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Abstract. The Li–Yorke definition of chaos proved its value for interval maps. In
this paper it is considered in the setting of general topological dynamics. We adopt

two opposite points of view.

On the one hand sufficient conditions for Li–Yorke chaos in a topological dy-
namical system are given. We solve a long–standing open question by proving that

positive entropy implies Li–Yorke chaos.
On the other hand properties of dynamical systems without Li–Yorke pairs are

investigated; in addition to having entropy 0, they are minimal when transitive,

and the property is stable under factor maps, arbitrary products and inverse limits.
Finally it is proved that minimal systems without Li–Yorke pairs are disjoint from

scattering systems.

0. Introduction

The term ‘chaos’ in connection with a map was introduced by Li and Yorke [27],
although without a formal definition. Today there are various definitions of what it
means for a map to be chaotic, some of them working reasonably only in particular
phase spaces; most of the existing ones were reviewed in [23]. Although one could
say that ‘as many authors, as many definitions of chaos’, most of them are based on
the idea of unpredictability of the behavior of trajectories when the position of the
point is given with an error (instability of trajectories or sensitive dependence on
initial conditions are terms usually used to describe this phenomenon). The present
article mainly deals with one of these definitions, namely chaos in the sense of Li–
Yorke. It is one in a series of papers by various authors on that subject ([22], [31],
[13] and two forthcoming papers, [20], [21]). Our main purpose is to incorporate
this notion of chaos into the general frame of Topological Dynamics; formerly it
had been studied mainly in the setting of interval maps.

Let (X,T ) be a topological dynamical system, with X a compact metric space
with metric %, and T a surjective continuous map from X to itself.
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The definition of Li–Yorke chaos is based on ideas in [27]. A pair of points
{x, y} ⊆ X is said to be a Li–Yorke pair (with modulus δ) if one has simultaneously

lim sup
n→∞

%(Tnx, Tny) = δ > 0 and lim inf
n→∞

%(Tnx, Tny) = 0.

A set S ⊆ X is called scrambled if any pair of distinct points {x, y} ⊆ S is a Li–
Yorke pair. Finally, a system (X,T ) is called chaotic in the sense of Li and Yorke
if X contains an uncountable scrambled set. The first motivation for studying
this notion comes from the theory of interval transformations. For such maps the
existence of a Li–Yorke pair implies the existence of an uncountable scrambled set
[25].

What are the connections between Li–Yorke’s and other definitions of chaos?
What topological properties of a system imply the existence of Li–Yorke pairs or a
scrambled set? These are the questions that arise immediately in one’s mind when
thinking about Li–Yorke chaos, and we answer some here. But one cannot achieve a
real understanding of Li–Yorke chaos without knowing what it means for a system
to have the opposite property, that is, having no Li–Yorke pairs. This question is
also addressed in this article.

In Section 1, after introducing general definitions and background, we survey
some existing definitions of chaos and define new ones, explaining what is known
about them and about their relations.

In Section 2 we answer positively the long–standing question whether positive
topological entropy implies Li–Yorke chaos (Corollary 2.4). It is worth mentioning
that Li–Yorke pairs are not the only ones that are necessarily found in positive–
entropy systems: there must also exist asymptotic pairs, that is, pairs (x, y) such
that d(Tnx, Tny)→ 0 as n→∞ [8].

It is easy to show that a scattering system has Li–Yorke pairs (Remark 2.12)
and other chaotic features. The scattering property, defined below, is based on the
complexity of covers and is essentially weaker than positive entropy. By the time
we finished writing this article Huang and Ye had obtained results in the same
spirit, viz., that (1) the scattering property and (2) the existence in a transitive
non–minimal system of, at least, one periodic orbit, imply Li–Yorke chaos [21].

In Section 3 we explore systems without Li–Yorke pairs. Surely distal systems
have this property but, as we shall see, the class of such systems is much wider.
However, it turns out that systems without Li–Yorke pairs share many of the ba-
sic properties of distal systems. We have already seen that they also have zero
entropy; such systems are minimal when transitive (Theorem 3.10 ), and any fac-
tor of a transitive system without Li–Yorke pairs has no Li–Yorke pairs (Theorem
3.9). Finally, in Subsection 3.1 we define the ‘adherence semigroup’ of a dynami-
cal system and show that systems without Li–Yorke pairs are characterized by the
requirement that their adherence semigroup is minimal (Theorem 3.8 ), in analogy
with distal systems which are characterized by the property that their enveloping
semigroup is minimal. For these reasons we call systems without Li–Yorke pairs
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almost distal . One important difference with distality is that almost distal systems
are not necessarily invertible, as is shown by examples in Subsection 3.3.

Disjointness was introduced in [14]; two disjoint dynamical systems have no
common factors, but the property is much stronger. It was proved in [7], as a
generalization of a result of [14], that minimal distal systems are disjoint from
all scattering systems. Here we show (Theorem 3.12) that almost distal minimal
systems are also disjoint from any scattering system.

E. Akin studies a related class of dynamical systems which he calls semi–distal .
These are the systems in which every recurrent proximal pair {x, y} ⊂ X is a
diagonal pair (i.e., x = y). Among other results he shows that semi–distal is
equivalent to the property that every idempotent in the adherence semigroup is
minimal [1].
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1. Preliminaries

1.1. Definitions and notation.
By a topological dynamical system we mean a pair (X,T ) where X := (X, %) is a

compact metric space for the distance % and T is a surjective continuous map fromX
to itself. A factor map ϕ: (X,T )→ (X ′, T ′) is a continuous onto map from X to X ′

such that T ′◦ϕ = ϕ◦T ; in this situation (X,T ) is said to be an extension of (X ′, T ′).
A measure–theoretical dynamical system is a probability space (X,X , µ) together
with a measurable transformation T : X → X such that Tµ = µ. A topological
dynamical system (X,T ) together with a T -invariant probability measure µ defined
on the σ-algebra of Borel sets X , determines a measure-theoretical dynamical sys-
tem (X,X , µ, T ). In this context, a factor map ϕ : (X,X , µ, T ) → (X ′,X ′, µ′, T ′)
is a measurable map from X to X ′ such that T ′ ◦ ϕ = ϕ ◦ T and ϕµ = µ′.

