yq

∂xk

new term

. (5)

From the point of view of classical Riemannian geometry such definition of the high-order
invariant variation of y with terms Γ(x), Γ(y) and ∂yx

t
∂x provides generalization of the classical

covariant Riemannian derivative. Unlike all already existing torsion, polynomial connection and
other generalizations of variation, defined primarily at point x, it depends not only on initial
point of differentiation x, but also on behaviour of process at point y.

The above definition naturally generalizes to the tensors on both (x) and (yx
t ) coordinates:

object u
(i/α)
(j/β) represents a tensor on (x) and (yx

t ) coordinates iff it is T p,q
x M tensor on multi-

indexes (i) = (i1, . . . , ip), (j) = (j1, . . . , jq) with respect to the local coordinates (xk) and T r,sM
tensor on multi-indexes (α), (β) with respect to the local coordinates (ym). In other words, after
the simultaneous change of local coordinate systems (xk) → (xk′

) and (ym) → (ym′
) one has

transformation law

u
(i/α)
(j/β) =

∂x(i)

∂x(i′)
∂x(j′)

∂x(j)

∂y(α)

∂y(α′)
∂y(β′)

∂y(β)
u

(i′/α′)
(j′/β′)
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with Jacobians ∂x(i)

∂x(i′) = ∂xi1

∂xi′1
· · · ∂xip

∂xi′p . Simple examples of such tensors provide already introduced

high-order variations or superpositions with usual tensors u
(i)
(j)(x)v(α)

(β)(y
x
t ).

The invariant (x)-derivative of tensor is defined in a similar to (5) way

∇∇x
ku

(i/α)
(j/β) =

∂

∂xk
u

(i/α)
(j/β) +

∑
s∈(i)

Γ s
k h(x)u(i/α)|s=h

(j/β) −
∑
s∈(j)

Γ h
k s(x)u(i/α)

(j/β)|s=h

+
∑

ρ∈(α)

Γ ρ
γ δ(y

x
t )u(i/α)|ρ=δ

(j/β)

∂yδ

∂xk
−

∑
ρ∈(β)

Γ γ
ρ δ(y

x
t )u(i/α)

(j/β)|ρ=γ

∂yδ

∂xk
.

First line corresponds to the covariant derivative on (xk) coordinates, second line makes the
resulting expression to be tensor with respect to the coordinates (ym). Next lemma checks the
tensorial transformation property for the (x) covariant derivative.

Theorem 1. The covariant (x) derivative defines a tensor of higher valence, i.e. transformation
law holds

∇∇ku
(i/α)
(j/β) =

∂xk′

∂xk

∂x(i)

∂x(i′)
∂x(j′)

∂x(j)

∂y(α)

∂y(α′)
∂y(β′)

∂y(β)
∇∇k′u

(i′/α′)
(j′/β′).

Before turning directly to the proof, let us briefly recall the definition of connection. Con-
nection form is a mapping

Hess : C∞(M) → C∞(T 0,2M)

that fulfills property

Hess (h ◦ f) = ∂jh ◦ f Hess f j + ∂ijh ◦ f df i ⊗ df j .

Its components, known as Cristoffel symbols, are defined by taking Hessians of local coordinates

Hess xi = −Γ i
j kdxi ⊗ dxj .

In particular, for any function, viewed as a function of local coordinates we have

Hess (f ◦ x) = (∂ijf − Γ k
i j∂kf)dxi ⊗ dxj .

Proof. One should write the expression of (x) derivative and substitute the transformation law
of tensor on (x) and (y) coordinates to get

∇∇ku
(i/α)
(j/β) = [Jacobians]

∂xk′

∂xk
∂k′u

(i′/α′)
(j′/β′)

+
∑
s∈(i)

[Jacobians with s-out]
{

∂2xs

∂xk∂xs′ u
(i′/α′)
(j′/β′) + Γ s

k h(x)
∂xh

∂xh′ u
(i′/α′)|s′=h′
(j′/β′)

}
(A)

+
∑

ρ∈(α)

[Jacobians with ρ-out]
{

∂2yρ

∂xk∂yρ′ u
(i′/α′)
(j′/β′) + Γ ρ

γ δ(y)
∂yγ

∂yγ′ u
(i′/α′)|ρ′=γ′
(j′/β′)

∂yδ(x)
∂xk

}
(B)

−
∑
s∈(j)

(similar to (A)) −
∑

ρ∈(β)

(similar to (B)), (C)
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where [Jacobians] means the Jacobians from the transformation law of u
(i/α)
(j/β) and [Jacobians

with s-out] means that in product the corresponding Jacobian with index s is omitted. Line (C)
is written in analogue to the lines (A)–(B) with corresponding modifications.

