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Switching the branch of the trivial states, at a Hopf bifurcation, to a branch of the standing
and the travelling states is considered. A secondary bifurcation on period solutions, leading
to chaotic behaviour, is dealt with the technique of canonical co-ordinates transformation.
The techniques that are introduced in this paper are illustrated by a small system of ordinary
differential equations.

1 Introduction

In this paper a multiple Hopf bifurcation is considered on the branch of trivial solutions in
problems with O(2) symmetry. The theory for this type of bifurcation is well understood and
leads us to solutions in the form of standing and travelling waves (van Gils and Mallet-Paret [1],
Golubitsky et al [2]). Golubitsky et al [2] distinguish the standing and the travelling (rotating)
oscillations in the system of ordinary differential equations (ODEs) by their symmetries, however,
these oscillations come from considering the ODE as an amplitude system for some partial
differential equation (PDE) model. The triple zero bifurcation equations that we consider in
this paper is a normal form for the amplitude equation for a PDE model Arneodo et al [3]. At
the multiple Hopf bifurcation point, due to the four-dimensional null space resulting from the
Jacobian of the linearized equations, swapping the branches is not straightforward. We show a
possible way for swapping the branches, and this involves restricting the solutions in the two-
dimensional fixed point subspaces associated with the isotropy subgroups of O(2)× S1. On the
travelling waves we consider a further Hopf bifurcation leading to a tori branch. We deal with
this bifurcation using canonical co-ordinates.

2 The travelling waves: multiple Hopf bifurcation

In a previous paper [4] we considered a system of the form

ż = g(z, λ), (1)

where z ∈ C
3 and λ ∈ R. The system is symmetric with respect to the group O(2). In problems

with O(2) symmetry there are typically many branches of symmetric steady state solutions,
and the state space X can be decomposed into a symmetric subspace Xs (reflectional invariant
subspace) and an anti-symmetric subspace Xa, i.e. X = Xs⊕Xa, due to the underlying reflection
symmetry [5]. On the symmetric solutions zs(λ), the Jacobian matrix can be also decomposed
as gz(zs, λ) = diag(gs

z(zs, λ) : ga
z (zs, λ)), where gs

z and ga
z are associated with symmetric and anti-

symmetric subspaces, respectively [6]. In [4] a Hopf bifurcation from the circle of non-trivial
steady states (or relative equilibria) is considered and it is shown that the waves emerging from
a Hopf bifurcation change their direction of propagation in a periodic fashion. In that paper [4]
we considered a couple of imaginary eigenvalues in the anti-symmetric block of the Jacobian
matrix, and due to the symmetry the Hopf bifurcation was not standard. We used the canonical
co-ordinates transformation to remove the degeneracy of the system.
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The equation we consider in this paper is in the form of (1), which we assume symmetric
with respect to the diagonal action of group O(2) defined by

rαz = eiαz, sz = z̄,

where z = (z1, z2, z3, . . . , zn) ∈ C
n =: X. The problem has a branch of trivial solutions, with

full O(2) symmetry, inherited from the underlying symmetry of the system. We assume that
on this branch, at λ = λ0, the symmetric and the anti-symmetric blocks of the Jacobian matrix
satisfy the following conditions

gs
z(0, λ0)φs = ±iωφs, ga

z (0, λ0)φa = ±iωφa, (2)

where φs = φsr + iφsj ∈ Xs and φa = φar + iφaj ∈ Xa. Therefore, the Hopf bifurcation
on the trivial solution is associated with the two-dimensional irreducible representation of the
group O(2). The irreducible representations of O(2) are given by

(i) rα = I, s = I, one-dimensional,

(ii) rα = I, s = −I, one-dimensional,

(iii) rα =
[

cos α sinα
− sinα cos α

]
, s =

[
1 0
0 −1

]
, two-dimensional.