Suppose one is given an infinite sequence of extensions ϕn: (Xn, Tn)→ (Xn−1, Tn−1);
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the inverse limit is the dynamical system (X,T ) where

X = {(x0, x1, . . . , xn, . . . ) ∈
∞∏
i=0

Xi | xn−1 = ϕn(xn), n > 0}

and T (x0, x1, . . . , xn, . . . ) = (T0(x0), T1(x1), . . . , Tn(xn), . . . ); X is endowed with
the product topology. The natural extension of a non–invertible dynamical system
(X0, T0) is the inverse limit of infinitely many embedded copies (Xn, Tn) of (X0, T0),
with ϕn = T0, that is, X̃ = {x̃ = (x0, x1, ...) ∈ XN : T0(xi) = xi−1, i ≥ 1} and
T̃ (x̃) = (T0(x0), x0, x1, ...). Note that the canonical map π̃ : (X̃, T̃ ) → (X0, T0),
the projection on the 0th coordinate, is a factor map and that the system (X̃, T̃ ) is
invertible with T−1(x̃) = (x1, ...).

Recall that {x, y} ⊂ X is a Li–Yorke pair if simultaneously

lim inf
n→∞

%(Tnx, Tny) = 0 and lim sup
n→∞

%(Tnx, Tny) > 0.

A pair {x, y} ⊆ X such that lim inf
n→∞

%(Tnx, Tny) > 0 is said to be distal , and one

for which lim
n→∞

%(Tnx, Tny) = 0 is said to be asymptotic. A pair {x, y} is proximal

if there exists a sequence ni with lim
i→∞

%(Tnix, Tniy) = 0. Thus a pair {x, y} is

a Li–Yorke pair iff it is proximal but not asymptotic. The sets of proximal and
asymptotic pairs of (X,T ) are denoted by P(X,T ) and As(X,T ), respectively, or
simply P and As whenever there is no ambiguity. The sets of distal pairs, Li–
Yorke pairs and asymptotic pairs partition X2. It is easy to see that the image of a
proximal (asymptotic) pair under a factor map is proximal (asymptotic). A distal
dynamical system is one in which every non–diagonal pair is distal.

A subset M of X is minimal if it is closed, nonempty, invariant (i.e., T (M) ⊆M)
and contains no proper subset with these three properties. A nonempty closed set
M ⊆ X is minimal if and only if the orbit of every point of M is dense in M .
A point is called minimal or almost periodic if it belongs to a minimal set, and a
dynamical system (X,T ), or the map T , is called minimal if the set X is minimal.
A point x ∈ X is called recurrent if for some sequence ni ↗ ∞, limTnix = x;
clearly every minimal point is recurrent.

A transitive system (X,T ) is one for which with every pair of nonempty open
sets U and V in X there is a positive integer n such that Tn(U) ∩ V 6= ∅; or
equivalently if there is a point x ∈ X with dense orbit in X. Any point with dense
orbit is called a transitive point . In a transitive system the set of transitive points
is a dense Gδ subset of X and we denote it by Xtrans. If there are no isolated
points in a transitive system (X,T ) then the set of points that are not transitive
is either empty or dense (equivalently: if the set of transitive points has nonempty
interior then the system is minimal). For more details about transitivity see [23].

A system (X,T ) is said to be topologically weakly mixing if its cartesian square
(X×X,T ×T ) is transitive. A subset E of X is called independent for (X,T ) if for
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any finite collection x1, x2, . . . , xn of distinct points of E the point (x1, x2, . . . , xn)
is transitive in the product system (X,T )n ((X × ... × X,T × ... × T ), n times).
In every weakly mixing system there exists an uncountable independent set ([22],
using the main theorem in [28]).

Consider a topological dynamical system (X,T ). For any finite cover C of the
compact space X, let N (C) be the minimal cardinality of a sub-cover of C. The
topological complexity function of the finite cover C of (X,T ) is the non-decreasing
function

cT (C, n) = N (Cn),

where Cn = C
∨
T−1C

∨
...
∨
T−(n−1)C. The exponential growth rate of this func-

tion is the topological entropy of C, and the topological entropy of (X,T ), h(X,T ),
is the supremum of the topological entropies of finite open covers (see [10]).

Two topological dynamical systems (X,T ) and (Y, S) are called disjoint if there
exists no proper closed T ×S–invariant subset of the cartesian product X×Y with
projections X and Y on the two coordinates; such a subset is called a joining .
Recall that when two systems are disjoint, at least one of them is minimal.

The following notions were introduced in [7]. A dynamical system (X,T ) is called
scattering if any finite cover C by non–dense open sets has unbounded complexity,
i.e., cT (C, n) → ∞, 2–scattering if the same condition holds but for 2–set covers
only. A system is scattering if and only if its cartesian product with any minimal
system is transitive [7]. Weak mixing implies scattering; scattering is strictly weaker
than weak mixing [3] but the two properties are equivalent in the minimal case.

In the measure–theoretical framework, given a T–invariant measure µ, the en-
tropy of T with respect to µ is defined as hµ(X,T ) = suphµ(α, T ) where the
supremum ranges over the set of all finite measurable partitions α of X, hµ(α, T ) =

lim
n→∞

1
n
Hµ(αn−1). Topological entropy and measure–theoretic entropy are related

by the Variational Principle: h(X,T ) = sup
µ
hµ(X,T ) [10].

1.2. About chaos.
One family of definitions of chaos is based on the instability of trajectories. Given

ε > 0, the map T is called Lyapunov ε–unstable at x ∈ X if for every neighborhood
U of x, there is y ∈ U and n ≥ 0 with %(Tnx, Tny) > ε; T is called unstable at x
(or the point x itself is called unstable) if there is ε > 0 such that T is Lyapunov
ε-unstable at x.

