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5. Some open problems and conjectures.

Our achievements on the theoret-
ical front will be very poor indeed
if...we close our eyes to problems and
can only memorize isolated conclu-
sions or principles...

~Mao Tsetung, “Rectify the Party’s
style of work”, [Mao], p. 212.

A mathematical discipline is alive and well if it has many exciting open
problems of different levels of difficulty. This section’s goal is to show that
this is the case with Ergodic Ramsey Theory.

To warm up we shall start with some results and problems related to
single recurrence. The following result ([K2]) is usually called Khintchine’s
recurrence theorem (cf. [Pal, p. 22; [Pe], p. 37).

Theorem 5.1. For any invertible probability measure preserving sys-
tem (X,B,u,T), e >0, and any A € B theset {n € Z : y(ANT"A) >
p(A)? — €} is syndetic.

One possible way of proving Theorem 5.1 is to use the uniform version
of von Neumann’s ergodic theorem: if U is a unitary operator acting on a
Hilbert space ‘H, then for any f € 'H

N-1
Y U"f =Pt =1,

n=M

1
lim

N-M—oco N — M

where the convergence is in norm and P, is the orthogonal projection onto
the subspace of U-invariant elements.

Noting that (f*, f) = (f*, f*) and taking H = L*(X,B,u), (Ug)(z) :=

1
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g(Tz), g € L*(X,B,u), and f = 14 one has

. 1 n
v N Tar 2 HAnTTA)

{U"f, 1) =0

:Nflll\/lrnﬂoo N-M

—(f F) = (5 1) > (5 10) = (1) = u(A)?

(cf. [Hol).

The following alternative way of proving Theorem 5.1 is more elementary
and has two additional advantages: it enables one to prove a stronger fact,
namely the IP*-ness of the set {n € Z : u(ANT"A) > u(A)? — €} and is
easily adjustable to measure preserving actions of arbitrary (semi)groups.

Note first that if Ag, k = 1,2, are sets in a probability measure space
such that p(Ag) > a > 0 for all & € N then for any € > 0 there exist i < j
such that u(A; N A;) > a® — €. Indeed, if this would not be the case, the
following inequality would be contradictive for sufficiently large n:

na® < (/ilAi)Zg/(iui):iu(&)m Yo w44y

1<i<j<n

(cf. [G]).

To show that {n € Z : u(ANT"A) > u(A)?—e} is an [P*-set, let (n;)52,
be an arbitrary sequence of integers and let A, = T™+ Tk A k € N. By
the above remark, there exist ¢ < j such that

a2_€ < ,U/(AZQA]) — M(Tn1+"‘+niAﬂTn1+"'+njA) — H(Aani+1+...+njA).
This shows that
neZ: wANT"A) > u(A)? — e} NFS(n;)52, #0

and we are done. We remark also that the IP*-ness of the set {n € Z :
u(ANT™A) > u(A)? —e} is equivalent to the “linear” case of Theorem 3.11.

Since in mixing measure preserving systems for any A € B one has
lim,, 0o u(ANT™A) = p(A)?%, we see that in a sense, Khintchine’s recurrence
theorem is the best possible. We have however the following.

Question 1. Is it true that for any invertible mixing measure preserving
system (X, B, u, T') there exists A € B with u(A) > 0 such that for all n # 0,
uw(ANTmA) < pu(A)?? How about the reverse inequality u(A NTmA) >
p(A)??
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Definition 5.1. A set R C Z is called a set of nice recurrence if for
any invertible probability measure preserving system (X, B, u,T) and any
A € B one has limsup,, . ,er H(ANT"A) > pu(A)>.

Exercise 19. Check that all the sets of recurrence mentioned in Sections
1 through 4 are sets of nice recurrence.

A natural question arises whether any set of recurrence at all is actually
a set of nice recurrence. Forrest showed in [Fo] that this is not always so.
See also [M] for a shorter proof.

We saw in Section 1 that sets of recurrence have the Ramsey property: if
R is a set of recurrence and R = U:Zl C; then at least oneof C;, e =1,---,r
is itself a set of recurrence.

Question 2. Do sets of nice recurrence possess the Ramsey property?

A natural necessary condition for a set R C Z \ {0} to be a set of
recurrence is that for any a € Z, a # 0, RN aZ # (. In particular, the
set {2"3% : n,k € N} is not a set of recurrence. But what if one restricts
oneself to some special classes of systems?