Bifurcations associated with the one-dimensional irreducible representations of O(2) are not of
interest. The analysis of this type of bifurcation is very similar to that for Hopf bifurcations
of vector fields since an additional S1 symmetry can be defined in this case [7]. Therefore the
full symmetry of the system is O(2) × S1 and the Hopf bifurcation is associated with the two-
dimensional irreducible representation of O(2)×S1. To analyse this bifurcation we linearize the
equation (1) at the Hopf bifurcation giving rise to the solution of the form

Φk(t) = eiωtφk, k = s, a. (3)

We represent the corresponding real eigenspace as Ei = sp{φsr, φsj , φar, φaj} which is a four-
dimensional subspace. We can decompose the space X to its isotypic components as X =
X0⊕X1⊕X2, where X0 = Xs, X1 are associated with the one-dimensional representations, and
X2 is associated with the two-dimensional representation. These components are irreducible
subspaces. Therefore φsr, φsj , φar, φaj ∈ X2.

The group actions on the eigenspace can be easily obtained as:

θ




φsr

φar

φsj

φaj


 =




cos ωθ 0 − sinωθ 0
0 cos ωθ 0 − sinωθ

sin ωθ 0 cos ωθ 0
0 sinωθ 0 cos ωθ







φsr

φar

φsj

φaj


 , (4)

rα




φsr

φar

φsj

φaj


 =




cos ωt sinωt 0 0
− sinωt cos ωt 0 0

0 0 cos ωt sinωt
0 0 − sinωt cos ωt







φsr

φar

φsj

φaj


 ,

s




φsr

φar

φsj

φaj


 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1







φsr

φar

φsj

φaj


 .

Now, to use the results of Golubitsky et at [2] with regards to the isotropy subgroups of O(2)×S1

on C
2, we identify the eigenspace Ei with C

2 by

(x1, y1, x2, y2)←→ x1φsr + x2φsj + y1φar + y2φaj , (5)
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where xj + iyj =: zj ∈ C
2, j = 1, 2. From (4) and (5), we obtain the action of θ on C

2:

θ




x1

y1

x2

y2


 =




cos ωθ 0 sinωθ 0
0 cos ωθ 0 sinωθ

− sinωθ 0 cos ωθ 0
0 − sinωθ 0 cos ωθ







x1

y1

x2

y2


 .

Now, we introduce new co-ordinates (z̃1, z̃2) = (z̄1 − iz̄2, z1 − iz2) [2], so that in these new
co-ordinates θ acts diagonally on C

2. It can be shown that the representation T of O(2)×S1 in
these new coordinates is given by

T (s) =
[

0 1
1 0

]
, T (rα) =

[
e−iα 0

0 eiα

]
, T (θ) =

[
eiωθ 0

0 eiωθ

]
.

These results correspond to the results given in [2]. The isotropy subgroups of O(2) × S1

acting on C
2 are given by Golubitsky, et al [2]. They have shown that there are only two

isotropy subgroups, which give two-dimensional fixed point subspaces and these are used here,
to reduce the four-dimensional eigenspace Ei to a two-dimensional one. These subgroups and
their corresponding fixed point subspaces are given bellow:

Isotropy subgroup Fixed point space dim
(a) Z2(s) = {(I, 0), (s, 0)} {(z̃1, z̃1)} 2
(b) S̃O(2) = {(I, 0), (rωθ, ωθ)} {(z̃1, 0)} 2