If a dynamical system is pointwise unstable sometimes there exists no ε > 0
such that all points are ε–unstable. But if in addition the system is transitive then
pointwise instability (in fact the instability of a point with dense orbit) implies
uniform pointwise instability, i.e., the existence of such a universal ε > 0; this last
property is also called sensitive dependence on initial conditions (sensitivity for
short). It is easy to see that weak mixing implies sensitivity.

Auslander and Yorke [5] call chaotic a system that is both sensitive and transi-
tive. Any non–invertible transitive system, or transitive non–minimal system with
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a dense set of minimal points, is chaotic in the sense of Auslander and Yorke [2]. De-
vaney’s definition of chaos [11] is Auslander and Yorke’s with the extra assumption
of the existence of a dense set of periodic points (see, for example, [19]).

Now consider definitions of chaos based on Li–Yorke pairs. Li–Yorke chaos was
defined in the Introduction as the existence of an uncountable scrambled set. Re-
cently it was proved that Auslander-Yorke chaotic systems with at least one periodic
point are Li–Yorke chaotic [21]. A dynamical system (X,T ) is said to be generi-
cally chaotic if the set of Li–Yorke pairs contains a dense Gδ subset of X ×X. Any
transitive generically chaotic system is Li–Yorke chaotic [21].

It is interesting to compare Li–Yorke and Auslander–Yorke chaoticity; neither
implies the other. Sturmian systems (see Subsection 3.3) are transitive and sensitive
to initial conditions, i.e., Auslander–Yorke chaotic, while having no Li–Yorke pairs.
On the other hand, there are scattering systems that are not sensitive to initial
conditions [3]; these systems are transitive and, by [21], Li–Yorke chaotic.

Weak mixing is a rather strong chaotic property: it implies generic (hence Li–
Yorke), and Auslander–Yorke chaos (Proposition 2.12). None of the converse im-
plications is true. Sturmian systems are Auslander–Yorke chaotic without being
weakly mixing. The following example shows that weak mixing is not implied by
generic chaos either, even assuming transitivity. Let (X,T ) be the full shift on 2
letters and (Y, S) be an irrational rotation of the unit circle; let (Z,R) be the factor
of (X×Y, T ×S) obtained by collapsing all elements of the form (x0, y) where x0 is
the fixed point on 0. One can check that (Z,R) is transitive but not weakly mixing
and has a dense set of Li–Yorke pairs with modulus δ > 0, which is Gδ; on the
other hand since it contains a fixed point it is Li–Yorke chaotic by [21].

Positive topological entropy and scattering can be considered as a third family
of chaotic properties, based on the complexity of covers. Scattering, actually even
2–scattering, implies transitivity [7], Li–Yorke chaos and generic chaos [21].

If (X,T ) is transitive but not sensitive, T has a property called uniform rigidity
([19], [2]). It implies that T is a homeomorphism and that it has zero entropy.
Therefore any transitive system with positive entropy has sensitive dependence on
initial conditions; it is thus Auslander–Yorke chaotic.

Recall that a minimal scattering system is weakly mixing, therefore chaotic in
many senses. There are however many examples of weakly mixing systems with zero
entropy (for example, any uniquely ergodic system which is, measure theoretically,
weak mixing and has simple spectrum) and even minimal and uniformly rigid ones
[18]. Positive entropy is another very strong notion of chaoticity. For interval maps
all the existing definitions of chaos coincide more or less.

Scattering as well as Auslander–Yorke chaos have a kind of uniformity that
positive entropy and Li–Yorke chaos do not possess. The last two may be considered
to indicate the existence of ‘a certain amount of chaos’ in a dynamical system, while
the first two describe ‘everywhere chaotic behavior’.

Remark 1.1. Other definitions based on Li–Yorke pairs but having some common
features with sensitivity may be worth considering. For instance let us say that
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a dynamical system (X,T ) has chaotic dependence on initial conditions if for any
x ∈ X there is δ > 0 such that for every neighborhood U of x there is y ∈ U such
that the pair (x, y) is Li–Yorke with modulus δ; when (X,T ) is transitive then δ
is the same for all x. A dynamical system (X,T ) is said to have weakly chaotic
dependence on initial conditions if for any x ∈ X and every neighborhood U of
x there are y, z ∈ U such that the pair (y, z) ∈ X2 is Li–Yorke (in other words,
Li–Yorke pairs are dense near the diagonal). A dynamical system (X,T ) is said to
be (weakly) ST chaotic if it is transitive and depends (weakly) chaotically on initial
conditions.

ST chaos implies Auslander–Yorke chaos. Positive topological entropy and tran-
sitivity do not imply ST chaos: there are point distal maps (which cannot be ST
chaotic) with positive topological entropy. E. Akin brought to our attention the
fact that a transitive system depends weakly chaotically on initial conditions if and
only if it is not almost distal [1].

2. Existence of Li–Yorke pairs and Li–Yorke chaos

The main result of this section is that positive entropy implies Li–Yorke chaos.
We will need some facts from the general theory of measure entropy pairs as devel-
oped in [6] and [16]. Given a topological dynamical system (X,T ) endowed with
a T–invariant and ergodic probability measure µ, we consider the set Eµ(X,T ) ⊂
X × X of entropy pairs for µ. If hµ(X,T ) > 0 then this is a non-empty set. If
ϕ : (X ′,X ′, µ′, T ′) → (X,X , µ, T ) is a topological factor map and (x, y) is an en-
tropy pair for µ, there exists (x′, y′) ∈ ϕ−1(x, y) that is an entropy pair for µ′,
[6]. When T is invertible the closure Eµ(X,T ) of the set of entropy pairs for µ
is characterized in [16] as follows. Call λ the independent product of µ with it-
self over the Pinsker factor Π = (Y,Y, ν, S) of the (measure theoretical) system
(X,X , µ, T ); then Eµ(X,T ) is the topological support of λ. Since µ is ergodic, so
is λ (this follows from the fact that the extension (X,X , µ, T ) → Π is a weakly
mixing extension) and consequently T × T acts transitively on Eµ(X,T ).

In what follows, given a set X, we denote by ∆X the diagonal of the cartesian
product X ×X. Let X be a complete metric space. Call K ⊆ X a Mycielski set
if it has the form K =

⋃∞
j=1 Cj with Cj a Cantor set for every j. For the reader’s

convenience we restate here a version of Mycielski’s theorem ([28], Theorem 1)
which we shall use.