Question 3. Is it true that for any invertible weakly mixing system
(X,B,1,T) and any A € B with u(A) > 0 there exist n,k € N such that

w(ANT?"3"A) > 07

Some sets of recurrence have an additional property that the ergodic
averages along these sets exhibit regular behavior. For example, we saw in
Section 2 that for any ¢(t) € Z[t] and for any unitary operator U: H — H
the norm limit limpy_, o % 22;1 U™ f exists for every f € H. The fol-
lowing theorem, due to Bourgain, shows that much more delicate pointwise
convergence also holds along the polynomial sets.

Theorem 5.2 ([Bo3|). For any measure preserving system (X, B, u, T'),
for any polynomial ¢(t) € Z[t] and for any f € LP(X,B, u), where p > 1,
lmy oo & Zgzl f(T9™) z) exists almost everywhere.

Question 4. Does Theorem 5.2 hold true for any f € L' (X, B, u)?

Another interesting question related to ergodic averages along polyno-
mials is concerned with uniquely ergodic systems. A topological dynamical
system (X, T), where X is a compact metric space and 7' is a continuous
self mapping of X is called uniquely ergodic if there is a unique T-invariant
probability measure on the o-algebra of Borel sets in X. The following well
known result appeared for the first time in [KB|:

Theorem 5.3. A topological system (X,T) is uniquely ergodic if and
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only if for any f € C(X) and any z € X one has

1 N-—-1
Jim, oy 30 = [ fan

where p is the unique 7T-invariant Borel measure.

Question 5. Assume that a topological dynamical system (X,7) is
uniquely ergodic and let p(t) € Z[t] and f € C(X). Is it true that for all
but a first category set of points z € X limy_.c & 22:01 (TP 1) exists?

The next question that we would like to pose is concerned with the pos-
sibility of extending results like Theorem 4.2 and 4.3 to polynomial expres-
sions involving infinitely many commuting operators. We shall formulate
it for a special “quadratic” case which is a measure theoretic analogue of
Theorem 4.12 for k = 1. Recall that an indexed family {73, : w € W} of
measure preserving transformations of a probability measure space (X, B, )
is said to have the R-property if for any A € B with pu(A) > 0 there exists
w € W such that u(ANT,;1A) > 0.

Question 6. Let (7j;)( j)enxn be commuting measure preserving
transformations of a probability measure space (X, B, ). For any finite
non-empty set « C N x N let T, = H(i’j)ea T;;. Is it true that the family
of measure preserving transformations

{Tyx~ : 0 #~ CN,~ finite}

has the R-property?
We move on now to questions related to multiple recurrence.

Definition 5.2. Let £ € N. A set R C Z is a set of k-recurrence
if for every invertible probability measure preserving system (X, B, u,T)
and any A € B with pu(A) > 0 there exists n € R, n # 0, such that
p(ANTPANT?AN---NTFA) > 0.

One can show that items (i), (ii), (iv) and (v) of Exercise 6 are examples
of sets of k-recurrence for any k. On the other hand, an example due to
Furstenberg ([F], p. 178) shows that not every infinite set of differences
(item (iii) of Exercise 6) is a set of 2-recurrence (although every such is a
set of 1-recurrence).

Question 7. Given £k € N, k > 2, what is an example of a set of
k-recurrence which is not a set of (k 4 1)-recurrence?

Question 8. Given a set of 2-recurrence S, is it true that for any
pair T7,T5 of invertible commuting measure preserving transformations of
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a probability measure space (X, B, ) and a set A € B with u(A) > 0 there
exists n € S such that p(ANTPANTFA) > 0? (The answer is very likely
no.) Same question for S a set of k-recurrence for any k.

Question 9. Let k£ € N, let T1,T5,---,T; be commuting invertible
measure preserving transformations of a probability measure space (X, B, )
and let py1(t),p2(t), -, px(t) € Z[t]. Is it true that for any fi,---, fx €
L>(X,B, )

lim —Zf (@) fo (132 ) - (T )

exists in L2-norm? Almost everywhere?

Remark. The following results describe the status of current knowl-
edge: The answer to the question about L2-convergence is yes in the fol-
lowing cases:

(i) k=2, p1(t) = p2(t) =t ([CL1]).

(i) k=2,Ty =T, pi(t) =t, p2 (t

(ili) k=3, Th =T =T, pi(t) =
([CL2], [FW2]).

