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The notation and terminology used in these problems may be found
in the lecture notes [22], and background for all of algebraic dynamics
is in Schmidt’s book [19].

Problem A: order of mixing. Consider the Z2-action defined by
the polynomial

f(u1, u2) = 1 + u1u2 + u2
1u2 + u3

1u2 + u4
1 + u2

2 + u4
1u

2
2,

(that is, the system corresponding via [14] to the module

Z[u±1
1 , u±1

2 ]/〈p, f〉
where p is a prime chosen to make f irreducible). The methods of [11]
and [15] show that the exact order M of mixing satisfies

3 ≤ M < 7.

What is it?
Expanding the definitions here goes as follows. The Z2-action is the

natural shift action T on the compact group

X = {x ∈ FZ2

p | x(n,m) + x(n+1,m+1) + x(n+2,m+1) + x(n+3,m+1)

+x(n+4,m) + x(n,m+2) + x(n+4,m+2) = 0 mod p for all n, m},
with a natural Haar measure µ. The order of mixing M is the largest
k for which

lim
ni−nj→∞;i6=j

µ (T−n1(A1) ∩ · · · ∩ T−nk
(Ak)) →

k∏
i=1

µ(Ai)

for all measurable sets A1, . . . , Ak.

Update: Considerable progress has been made on this circle of prob-
lems. Masser [17] proved a conjecture of Schmidt [20] by showing that
the order of mixing for an algebraic Zd by automorphisms of a zero-
dimensional group as detected by studying mixing shapes coincides
with the real order of mixing. It remains a considerable problem to
actually compute either for non-trivial examples.

Problem B: mixing of all orders. For Zd-actions by automorphisms
of a connected group, mixing actions are mixing of all orders. The proof
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in [21] uses Diophantine estimates (see also the discussion in [19]). Can
this result be obtained using simpler ideas from dynamics?

Problem C: analogues of Pesin theory. Is there an analogue of
Pesin theory for (suitably defined) ‘smooth’ maps of the objects that
occur naturally in algebraic dynamical systems? That is, compact sets
that locally look like a manifold cross a Cantor set or are totally dis-
connected. Can any of the systems from [19] with d > 1 be ‘perturbed’
in a meaningful way?

Problem D: typical group automorphisms. There is a setting
in which it makes sense to talk about a ‘typical’ group automorphism
with a given entropy (see [3], [25], [24]). The central question though
is unresolved, and reduces to a purely number-theoretical question as
follows. From the infinite set of primes P = {2, 3, 5, 7, 11, . . . } select a
subset Q by tossing a fair coin infinitely often and including the nth
prime if and only if the nth toss is a Head. Then is it true that

(1) lim sup
n→∞

1

n
log(2n − 1)×

∏
p∈Q

|2n − 1|p = log 2

almost surely? It is shown in [24] using an ergodic argument that this
upper limit is ≥ 1

2
log 2 almost surely, and that the analogous problem

in positive characteristic can be shown to have the right answer (indeed,
more can be said there: see [23]). It is probably a red herring to point
out that (1) is clear if there are infinitely many Mersenne primes – see
[25].

Problem E: entropy values. Determining the set of values of en-
tropies of algebraic Zd-actions is equivalent to solving Lehmer’s prob-
lem by [16]. So it would be very nice to solve Lehmer’s problem: given
ε > 0, is there a polynomial

f(x) = (x− α1) . . . (x− αd) ∈ Z[x]

for which the logarithmic Mahler measure

m(f) =
∑

i:|αi|>1

log |αi|

satisfies
0 < m(f) < ε?

For background on this problem, see also [2] and [12] or the ‘Lehmer
conjecture page’ [18].

Problem F: entropy and Deligne periods. A very interesting
problem has been raised by Deninger in the course of his work on
Mahler measures. In [7] he showed – roughly speaking – that m(f) is
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the Deligne period of a certain mixed motive associated in a canonical
way to f . Using a p-adic analogue of Deligne cohomology gives an anal-
ogous p-adic valued Mahler measure, mp, described in [1]. The question
raised there is whether there is a p-adic valued notion of entropy that
gives entropy mp(f) to the dynamical system associated to f . A specific
form of this general question is the following. Define logp : C∗

p → Cp to
be the branch of the p-adic logarithm with logp(p) = 0, and consider
the map Tλ : x 7→ λx on (say) Qp. Is there a meaningful entropy-like
invariant hp (invariant under topological conjugacy, for example) with
hp(Tλ) = logp λ? For more background on the theory behind this ques-
tion, see [1, Sect. 1.8]; for background on these questions and mixed
motives, see [6], [9], [8].

Update: There has been considerable progress on this problem, via a
rather indirect route. Extending the entropy ‘formula’ from [16] to cer-
tain actions of amenable groups has enabled some progress on the p-adic
problem. The Math Reviews entry for Deninger’s paper [10] explains:
Fix a discrete group Γ and some element f ∈ ZΓ (the integral group
ring). By Pontryagin duality, this structure defines a left Γ-action αf

on the compact group Xf = ̂ZΓ/ZΓf by continuous automorphisms.
The group Xf may be described as a closed subgroup of (S1)Γ, and in
this description the action is by left shifts.

If Γ is amenable, then it makes sense to ask for the topological or
Haar measure-theoretic entropy of the action. For Γ = Z the answer is
given by the familiar formula of S. A. Yuzvinskĭı [13]. For Γ = Zd, [16]
showed that the answer is m(f), the logarithmic Mahler measure of f .

For nonabelian Γ this paper represents the first progress of any sort.
By using the von Neumann algebra NΓ of Γ, the author has shown
how to associate a Fuglede-Kadison-Lck determinant detNΓ f to f , and
in this paper he shows that the topological entropy of αf is indeed
this determinant under the assumptions that the group Γ has a log-
strong Flner sequence, f is a convolution unit in L1(Γ) and f is positive
in NΓ. The first condition is a restrictive one (it is not very far from
asking that Γ be virtually nilpotent); the second is a natural dynamical
property related to expansiveness of αf , and the third is somewhat
technical. The proofs involve developing both the entropy side of the
equation and ways to approximate the determinant.

Despite the strong hypotheses, this is an important result, and it has
already stimulated much further research. C. Deninger and Schmidt [5]
have used homoclinic points and specification arguments to replace
the log-strong Flner sequence and positivity conditions with the much
more modest requirement that Γ be residually finite and that f be a
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unit in L1(Γ); Deninger [4] has shown that a p-adic-valued determinant
gives a meaningful notion of p-adic-valued entropy.
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