Mycielski’s Theorem. Let X be a complete metric space with no isolated points.
Suppose that for every natural number n ∈ N, Rn is a meager subset of Xrn ,
and let Gj , j = 1, 2, . . . be a sequence of non-empty open subsets of X. Then
there exists Cantor subsets Cj ⊂ Gj such that for every n ∈ N the Mycielski set
K =

⋃∞
j=1 Cj has the property that for every x1, x2, . . . , xrn distinct elements of K,

(x1, x2, . . . , xrn) 6∈ Rn.

Theorem 2.1. Let (X,T ) be a topological dynamical system and assume that for
some T–ergodic probability measure µ the corresponding measure–preserving sys-
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tem (X,X , µ, T ) is not measure distal. Denote Z = supp(µ); then there exists a
closed invariant set W ⊆ Z ×Z such that the subsystem (W,T ×T ) is topologically
transitive and for every open set U ⊆ X with U ∩ Z 6= ∅ there exists a Mycielski
set K ⊆ U which satisfies (K ×K) \∆Z ⊆Wtrans. Finally, every such set K is a
scrambled set of the system (X,T ).

Proof. By the Furstenberg–Zimmer theorem [15], [32], [33], the ergodic system
(X,X , µ, T ) admits a unique maximal measure distal factor π : (X,X , µ, T ) →
(Y,Y, ν, S) with the factor map π being a weakly mixing extension. Of course
π is a measure–theoretical factor map and in general cannot be assumed to be a
continuous map onto a topological factor. However, if we let µ =

∫
Y
µy dν(y) be

the disintegration of µ over ν and form the relative product measure

λ := µ×νµ =
∫
Y

µy × µy dν(y),

then the measure λ is a well defined regular Borel measure on the space X × X.
Moreover, to say that the extension π is a weakly mixing extension is just to say
that the measure–theoretical system (X × X,X ⊗ X , λ, T × T ) is ergodic. Set
W = supp(λ) ⊂ Z × Z ⊂ X ×X.

Applying the ergodic theorem to the system (W,W, λ, T × T ) we conclude that
the subset Wλ ⊆W of λ–generic points in W is of λ measure 1. Since W = supp(λ)
we get that the system (W,T × T ) is topologically transitive and that the set Wλ

is dense in Wtrans. Now

1 = λ(Wλ) =
∫
Y

(∫
1Wλ

dµy × µy
)
dν(y)

and therefore for a subset Yλ ⊆ Y of ν measure 1, one has µy × µy(Wλ) = 1 for
y ∈ Yλ. Let, for any point y ∈ Yλ, Sy = supp(µy) ⊆ X. Then

Wλ ∩ (Sy × Sy) ⊆Wtrans ∩ (Sy × Sy) := L.

Since clearly µy × µy(Wλ ∩ (Sy × Sy)) = 1, it follows that Wλ ∩ (Sy × Sy), and a
fortiori also Wtrans ∩ (Sy ×Sy), is a dense subset of Sy ×Sy. Since Wtrans is a Gδ
subset of W , it follows that L is a dense Gδ subset of Sy × Sy.

Next observe that the maximality of the distal factor (Y,Y, ν, S) implies that for
ν–a.e. y ∈ Y the measure µy is non–atomic. In fact, if this is not the case then the
ergodicity of ν implies that there exists a positive integer k such that for ν–almost
every y the measure µy is purely atomic with exactly k points in its support. This
in turn implies that the extension π : (X,X , µ, T ) → (Y,Y, ν, S) is an isometric
extension and, being also a weakly mixing one, is necessarily trivial (i.e., k = 1 and
π is an isomorphism). Since we assume that (X,X , µ, T ) is a non–distal system
this proves our assertion. Let Y0 ⊆ Yλ be the subset, of full measure, consisting of
points y ∈ Yλ for which µy is non–atomic.
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Applying Mycielski’s theorem to the compact perfect space Sy — for any y ∈ Y0

— we obtain the existence of a Mycielski set K ⊂ Sy (which can be chosen to be
dense in Sy) such that

K ×K \∆Z ⊆ L ⊆Wtrans.

Moreover, since clearly
⋃
{Sy : y ∈ Y0} is dense in Z = supp(µ) ⊆ X, we see that

for every open subset U ⊆ X with U ∩ Z 6= ∅, there exists such a K inside U .
The last assertion of the theorem follows from the following observation. Since

∆Z ⊆ W , it follows that every point (x, x′) of Wtrans is, on the one hand in the
proximal relation P(X,T ), and on the other a recurrent point of (X ×X,T × T )
which is not a diagonal point, hence in particular is not an asymptotic point of
(X×X,T ×T ). Thus every K ⊂ X such that K×K \∆Z ⊆Wtrans is a scrambled
set.

Remark 2.2. Since for a weakly mixing extension π : (X,X , µ, T ) → (Y,Y, ν, S)
and any positive integer k ≥ 2 the relative product measure

λ(k) :=
∫
Y

µy × µy × · · · × µy dν(y),

on Xk = X × X × · · · × X is ergodic, the same proof will yield dense Mycielski
sets K ⊆ Sy with (x1, x2, . . . , xn) ∈ W (k)

trans for every x1, x2, . . . , xn distinct points

of K, where no w W
(k)

trans is the set of transitive points of the topological system
(W (k), T × T × · · · × T ) with W (k) = supp(λ(k)).

Theorem 2.3. Let (X,T ) be a topological dynamical system with htop(X,T ) > 0.
Let µ be a T–ergodic probability measure with hµ(X,T ) > 0 and set Z = supp(µ).
Then there exists a topologically transitive subsystem (W,T × T ) with W ⊆ Z ×Z,
and such that for every open U ⊆ X with U ∩ Z 6= ∅ there exists a Mycielski set
K ⊆ U with K ×K \∆Z ⊆Wtrans. Moreover
1. K ×K \∆Z ⊆ Eµ(X,T ), where Eµ(X,T ) is the set of µ-entropy pairs, and
2. K is a scrambled subset of (X,T ).