The answer to the question about almost everywhere convergence is yes
for k=2,T, =15, pl(t) = at, pg(t) =bt, a,b e Z ([BO4])

Question 10. Let £k € N. Assume that (X, B, u,T) is a totally ergodic
system (i.e. (X,B,u,TF) is ergodic for any k& # 0). Is it true that for
any set of polynomials p;(t) € Z[t], i = 1,2, -,k having pairwise distinct
(non-zero) degrees, and any f1,---, fr € L°°(X, B, 1) one has:

\_/v

lim ||_ Zfl Tpl(n) (sz(n) )- ..fk<TPk(n)w)

k
- H/fid'uHLQ(X,B,u) =0
i=1

Remark. It is shown in [FW2] that the answer is yes when k = 2,
p1(t) =t, p2(t) = t2. See also Theorem 4.1.

We now formulate a few problems related to partition Ramsey theory. A
unifying property that many configurations of interest (such as arithmetic
progressions or sets of the form F'S(z;)7_;) have is that they constitute
sets of solutions of (not necessarily hnear) diophantine equations or systems
thereof. A system of diophantine equations is called partition reqular if for
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any finite coloring of Z \ {0} (or of N) there is a monochromatic solution.
For example, the following systems of equations are partition regular:

T1 + x3 = 229 r+y=t
To + x4 = 23 r+z=u
T3 + x5 = 214 Z+y=v
T4 + 6 = 275 r+y+z=w

A general theorem due to Rado gives necessary and sufficient conditions
for a system of linear equations to be partition regular (cf. [Ra], [GRS] or
[F'2]). The results involving polynomials brought forth in Sections 1-4 hint
that there are some nonlinear equations that are partition regular too. For
example, the equation x — y = p(z) is partition regular for any p(t) € Z[t],
p(0) = 0. To see this, fix p(t) and let N = [ J;_, C; be an arbitrary partition.
Arguing as in [B2] one can show that one of the cells C;, call it C, has the
property that it contains an IP-set and has positive upper density. Let
{na}tacr be an IP-set in C. According to Theorem 3.11, {p(na)}acr is a
set of recurrence. This together with Furstenberg’s correspondence principle
gives that for some a € F,

a(C’i N (C; —p(na))) > 0.

If y € (C’i N (CZ- - p(na))) then x = y 4+ p(ny) € C;. This establishes the
partition regularity of x—y = p(z). In accordance with the third principle of
Ramsey theory one should expect that there are actually many x, y, z having
the same color and satisfying  — y = p(z). This is indeed so: using the
fact that {p(na)}aecr is a set of nice recurrence one can show, for example,
that for any € > 0 and any partition N = J/_, C; one of Cj, i =1,2,---,r
satisfies

d({z e Ci:d(Cin (Ci = p(2)) = (A(C)" —€}) >0

(cf. [B2], see also Theorem 0.4 in [BM1)).

Question 11. Are the following systems of equations partition regular?
(1) 22 +y? = 22

(i) zy =u, z+y =w.

(iii) @ — 2y = p(2), p(t) € Z[t], p(0) = 0.

The discussion in this survey so far has concentrated mainly on topolog-
ical and measure preserving Z"-actions. Ergodic Ramsey theory of actions
of more general, especially non-abelian groups is much less developed and
offers many interesting problems.
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In complete analogy with the case of the group Z, given a semigroup G
call a set R C G a set of recurrence if for any measure preserving action
(Ty)gec of G on a finite measure space (X, B, u) and for any A € B with
1(A) > 0 there exists g € R, g # e, such that u(ANT,'A) > 0. Different
semigroups have all kinds of peculiar sets of recurrence. For example, one
can show that the set {1 + % : k € N} is a set of recurrence for the
multiplicative group of positive rationals. Sets of the form {n® : n € N},
where o > 0, are sets of recurrence for (R, +). As a matter of fact, one can
show (see [BBB]) that for any measure preserving R-action (S%);cr on a
probability space (X, B, 1) one has for every A € B that

1 o
lim — ) pu(ANS™ A) > u(A)?

On the other hand one has the following negative result.

Theorem 5.4 ([BBB]). Let (S?);cr be an ergodic measure preserving
flow acting on a probability Lebesgue space (X, B, ut). For all but countably
many « > 0 (in particular for all positive @ € (Q \ Z)) one can find an
L*>-function f for which the averages % Zgﬂ f(S™" ) fail to converge for
a set of x of positive measure.

It is possible that the countable set of “good” « coincides with IN.
Such a result would follow from a positive answer to the following number-
theoretical question which we believe is of independent interest.

Question 12. Let us call an increasing sequence {a, : n € N} C R
weakly independent over Q if there exists an increasing sequence (n;)5; C N
having positive upper density such that the sequence {a,, : i € N} is linearly
independent over Q. Is it true that for every a > 0, a € N, the sequence
{n® :n € N} is weakly independent over Q? (It is known that the answer
is yes for all but countably many a.)