Transformation of line (A). By definition of Cristoffel symbols

Hess (x1) = −Γ 1
2 3dx2 ⊗ dx3 = −Γ 1

2 3

∂x2

∂x2′
∂x3

∂x3′ dx2′ ⊗ dx3′ .

From another side from definition of connection

Hess x1(x′) =
∂x1

∂x1′ Hess x1′ +
∂2x1

∂x2′∂x3′ dx2′ ⊗ dx3′ =
[
− ∂x1

∂x1′ Γ
1′

2′ 3′ +
∂2x1

∂x2′∂x3′

]
dx2′ ⊗ dx3′

that leads to relation

∂2x1

∂x2∂x3′ =
∂x2′

∂x2

∂2x1

∂x2′∂x3′ = Γ 1′
2′ 3′(x

′)
∂x1

∂x1′
∂x2′

∂x2
− Γ 1

2 3

∂x3

∂x3′ (D)

and one can transform each term in (A) to the form

(A) = [Jacobians with s-out]
∂xs

∂xs′
∂xk′

∂xk
Γ s′

k′ h′(x′)u(i′/α′)|s′=h′
(j′/β′) . (E)

Transformation of line (B). Changing the coordinates (x) ↔ (y) in (D) we get

∂2y1

∂y2∂y3′ = Γ 1′
2′ 3′(y

′)
∂y1

∂y1′
∂y2′

∂y2
− Γ 1

2 3(y)
∂y3

∂y3′ .

This leads to

∂2y1

∂xk∂y3′ =
∂y2

∂xk

∂2y1

∂y2∂y3′ = Γ 1′
2′ 3′(y

′)
∂y1

∂y1′
∂y2′

∂xk′
∂xk′

∂xk
− Γ 1

2 3(y)
∂y3

∂y3′
∂y2

∂xk

and permits to transform terms in (B) to the form

(B) = [Jacobians with ρ-out]
∂yρ

∂yρ′
∂xk′

∂xk
Γ ρ′

γ′ δ′
∂yδ′

∂xk′ u
(i′/α′)|ρ′=γ′
(j′/β′) . (F)

Finally, collecting together terms (E), (F) and transforming the remaining terms in (C) we
come to the (x) covariant derivative in new coordinate systems

∇∇ku
(i/α)
(j/β) = [Jacobians]

∂xk′

∂xk
∇∇k′u

(i′/α′)
j′/β′) . �

An important property of new (x) covariant derivative is a chain rule, which does not hold
for traditional covariant derivative.

Corollary 1. Let u
(α)
(β) be a tensor on manifold M . Then for superposition one has chain rule

∇∇ku
(α)
(β)(y(x)) = (∇�u

(α)
(β))(y(x))

∂y�

∂xk
.

Proof. Using definition of (x) derivative we get

∇∇ku
(α)
(β)(y(x)) = ∂x

ku
(0/α)
(0/β)(y(x)) +

∑
ρ∈(α)

Γ ρ
γ δ(y)u(0/α)|s=γ

(0/β) (y)
∂yδ

∂xk
−

∑
ρ∈(β)

Γ γ
ρ δ(y)u(0/α)

(0/β)|ρ=γ

∂yδ

∂xk
.

From chain rule for ∂x
k and definition of usual covariant derivative follows the statement. �
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5 Role of curvature in the regularity problems

Having in hands the correct procedure of differentiation of tensors of y, such as defined by
coefficients A•(yx

t ) of equation (2), we can find the corresponding variational equations. Taking
the partial derivative of (2) we find

δ

(
∂ym

∂xk

)
=

(
∂

∂xk
Am

0 (y)
)

dt +
(

∂

∂xk
Am

α (y)
)

δWα.

By adding and subtracting the terms with Γ(y) to single out the covariant (x)-derivative of
vector fields A0(y), Aα(y) on image coordinates (y) we have

δ

(
∂ym

∂xk

)
=

(
∇∇x

kAm
0 (y) − Γ m

p q(y)Ap
0

∂yq

∂xk

)
dt +

(
∇∇x

kAm
α (y) − Γ m

p q(y)Ap
α

∂yq

∂xk

)
δWα.