Proof. By the Variational Principle there exists a T–ergodic probability measure
µ with hµ(X,T ) > 0. Fix such a µ and let Z = supp(µ). Let π : (X,X , µ, T ) →
(Y,Y, ν, S) be the unique maximal zero–entropy measure–theoretical factor of the
system (X,X , µ, T ), i.e., (Y,Y, ν, S) is the Pinsker factor of (X,X , µ, T ). Since
hµ(X,T ) > 0 the map π cannot be trivial. Since an isometric extension of a zero–
entropy system has still entropy zero we conclude that the extension π is a weakly
mixing extension and, using the same notation as in the proof of Theorem 2.1, that
ν-a.e. µy is non–atomic. We can now apply the proof of Theorem 2.1, with µ as
the non–distal measure, to conclude that Z and W = supp(λ), with λ = µ×νµ,
satisfy the conclusions of that theorem.

Since by [16] the set W \∆Z coincides with the set of µ-entropy pairs in X this
proves part 1. Part 2 follows as in Theorem 2.1.
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Recall that a dynamical system (X,T ) is called Li–Yorke chaotic if X contains
an uncountable scrambled set.

Corollary 2.4. Let (X,T ) be a topological dynamical system.
1. If (X,T ) admits a T -invariant ergodic measure µ with respect to which the mea-

sure preserving system (X,X , µ, T ) is not measure distal then (X,T ) is Li–Yorke
chaotic.

2. If (X,T ) has positive topological entropy then it is Li–Yorke chaotic.

Proof. Follows directly from Theorems 2.1 and 2.3.

Remark 2.5. 1. For (X,T ) as in Theorem 2.3, let πP : (X,X , µ, T )→ (YP ,YP , νP , TP )
be the unique maximal zero–entropy measure–theoretical factor of the system (X,X , µ, T ),
that is, (YP ,YP , νP , TP ) is the Pinsker factor of (X,X , µ, T ). Since hµ(X,T ) > 0
the map πP cannot be trivial. Since a measure distal system has zero entropy, it
follows that the Furstenberg–Zimmer maximal distal factor πD : (X,X , µ, T ) →
(YD,YD, νD, TD) is also a factor of (YP ,YP , νP , TP ) and we conclude that the sys-
tem (X,X , µ, T ) is not measure distal. Thus the first assertion of Theorem 2.3
follows directly from Theorem 2.1. However for the proof of part 1 of Theorem 2.3
it is more convenient to work with the Pinsker rather than the Furstenberg–Zimmer
factor of (X,X , µ, T ).
2. In all the assertions above we could have used Kuratowski’s theorem [26], rather
than Mycielski’s. In fact this theorem implies that, say, in the space S = Sy,
the collection of Cantor sets K ⊆ S such that K × K \ ∆Z ⊆ Wtrans forms a
dense Gδ subset of the compact metric space 2S of all closed non–empty subsets
of S (equipped with the Hausdorff metric). From this we can deduce that if U =
{U1, U2, . . . , Uk} is a finite open cover of S then there exists a Cantor setK ⊆ S with
K×K\∆Z ⊆Wtrans and such that K∩Ui 6= ∅ for every i. Thus given ε > 0 we get,
by choosing U with diam(U) < ε, a Cantor set K ⊆ S with K ×K \∆Z ⊆Wtrans,
which in addition is ε-dense in S. Of course such a K cannot be dense in S.

A theorem of Kuratowski and Ulam (see for example [29], page 56) says that if
R ⊆ X×X is residual then for a residual subset A ⊆ X, x ∈ A implies that R(x) is
a residual subset of X. Conversely if R satisfies this condition and R has the Baire
property (every Borel or even analytic subset has the Baire property, see e.g. [26])
then it is easy to see that R is residual. In fact if we let L = X ×X \R then, being
a Baire set, L can be expressed as U∆M with U open and M meager in X ×X.
Now by the Kuratowski–Ulam theorem M(x) is a first category subset of X for x
in a residual subset B of X, and if we choose non–empty open sets V,W ⊆ X with
V ×W ⊆ U then for x ∈ A ∩B ∩ V we have:

∅ = R(x) ∩ L(x) ⊇ R(x) ∩ (W \M(x)).

Since for x ∈ A R(x) is residual in X, this is impossible and we conclude that
U = ∅, that L = M is meager and finally that R is indeed residual.

Huang and Ye prove in [21] the following lemma (Lemma 3.1. there) by a
transfiniteness argument:
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Lemma 2.6. Assume that X is a compact metric space without isolated points.
If R is a symmetric relation with the property that there is a dense Gδ subset A
of X such that for each x ∈ A, R(x) contains a dense Gδ subset, then there is a
dense subset B of X with uncountably many points such that B ×B \∆X ⊆ R.

In view of the above remark one can use Mycielski’s theorem, to obtain the
following version.

Lemma 2.7. Assume that X is a compact metric space without isolated points. If
R is a symmetric residual subset of X × X, then there is a Mycielski set K ⊆ X
which is dense in X and such that K ×K \∆X ⊆ R.

One can then apply this modified lemma to obtain “Cantor versions” of some
of the assertions of [21], for example the following one (corresponding to Corollary
4.1 of [21]).

Theorem 2.8. Assume that (X,T ) is a transitive non–periodic dynamical system
containing a periodic point. Then there exists a Mycielski scrambled set for T .

Iwanik proves the existence of Mycielski independent sets for topologically weakly
mixing systems [22] (independent sets are defined in Subsection 1.1). The following
theorem is a generalization of his result and has essentially the same proof.

Theorem 2.9. Let (X,T ) be a topological dynamical system and π : (X,T ) →
(Y, S) be an open surjective homomorphism such that the closed T × T -invariant
subset

W = Rπ = {(x, x′) ∈ X ×X : π(x) = π(x′)}

(i) is not equal to the diagonal ∆X (i.e., π is not one–to–one), (ii) has no isolated
points and (iii) is topologically transitive. Then there exists a residual subset Y0 ⊆ Y
such that for every y ∈ Y0 the set Xy = π−1(y) contains a dense Mycielski set K
with K×K \∆X ⊆Wtrans. In particular every such set is an independant set and
(X,T ) is Li–Yorke chaotic.