Definition 5.3. Given a (semi)group G, a set R C G is called a set of
topological recurrence if for any minimal action (7})4ce of G on a compact
metric space X and for any open, non-empty set U C X there exists g € R,
g # e, such that (UNT;'U) # 0.

Exercise 20. Prove that in an amenable group any set of (measurable)
recurrence is a set of topological recurrence.

An interesting result due to Kriz ([Kr], see also [Fo|, [M]) says that in
Z there are sets of topological recurrence which are not sets of measurable
recurrence. While the same kind of result ought to hold in any abelian
group, and while for any amenable group sets of measurable recurrence are,
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according to Exercise 20, sets of topological recurrence, the situation for
more general groups is far from clear. We make the following

Conjecture. A group G is amenable if and only if any set of measurable
recurrence R C G is a set of topological recurrence.

An intriguing question is, what is the right formulation of the Szemerédi
(or van der Waerden) theorem for general group actions. In this connection
we want to mention a very nice noncommutative extension of Theorem 1.19
which was recently obtained by Leibman in [L2]: he was able to show that
the conclusion of Theorem 1.19 holds if one replaces the assumption about
the commutativity of the measure preserving transformations 7; by the
demand that they generate a nilpotent group. He also proved earlier in [L1] a
topological van der Waerden-type theorem of a similar kind. This should be
contrasted with an example due to Furstenberg of a pair of homeomorphisms
Ty, T5 of a compact metric space X generating a metabelian group such that
no point of X is simultaneously recurrent for 77,75 (this implies that for
metabelian groups one should look for another formulation of a Szemerédi-
type theorem).

A possible way of extending multiple recurrence theorems to a situation
involving non-commutative groups is to consider a finite family of pairwise
commuting actions of a given group. Results obtained within such frame-
work ought to be called semicommutative. We have the following

Conjecture. Assume that G is an amenable group with a Fglner se-

quence (F,)5% ;. Let (Tél))geg,---,(Ték))geg be k pairwise commuting

measure preserving actions of G on a measure space (X, B, u) (“pairwise
commuting” means here that for any 1 <i # j < k and any g,h € G one

has Tg(i)T,Ej) = T,Ej)Téi)). Then for any A € B with p(A) > 0 one has:

1
liminf —— > w(ANTMANTITP AN nTOTE .. TH A) > 0.

n—oo |Fy| oy

Remarks. (i) We have formulated the conjecture for amenable groups
for two major reasons. First of all, the conjecture is known to hold true for
k = 2 ([BMZ], see also [BeR]). Second, in case the group G is countable,
a natural analogue of Furstenberg’s correspondence principle, which was
formulated in Section 1, holds and allows one to obtain combinatorial corol-
laries which, should the conjecture turn out to be true for any k, contain
Szemerédi’s theorem as quite a special case.

(ii) The “triangular” expressions

1 1 2 1 2 k
ANTMANTITP AN nTHTE - TR A
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appearing in the formulation of the conjecture seem to be the “right” con-
figurations to consider. See the discussion and counterexamples in [BH2]
where a topological analogue of the conjecture is treated (but not fully re-
solved). We suspect that the answer to the following question is, in general,
negative.

Question 13. Given an amenable group G and a Fglner sequence
(Fp)oe, for G, let (Ty)gec and (Sy)gec be two commuting measure pre-
serving actions on a probability space (X, B, u). Is it true that for any A € B
the following limit exists:

n—oo |Fy|

1
lim —— > u(T,ANS,A)?
eF

We want to conclude by formulating a conjecture about a density ver-
sion of the polynomial Hales-Jewett theorem which would extend both the
partition results from [BL2] and the density version of the (“linear”) Hales-
Jewett theorem proved in [FK4]. For ¢,d, N € N let M, 4 v be the set of
g-tuples of subsets of {1,2,---, N}%

Mq,dJ\]:{(Oél,"',Oéq)IO&iC{l,2,"',N}d, @:1,2,7Q}

Conjecture. For any ¢,d € N and € > 0 there exists C = C(q,d,¢€)

such that if N > C and a set S C M, 4 n satisfies |M|Sd|m| > ¢ then S
q,a,
contains a “simplex” of the form:
{(O[l, o, 7aq)7 (O[l U ’Yd, g, 7O‘q>7 (a17 05) U ’Ydu e 7aq)7

"'7(a17&27"'>aqU’yd)}7

where v C N is a non-empty set and o; Ny¢ =0 for alli =1,2,---,¢.

Remark. For d = 1 the conjecture follows from [FK4]. This paper
contains a wealth of related material and is strongly recommended for re-
warding reading.
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