In case (a), from z̃1 = z̃2 and reverting to the original co-ordinates we obtain y1 = y2 = 0. Thus
the identification (5) implies that (x1, 0, x2, 0)←→ x1φsr+x2φsj . Therefore in this case, subgroup
σ1 = Z2(s) with Fix(σ1) ∩ Ei = sp{φsr, φsj}, reduces the four-dimensional eigenspace Ei to
a two-dimensional one, and the Equivariant Hopf Theorem implies that there exists a branch
of periodic solutions bifurcating from the trivial solutions at λ = λ0 having σ1 as its group of
symmetries. This branch corresponds to the standing waves. From z̃2 = 0 in case (b), we obtain
x1 = −y2 and y1 = x2. Thus the identification (5) implies that (x1, y1, y1,−x1) ←→ x1(φsr −
φaj)+y1(φsj+φar). Therefore the subgroup σ2 = S̃O(2), reduces the four-dimensional eigenspace
to a two-dimensional one with Fix(σ2) ∩ Ei = sp{φsj + φar, φsr − φaj}. Hence the Equivariant
Hopf Theorem implies that there exists a branch of periodic solutions bifurcating from the trivial
solutions at λ = λ0 having σ2 as its group of symmetries. This branch corresponds to the branch
of travelling waves. Thus generically there are two branches of periodic solutions bifurcating
from the trivial solutions at λ = λ0.

Once a multiple Hopf bifurcation has been detected at (0, λ0), a starting solution for the
two branches of periodic solutions can be obtained in usual way for the variable z(t), using the
solution (3). Near the symmetry breaking Hopf bifurcation, the solution of (1) to first order is
given by

z(t) = αΦj(t) + O
(
α2

)
, j = s, a,

λ = λ0 + O
(
α2

)
, (6)

where Φj(t) is defined by (3). Restricting the solutions to the fixed point subspace with symmetry
group σ1 implies that Φs(t) = eiωt(φsr+iφsj) and this solution gives rise to the branch of standing
wave solutions. Restricting to the fixed point subspace with the subgroup of symmetry σ2 leads
to a solution of the form Φa(t) = eiωt((φsj + φar) + i(φsr − φaj)) which gives rise to the branch
of travelling wave solutions. Therefore, there exist two branches of solutions bifurcating from
trivial solutions at λ = λ0. Note that φkr, φkr, k = s, a can be obtained by (2).
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3 The torus bifurcation: canonical co-ordinates transformation

Assume that a Hopf bifurcation occurs on the branch of travelling wave solutions. The branch
switching at this bifurcation is not standard, due to the fact that solutions emanating at this
Hopf bifurcation are in the form of torus. This can be achieved by transforming the equations
to the canonical co-ordinates [4, 9], so that in this co-ordinates system the drift velocity of
the travelling waves will be decoupled, and therefore we observe travelling wave solutions in
travelling (rotating) frame as steady state solutions. The torus bifurcation in this co-ordinates
system becomes a standard Hopf bifurcation point and the package AUTO [10] deals with it
automatically.

In general we make a change of co-ordinates

w = W (z) = (w1(z), w2(z), . . . , wn(z)), z = (z1, z2, . . . , zn).

Then (w1, w2, . . . , wn) defines canonical co-ordinates for the one parameter Lie group of trans-
formations z∗ = X(z, α), α ∈ R, if in terms of such co-ordinates the group action is

w∗
i = wi, i = 1, 2, . . . n− 1, w∗

n = wn + α.

The advantage of these co-ordinates is that we can decouple the velocity of travelling waves. In
this paper the canonical co-ordinates is defined as follows:

w1 =
z2

z1
, w2 =

z3

z1
, . . . , wn−1 =

zn

z1
, r = |z1|, φ = arg(z1),

where wj = uj + ivj ∈ C, j = 1, 2, . . . , n− 1 and r ∈ R are all invariant under the rotation and
φ→ φ + α.

4 An example in C
3

We consider the following system

ż1 = z2, ż2 = z3, ż3 = −λz1 − 2.0z2 − 1.5z3 + |z1|2z1, (7)

and z = (z1, z2, z3) ∈ C
3, λ ∈ R [3, 4, 8]. The system is symmetric with respect to the diagonal

action of O(2) defined by

rα(z1, z2, z3) = (eiαz1, e
iαz2, e

iαz3), s(z1, z2, z3) = (z̄1, z̄2, z̄3).