Remark 2.10. Since a structure theorem for minimal systems, analogous to the
Furstenberg–Zimmer structure theorem exists (with a maximal PI factor replacing
the maximal measure distal factor, see for example [17]), Theorem 2.1 above sug-
gests that the following statement may hold: every minimal system (X,T ) which
is not a PI system admits a Mycielski set K ⊆ X with K ×K \∆X ⊆Wtrans for
some W ⊆ X ×X satisfying properties (i)-(iii) of Theorem 2.9, and in particular
is Li–Yorke chaotic. However a closer look at the topological structure theorem
shows that one can obtain an extension π : (X̃, T ) → (Y, S), as in Theorem 2.9,
only for a proximal extension X̃ of X. Thus such a theorem, if true, does not follow
immediately from the structure theorem.

Proposition 2.11. A weakly mixing topological dynamical system (X,T ) is gener-
ically, Li–Yorke, Auslander–Yorke and weakly ST chaotic.
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Proof.. Since the set of transitive points is a dense Gδ set in X2, the system is
generically chaotic. The existence of an uncountable independent set for any weakly
mixing system is proved in [22]; an independent set is obviously scrambled, there-
fore (X,T ) is also chaotic in the sense of Li and Yorke and weakly ST chaotic.
Auslander–Yorke chaos results from the fact that any weakly mixing system is
sensitive.

Remark 2.12. Recall that a minimal scattering system is weakly mixing and has
all the properties stated in the last proposition. Recently Huang and Ye proved that
2–scattering implies Li–Yorke chaos and the density of Li–Yorke pairs [21]. Here is
an easy way to deduce the existence of Li–Yorke pairs when (X,T ) is a non–trivial
scattering system: let Y be a non–empty minimal subset of X. By [7] the product
(X ×Y, T ×T ) is transitive. It contains Y ×Y , therefore intersecting the diagonal;
since (X,T ) is non–trivial, X is not reduced to a fixed point and X × Y is not
contained in ∆X . Let (x, y) be a transitive point in X × Y : its orbit intersects any
neighborhood of X × Y ∩∆X , hence lim inf

n→∞
%(Tnx, Tny) = 0; it also intersects any

neighborhood of a non–diagonal pair, so that lim sup
n→∞

%(Tnx, Tny) > 0. Thus (x, y)

is a Li–Yorke pair.

3. Almost distal systems

In this section we consider systems without Li–Yorke pairs, that is, dynamical
systems for which every pair of points is either asymptotic or distal; we call them
almost distal. Most of their properties can be obtained in two ways. One consists in
applying the classical theory of Ellis semigroups to invertible almost distal systems,
and then use natural extensions in order to prove the same properties for non–
invertible systems; the proofs this method leads to are simple and nice in some
instances, extremely awkward in others. The second method relies on a new variant
of the Ellis semigroup theory, adapted to the non–invertible case. It is this variant
that we sketch now.

3.1. The adherence semigroup.
The theory of the Ellis or enveloping semigroup of homeomorphisms is developed

at length in [4], [9]. Suppose (X,T ) is a surjective dynamical system (not necessarily
invertible). Consider the set XX of self-maps of X, endowed with the topology
of pointwise convergence; it is compact Hausdorff. Define A(X,T ) ∈ XX to be
the set of all pointwise limits of subnets of (Tn), n ∈ N. When the meaning is
clear we just write A. Alternatively A can be defined as the intersection of the
sets Am = {Tn, n ≥ m}, where the closure is taken in the topology of pointwise
convergence.

It is essential to remark that a pair (x, y) ∈ X × X is proximal if and only if
px = py for some p ∈ A, and asymptotic if and only if px = py for any p ∈ A.

There are two differences with the Ellis semigroup: T is not assumed to be a
homeomorphism; and we do not want T and its powers to belong to A unless they
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actually belong to the orbit adherence of T . The motivations will be obvious after
reading this section; essentially, we want T to act surjectively on the compact set
A. In the following proofs it is important to note that in general T need not belong
to A. Otherwise we follow [4] closely.

Proposition 3.1. A(X,T ) is a compact semigroup, on which the right multiplica-
tion is continuous.

Proof. The continuity of the right multiplication follows immediately from the fact
that if pn → p pointwise, then pn(q(x)) → p(q(x)) for any q ∈ XX . The set
A is compact because it is closed in the compact topological space XX . It is a
semigroup: for any n ∈ N, any p ∈ A, the map Tn ◦ p belongs to A by continuity
of T and the fact that p ◦Tn = Tn ◦ p. For any p, q ∈ A take a net {ξn} converging
to p: then by continuity of the right multiplication {ξn} ◦ q tends to p ◦ q while
belonging to A, which means that p ◦ q ∈ A.

Proposition 3.2. (1) The formula T (p) = p ◦ T defines a continuous surjective
transformation of A(X,T ).
(2) Let ϕ: (X,T ) → (Y, S) be a factor map. Then there is a unique semigroup
morphism Φ: (A(X,T ), T ) → (A(Y, S), S) such that Φ(p)(ϕ(x)) = ϕ(p(x)) for
x ∈ X and p ∈ A(X,T ); moreover Φ ◦ T = S ◦ Φ.

Proof. (1) Continuity results from Proposition 3.1; we prove surjectivity. Let
{Tnk} → q; using compactness take a converging subnet of {Tnk−1} with limit
p, then T (p) = q.
(2) The proof is similar to that of [4], Chapter 3, Theorem 7.

Proposition 3.3. A minimal left ideal of A(X,T ) is a closed subsemigroup of
A(X,T ). Any closed subsemigroup of A(X,T ) contains an idempotent element.

Proof. The proof is the same as that of Corollaries 7 and 8 of [4], Chapter 6.

Proposition 3.4. The set I ⊆ A(X,T ) is a minimal left ideal if and only if (I, T )
is minimal as a dynamical system. In particular a minimal left ideal is closed.