Noting that the terms near connection contain the differential of process y we finally get invariant
form of equation on the first variation

δ

(
∂ym

∂xk

)
= −Γ m

p q(y)
∂yp

∂xk
δyq + ∇∇x

k(Am
α (y))δWα + ∇∇x

k(Am
0 (y))dt. (6)

Therefore up to the parallel transition term with Γ(y) the increments of first order variation
are determined by covariant (x)-derivatives of coefficients. We take this observation as the
recurrence base in the search for high-order variational equations.

Theorem 2. Suppose that the equation on variation ∇∇x
γym, |γ| ≥ 1 is written in form

δ(∇∇x
γym) = −Γ m

p q(∇∇x
γyp)δyq + M m

γ i δW
i + Nm

γ dt. (7)

Then the next order variation ∇∇x
k∇∇x

γym = ∇∇x
γ∪{k}y

m fulfills relation

δ(∇∇x
γ∪{k}y

m) = −Γ m
p q(∇∇x

γ∪{k}y
p)δyq + R p

m �q(∇∇x
γyp)

∂y�

∂xk
δyq

+ (∇∇x
kM m

γ i )δW
i + (∇∇x

kNm
γ )dt. (8)

Therefore the coefficients of variational equations are recurrently related by

M m
γ∪{k} i = ∇∇x

kM m
γ i + R p

m �q(∇∇x
γyp)

∂y�

∂xk
Aq

i , Nm
γ∪{k} = ∇∇x

kNm
γ + R p

m �q(∇∇x
γyp)

∂y�

∂xk
Aq

0.

Above R denotes curvature tensor.

Remark 1. Introduction of new type variations finally let us find a place of curvature (8) in
the regularity properties. Having started from variations, defined by derivatives in directions of
vector fields or by covariant Riemannian derivatives, we would get a set of (yx

t ) non-invariant
equations with exploding number of non-invariant coefficients, e.g. [4, 6]. In other words, addi-
tional terms in (5) compactificate the variational equations to a simplest possible form (8), that
provides one more argument in favor of introduction of new type variations.

6 Nonlinear estimates on regularity of differential flows
on manifolds. Applications to the semigroup properties

From structure of variational equations (8) and chain property of covariant (x)-derivative
∇∇x

ku
(i)
(j)(y

x
t ) = [∇�u

(i)
(j)](y

x
t ) ∂y�

∂xk we see that symmetry ∇∇xyx
t ∼ n

√
(∇∇x)nyx

t manifests again,
leading to the related nonlinear expression

ρn(y, t) =
∑

j=1,...,n

E pj(ρ2(yx
t , z)) ||(∇∇x)jyx

t ||m/j

and nonlinear estimate on regularity. Above z is some fixed point of manifold.
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Theorem 3. Introduce notation Ã0 = A0 +
∑
α
∇AαAα. Suppose conditions hold:

dissipativity and differential coercitivity:

∀C ∃KC ∀x ∈ M 〈Ã0(x),∇xρ2(x, z)〉 + C
∑
α

‖Aα(x)‖2 ≤ KC(1 + ρ2(x, z)),

∀C, C ′ ∃KC 〈∇Ã0[h], h〉 + C

d∑
α=1

|∇Aα[h]|2 + C ′ ∑
α

〈R(Aα, h)Aα, h〉 ≤ KC‖h‖2.

nonlinear behavior of all derivatives of curvature and coefficients:

∃k ∀ j ‖(∇)jÃ•(x), R(x)‖ ≤ (1 + ρ(x, z))k.

Then for polynomial weights pj ≥ 1, which fulfill hierarchy

∀ j1 + · · · + js = i [pi(z)]i (1 + |z|)mk ≤ [pj1(z)]j1 · · · [pjs(z)]js

the nonlinear estimate on regularity holds

∃K ρn(y, t) ≤ eKtρn(y, 0).

Proof proceeds similar to [1] with corresponding geometric complications, it will appear in [3].

Turning to the study of regularity properties of semigroup (Ptf)(x) = E f(yx
t ) one can prove

representation, that relate the behaviour of covariant derivatives of function and its evolution

(∇x)nPtf(x) =
∑

j1+···+js=n, s=1,...,n

E 〈(∇y)sf(yx
t ), (∇∇x)j1yx

t ⊗ · · · ⊗ (∇∇x)jsyx
t 〉.

In particular, we get next argument in favor of new type variations: they relate classical covariant
derivatives of function and its evolution – and only they!

Because in the above representation new type variations (∇∇x)jyx
t appear as convolutional

kernels, one can get the regular properties of semigroup from nonlinear estimates on regularity.
This is a subject of [3].
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