The trivial branch of solutions, z = 0, ∀λ, with full O(2) symmetry, is unstable for λ < 0
and gains stability at λ = 0 in a subcritical bifurcation to an unstable non-trivial branch of
solutions defined by λ = |z1|2. These solutions lie in the symmetric subspace Xs, characterized
by Im(z1) = Im(z2) = Im(z3) = 0. The Hopf bifurcation from non-trivial states is considered
in [4, 8]; here we consider a Hopf bifurcation on trivial states which occurs at λ = 3.0. The full
symmetry of the system (7) is defined as O(2)× S1 and the Hopf bifurcation is associated with
the two-dimensional irreducible representation of O(2)× S1.

To follow the branches of the standing and the travelling waves, respectively, we start with
the initial solutions of the form

z1 = α(c1(cos ωtφsr − sin ωtφsj) + c2(cos ωtφsj + sinωtφsr)), λ = 3.0
z2 = α(c1(cos ωt(φsj + φar)− sinωt(φsr − φaj)) + c2(cos ωt(φsr − φaj)

+ sinωt(φsj + φar))),
λ = 3.0,

where

φsr = [ 0, 0, 0, −0.38, 0, 0.76]T , φsj = [0, 0, 0, 0, 0.54, 0]T
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and

φar = [−0.38, 0, 0.76, 0, 0, 0]T , φaj = [0, 0.54, 0, 0, 0, 0]T ,

are the eigenvectors associated with the multiple pure-imaginary eigenvalues, α is a suitable
small real value and c1, c2 are the arbitrary real constants.

We followed the unstable standing wave solutions and found a symmetry breaking bifurcation
at λ = 6.613 giving rise to a branch of unstable asymmetric standing wave solutions. Note that
the standing wave solutions lie in Fix(σ1) = Xs. The branch of asymmetric standing waves
terminate at λ = 8.01 when an asymmetric standing wave collides with an unstable steady state
solution in a homoclinic connection. The standing wave solutions terminate at λ = 12.45 in
a heteroclinic connection with the travelling wave and the non-trivial steady states.

Following the travelling waves a torus bifurcation is obtained at λ = 6.176 giving rise to
a branch of stable tori (here after T-branch). Switching the branch of travelling waves to the T-
branch is obtained by using the canonical co-ordinate transformations discussed in the previous
section. Therefore the system in canonical co-ordinates can be written as:

Ṙ = 2Ru1,

u̇1 = u2 − u2
1 + v2

1,

u̇2 = −λ− 2.0u1 − 1.5u2 + R− (u1u2 − v1v2), (8)
v̇1 = v2 − 2.0u1v1,

v̇2 = −2.0v1 − 1.5v2 − (u1v2 + v1u2),

φ̇ = v1,

where R = r2.
A bifurcation diagram is given in Fig. 1 (see also Fig. 2 for better understanding of the

bifurcations involved). The bifurcation diagram is obtained using both the original (7) and the
transformed system (8).
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Figure 1. A bifurcation diagram is obtained by
solving system (7). The two branches of travel-
ling waves and the standing waves are obtained at
λ = 3.0. Following the travelling waves a torus bifur-
cation is obtained at λ = 6.176. Solid circles indicate
period doubling bifurcations and unstable branches
are shown using dashed lines. A plus sign indicates
the torus bifurcation on the travelling wave solutions.
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Figure 2. To illustrate a better picture of
the bifurcation points and the branches, Fig. 1
is enlarged. The letter T represent a torus;
TW (travelling wave); SW (standing Wave);
ASW (asymmetric standing wave); PT (period-
doubled torus) and s (steady state).