Proof. (1) Suppose first that I is a minimal left ideal of A(X,T ). We prove first
that T (I) = I. It is not hard to check that T (I) is also a minimal left ideal. Let
p ∈ I, q ∈ A; since by Proposition 3.2(1) T acts surjectively on A there is q′ ∈ A
such that q ◦ p = T (q′ ◦ p), which shows that I ∩ T (I) is not empty: thus by
minimality of I and T (I) one concludes that I = T (I). One must also show that I
is closed. For any p ∈ I, A ◦ p is a subideal of I so it is equal to I. Closure follows
from the facts that the right multiplication is continuous and A is closed. Finally
recall that A ◦ p = {(lim{ξn}) ◦ p | {ξn} converging net} = I: this means that the
orbit closure of any p ∈ I is equal to I.
(2) Suppose I ⊆ A is such that (I, T ) is minimal. Then I is closed and T (I) ⊂ I.
For p ∈ I, q ∈ A, one has q ◦ p = (lim{ξn}) ◦ p = lim({ξn} ◦ p), which belongs to
I by minimality of (I, T ); thus I is a left ideal. If it is not minimal it contains a
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minimal subideal J , and by the proof above (J, T ) is a minimal system, which is a
contradiction.

Proposition 3.5. Let I be a minimal left ideal of A(X,T ), and let x ∈ X. Then
I(x) is a minimal subset of X.

Proof. Put I(x) = {p(x) | p ∈ I}. This set is the homomorphic image of (I, T )
under the valuation map ϕx : I → X, which commutes with T . Since (I, T ) is
minimal so is (I(x), T ).

Proposition 3.6. There is a unique minimal left ideal in A(X,T ) if and only if
the proximality relation is an equivalence relation.

Proof. Assume that there is a unique minimal left ideal I ⊆ A and consider (x, y) ∈
P, (y, z) ∈ P. Then there are minimal left ideals I ′ and I ′′ such that for p ∈ I ′, q ∈
I ′′ one has p(x) = p(y) and q(y) = q(z). Since there is a unique minimal left ideal,
I ′ = I ′′ = I and for any p ∈ I, p(x) = p(y) = p(z). Thus (x, z) is proximal.

Conversely, assume that the proximal relation is an equivalence relation. Then
for any two idempotents u, v in A and x ∈ X the points u(x) and v(x), each
proximal to x, are proximal. Now consider two minimal left ideals I and I ′ and
using Proposition 3.3 choose an idempotent u ∈ I. Since {p◦u : p ∈ I ′} is an ideal
contained in I it is equal to I. It follows that there is v′ ∈ I ′ such that v′ ◦ u = u.
The set {p ∈ I ′ : p ◦ u = u} is thus a non–empty closed subsemigroup, which
by Proposition 3.3 contains an idempotent v. Then (u(x), v(x)) ∈ I ′((u(x), v(x))),
which means by Proposition 3.5 and proximality of the pair that its orbit closure
defines a minimal system intersecting the diagonal. We conclude that u(x) = v(x)
for arbitrary x, and I ∩ I ′ = I = I ′.

Proposition 3.7. For any x ∈ X there is an almost periodic point y ∈ X such
that (x, y) ∈ P(X,T ).

Proof. Let I be a minimal left ideal of A and u ∈ I be an idempotent. Then
u(x) ∈ I(x), which is a minimal set under the action of T by Proposition 3.5, so
x′ = u(x) is almost periodic. On the other hand since u(x) = u(x′) the pair (x, x′)
is proximal.

Theorem 3.8. A system (X,T ) is almost distal if and only if (A(X,T ), T ) is
minimal.

Proof. Assume that (X,T ) is almost distal. Let I be a minimal ideal of A and u
an idempotent in I (Proposition 3.3). Then (x, u(x)) is proximal, thus asymptotic
for any x ∈ X, that is, for q ∈ A, q(x) = q(u(x)) = q ◦ u(x), so q = q ◦ u belongs to
I and I = A. Then Proposition 3.4 says that (A, T ) is a minimal system.

Conversely, if (A, T ) is minimal then A is a minimal ideal by Proposition 3.4.
Suppose (x, y) is a Li–Yorke pair. Since it is a proximal pair there is a minimal left
ideal I ⊂ A such that q(x) = q(y) for all q in I. Since x and y are not asymptotic,
there is an r ∈ A such that r(x) 6= r(y). Thus r /∈ I, and the adherence semigroup
is not minimal.
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This is the first point of similarity that we observe between distal and almost
distal systems: recall that (X,T ) is distal if and only if the Ellis semigroup E(X,T )
is minimal, or equivalently if and only if X × X is a union of minimal sets. Cor-
respondingly (X,T ) is almost distal if and only if A is minimal, or equivalently if
and only if all ω–limit sets in X ×X are minimal. Other similarities appear below.

3.2. Properties of almost distal systems.

Theorem 3.9. Let (X,T ) be almost distal and let π : (X,T )→ (Y, S) be a factor
map. Then (Y, S) is almost distal.

Proof. By Theorem 3.8 (A(X,T ), T ) is minimal. By Proposition 3.2(2) the factor
map π extends to a morphism from (A(X,T ), T ) onto (A(Y, S), S). It follows that
(A(Y, S), S) is minimal, which, applying the converse part of Theorem 3.8, shows
(Y, S) to be almost distal too.

It is worth remarking that any subsystem of an almost distal system is almost
distal too.

Theorem 3.10. Any transitive almost distal system is minimal.

Proof. Let (X,T ) be a transitive system and x ∈ X be a transitive point. By
Proposition 3.7 x is proximal to some almost periodic point y, i.e., the ω-limit set
of y is a minimal set M of X. Because there are no Li–Yorke pairs, x is asymptotic
to y. Therefore the ω-limit set of x belongs to M . Since x is a transitive point, M
must be equal to X.

Proposition 3.11. Let {(Xi, Ti) : i ∈ I} be a family of almost distal systems, then
the product (X,T ) =

∏
i∈I(Xi, Ti) is almost distal. In particular an inverse limit

of almost distal systems is almost distal, and natural extensions preserve almost
distality.

