Symmetry and  Colorings

Van der Waerden's Theorem states that whenever the natural numbers are finitely partitioned (or, as it customary to say, finitely colored), one of the cells of the partition contain arbitrarily long arithmetic progression.

Another result of this sort - Theorem of Craham, Rotschild and Spencer. Let V be an infinite dimensional space over finite fild. For every finite coloring of V there exists a monochrome affine subspace of every finite dimension.

This two configurations (arithmetic progressions and affine subspaces) are symmetric in the following natural sense. Let G be an Abelian group. We say that the points a,b ( G are symmetric with respect to a point c (a center of symmetry) iff a+b=2c. A subset A ( G is called symmetric iff there exists a point c such that A=2c-A.

 Elementary combinatorial arguments give us the following statement. For every finite coloring of infinite Abelian group there is an arbitrarily large finite monochrome symmetric subset. What about infinite monochrome symmetric subset? At the first glance this question is stupid: take Z  and use two colors (positive and nagative). But let us consider Z 2 and suppose that there exists 2-coloring without infinite monochrome symmetric subsets. 

Fix any two points a,b ( Z 2 . Then all but finitely many points change color under reflextion with respect to a,b. We may suppose that these poins are between two parallel lines. The picture shows that there are two infinite monochrome symmetric subset, a contradiction. 
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Note also that there is a 3-coloring of Z 2  with only finite monochrome symmetric subsets (Y). Thus, we have run into the new chromatic cardinal invariant  γ(G) - the minimal number of colors necessary to color G so that G contains no infinite monochrome symmetric subset. Clearly

 γ(G) = 1 ( G  is finite, γ(Z 2) = 3.

Theorem.  γ(G) = 2 ( (1)  G =Z  ( K , K is a finite group (2) G is a countable torsion group with finite Boolean subgroup 

B(G) = {g ( G: 2g=0}.

Is  γ(Z 3) = 4? Some years ago I asked this question in "Квант" - Russian journal for teenagers. But until now any teenagers arguments do not work. It was proved by means of Borsuk -Ulam antipodal theorem. It states that, every moment, there are two antipodal point on the globe in which the pairs of continuous parameters (say, temperature and pressure) coincide. Today we can compute γ(G)  for every Abelian group G.

Th (Banakh, Protasov)

            (  r0 (G) + 1 if G is finitely generated

γ(G) = (  r0 (G) + 2 if G is countable infinitely generated and (B(G)( ((0
            ( max {|B(G)|, log |G|} if G is either uncountable or |B(G)|  ((0 ,
 where log|G|=min {(: 2( ( |G|}, r0(G) is a free rank of G (= dimension of G as -Z -module).

If a group G is large by cardinality then we can expect the existence of large monochrome symmetric subsets. But, on the one hand, this expectations must not go too far.

Th. For every uncountable Abelian group G with  (B(G)( ( |G| there exists a 2-coloring having no monochrome symmetric subsets of cardinality |G|. On the other hand, 

Th. Let G be an Abelian group and let |G| is regular. Then for every 3-coloring of G and every subgroup H with |H| ( |G|, one of the following statements holds:

(1) there exists a monochrome symmetric subset S of G with |S| = |G|,

(2) there exist a monochrome coset g+2H.

Cor. For every 3-coloring of any infinite group G and every cardinal 

k (  |G| there exists a monochrome symmetric subset of cardinality  ( k.

Q. Is Cor true for 4-colorings?

Rem. Th is not true for 4-coloring. The answer to Q is "Yes" if we are not too delicate in the choice of weapon and use, for example, GCH. Thus, the problem is to answer Q in the frame of ZFC - a standart axiomatic system of Set Theory.

More general question (and a pile of questions, indeed) is connected with refinements of γ(G). Given any cardinal k, denote by γ(G, k) the minimal number r of colors such that there exists r-coloring of G without monochrome symmetric subsets of cardinality k. Now we have got only some partial results on calculations of γ(G, k).

Another, but much more difficult problem, concerns symmetry in noncommutative group. A symmetry is such a group is a mapping 

x (gx-1g. This definition has a very explicit geometric interpretation for connected Lie groups G. Since G is a Riemann manifold, for every to points a,b (G, there is a shortest path connecting a and b, so a,b are symmetric (in above sence) with respect to the middle point of the path. Just two open questions.

Q1. Does for every finite coloring of an infinite group G there exist a monochrome symmetric subset A of arbitrary big finite size?

Q2. Let F2 be a free group of rank 2. Does for every finite coloring of F2  there exist an infinite monochrome symmetric subset. 

Recently, Yu. Grishko answered these questions (in "Yes") for 2-colorings.

Observe that the invariant γ(G, k) is defined also for finite groups! In this case, however, it is more convenient to consider the invariant MS(G, r) which is in some sence inverse to the invariant γ(G, k).

For a group G and a number r define MS(G, r) to be the least upper bound of numbers t such that for every r-coloring of the group G there exists a monochrome symmet ric subset A of size |A| ( t. It means, that given any r-coloring of G we can guarantee the monochrome symmetric subset of the size ( MS(G, r). It is more preferable to work with the normed value ms(G, r)=MS(G, r) ( |G|.

Th. Ms(G, r) ( 1/r2  for every finite Abelian group 
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Ms(G, r) ( 1/r2 + (1/r - 1/r2) (B(G) ( |G| )+ 3 (2 ln(2r|G|) ( |G|)

How to find the exact value of ms(G,r) for a pragiven group G, even for G=Z n , it is unclear, but 

lim   ms(Z n , r)= 1/r2 

n((
The inequality ms(G, r) ( 1/r2 is also true for every group G of odd order. Suprisingly, but for groups of even order this inequality does not hold any more: 

ms(Q8,2)=1/8 ( 1/4 where Q8 = {(1, (i, (j, (k} is the group of quaternions. Nonetheless the following question is still open

Q. Does for every ((0 and 