Note that in this new system (8) the rotation φ is decoupled from the remaining equations.
The drift velocity of the pattern, φ̇, must vanish in the reflection invariant subspace Xs, hence
periodic motions in this space are standing waves. The travelling wave solutions are the steady
states of the above equations (ignoring the φ̇ equation) and the torus bifurcation appears as
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a standard Hopf bifurcation, resulting a standard branch swapping. The torus bifurcation is
far from the multiple Hopf bifurcation point which occurred on the trivial states, therefore we
do not expect any interaction between these two bifurcations. For better understanding of the
motion of the torus we investigate the behaviour of its velocity defined by the variable φ̇ in
the transformed equations (8). The torus can be obtained by the numerical integration of the
original system (7). A torus and its velocity is shown in Fig. 3.
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Figure 3. (a): The velocity of the torus is obtained by the numerical integration of the system in the
canonical co-ordinates system for λ = 6.39, it is periodic in time. (b) The phase plot of the velocity in
(Re (z̄1z2), Im z̄1z2))-plane for λ = 6.39, it is easy to show that |z1|2φ̇ = Im z̄1z2. (c): A torus is obtained
by the numerical integration of the original equations (7) for λ = 6.39. (d): A projection of the torus in
(Re z1, Im z1)-plane.

Now, we consider a numerical investigation of chaotic behaviour in the above system (7).
In many experiments, changes in the system behavior are studied as some system parameter is
varied. We study the qualitative changes in dynamic behavior, which produces the oscillatory
waves that reverse their direction of propagation in a chaotic fashion. Therefore we vary the
bifurcation parameter λ and observe that the branch of tori loses stability at λ = 6.786 to
a branch of period-doubled tori (PT-branch) and hereafter undergoes torus-doubling cascade
bifurcations. PT-branch loses stability at λ = 6.94 to a branch of period-4 tori and this branch
joins with PT-branch at λ = 7.58. A period-4 tori also bifurcates at λ = 7.48 from PT-branch.
Later we will see that this branch is in the basin of attraction of the chaotic attractors which
give rises to the occurrence of reversal in the direction of chaos. This branch collides with PT-
branch at λ = 7.60. As λ increases close to 7.38, the torus-doubled cascade forms a modulated
asymmetric strange attractor; the velocity of these modulated waves remain positive for λ < 7.38
As we vary λ further, a bifurcation occurs at λ = 7.38. At this point the chaotic attractor gains
symmetry, and the velocity of the attractor changes sign irregularly and no longer remains
positive (see Fig. 4) indicating chaotic reversal in the direction of propagation. The qualitative
changes in chaotic behavior occurs when an asymmetric chaotic attractor describing the chaotic
motion collides with an unstable period-4 torus. This increases the size of the attractor, produces
a symmetric attractor and hence results in reversal in the direction of propagation (we call this
an interior crisis). A crisis is a bifurcation event in which a chaotic attractor and its basin of
attraction suddenly disappears or suddenly changes in size as some control parameter is adjusted.
In other words, if a parameter is changed in the opposite direction, the chaotic attractor can
suddenly appear or the size of the attractor can suddenly be reduced. The interior and the
boundary crisis is investigated by Grebogi et al [11] in the context of a one-dimensional quadratic
map, when at a tangent bifurcation the stable and unstable orbits are created. The stable fixed
point undergoes a period-doubling cascade, forming chaotic behavior and hence colliding with an
unstable periodic orbit. The result is the disappearance of the chaotic motion. The mechanism
of qualitative changes in this paper involves the symmetry-increasing bifurcation of the strange



Torus Doubling Cascade in Problems with Symmetries 1227

attractor in which the asymmetric trajectories collide with an unstable period-4 torus Grebogi
et al [12]. In [12] sudden qualitative changes in chaotic dynamical behaviour occur when an
attractor collides with an unstable periodic orbit.

In Fig. 4 we show time evolution of the velocity of the travelling waves. The velocity of
travelling waves eventually perform complex behaviour. This complex chaotic behaviour reverses
its direction of propagation, indicating an irregular sign changes of the wave’s velocity.
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Figure 4.

A detailed study of this problem is submitted to CHAOS, American Institute of Physics [13].
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