Proof. Note that a system (X,T ) is almost distal if and only if for all x, y ∈ X and
p ∈ A, if px = py then also qx = qy for every q ∈ A.

Now with obvious notation given x, y ∈ X, p ∈ A(X,T ) with px = py one has
pxi = pyi for any i ∈ I; then by almost distality qxi = qyi for any q ∈ A(Xi, Ti),
i ∈ I and finally qx = qy for q ∈ A(X,T ).

To finish remark that inverse limits and natural extensions are subsystems of
product systems.

Now we address the question of disjointness between minimal almost distal sys-
tems and scattering systems.

Theorem 3.12. Any transitive almost distal system is disjoint from all scattering
systems (in particular from all weakly mixing systems).

Proof. By Theorem 3.10 a transitive almost distal system (X,T ) is minimal, which
implies that for any scattering system (Y, S) the Cartesian product (X × Y, T ×S)
is transitive [7].
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Let (x, y) ∈ (X × Y )trans, and let J ⊂ X × Y be any joining. Set

S = {p ∈ A(X × Y, T × S) : p(x, y) ∈ J and p(y) = y}.

Because (x, y) is transitive and the projection of J on the second coordinate is
equal to Y , S is not empty. It is a closed semigroup: first for p, q ∈ S one has
q ◦ p(y) = q(y) = y, and pi(y) = y converges to p(y) = y if the net (pi) converges to
p; on the other hand since J is closed invariant p(x, y) ∈ J and q(x, y) ∈ J imply
q ◦ p(x, y) ∈ J ; if (pi) converges to p and pi(x, y) ∈ J then p(x, y) ∈ J because J is
closed.

It follows that there exists an idempotent v in S. As v belongs to S one has
v(x, y) = (v(x), y) ∈ J and since v is an idempotent it sends both x and v(x) to
v(x), so (x, v(x)) ∈ P(X,T ) and by our assumption (x, v(x)) ∈ As(X,T ). Now
since x and v(x) are asymptotic the pair (v(x), y) ∈ J is transitive just like (x, y),
so J = X × Y . This means that the two systems are disjoint.

Our definitions, so far, worked for Z+-systems (X,T ); even when the map T
is invertible we only acted on it with elements of {Tn : n ∈ Z+}. For the next
observation let us consider Z-systems. Again we call the Z-system (X,T ) al-
most distal when every proximal pair (x, y) ∈ X is doubly asymptotic, that is,
lim|n|→∞ d(Tnx, Tny) = 0. We conclude this subsection by the remark that transi-
tive almost distal Z-systems, which are minimal by Theorem 3.10, have a Proximal
Isometric (PI) structure as defined in [12].

Let (X,T ) be a minimal dynamical system. (X,T ) is said to be strictly proximal
isometric or strictly PI if it can be obtained from the trivial system by a (countable)
transfinite succession of proximal and isometric extensions, that is, there is a pro-
jective system of minimal dynamical systems {(Xλ, Tλ)}λ≤θ, for some (countable)
ordinal θ, where Xθ = X, X0 is the trivial system, (Xλ, Tλ) = limζ<λ(Xζ , Tζ) for a
limit ordinal λ ≤ θ and such that for λ < θ the projection map πλ,λ+1 : Xλ+1 → Xλ

defines either a proximal or an isometric extension. (X,T ) is said to be proximal
isometric or PI if it has a strictly PI proximal extension.

Proposition 3.13. Any transitive almost distal Z-system (X,T ) is a PI system.

Proof. (X,T ) is minimal by Theorem 3.10. Therefore, since the proximal relation
of (X,T ) coincides with its asymptotic relation, which is an equivalence relation,
we conclude by [12], Proposition 8.8, that the system is PI.

Remark 3.14. It is very likely that Proposition 3.13 holds for Z+-systems as well.
However, in order to check this one needs to find whether the theory required for the
proof of [12], Proposition 8.8, goes through for Z+-systems rather than Z-systems.
This we did not do. In the next section we shall see that, e.g., the (invertible)
Morse minimal set (M,σ) is an example of an almost distal Z+-system which is not
an almost distal Z-system. It is easy to see that the proximal relation PZ+(M,σ) =
AsZ+(M,σ) is an equivalence relation but is not closed. (M,σ) is thus an example
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of a minimal almost distal Z+-system which is not an asymptotic extension of a
distal system. One important question that we leave open in the present paper is
whether or not every minimal almost distal Z-system is an asymptotic extension of
a distal system.

3.3. Examples.
Here we briefly present some examples of almost distal but non–distal minimal

systems. The first example illustrates the fact that an asymptotic lift of a distal
system is almost distal.

Example 3.15. Sturmian systems provide the simplest example. Let Y be the
1–torus and Sα be the rotation by the irrational number α ∈ Y . Code the orbits
of (Y, Sα) according to the closed cover C = {[0, 1−α], [1−α, 1]} of Y . Call X the
closed set of all bi–infinite C–names and let σ be the shift. All points of Y have
only one C–name in X except 0 and all points of its orbit, which have two each; on
the other hand there is a continuous map ϕ:X → Y sending an infinite name to
the point of Y it was constructed from, and Sα ◦ ϕ = ϕ ◦ σ.

It is not hard to check that if x 6= y ∈ Y , then the pair (x, y) is distal unless
ϕ(x) = ϕ(y); in the last case (x, y) is asymptotic under the actions of σ and σ−1:
(X,σ) is a finite–to–one asymptotic extension of the isometry (Y, Sα).

On the other hand, not all almost distal systems are obtained as asymptotic
extensions of distal systems.

Example 3.16. For the Morse minimal subshift (M,σ) with M ⊂ {0, 1}Z, viewed
as a Z+–system, the asymptotic and proximal relations coincide and form an equiv-
alence (but not closed) invariant relation. Thus there are no Li–Yorke pairs and
the system is almost distal. But two points forming a distal pair are mapped to the
same point of the maximal distal factor (the dyadic adding machine). Viewed as a
Z action the Morse system has no non–diagonal asymptotic points; some pairs are
asymptotic under σ and distal under σ−1, or the other way round.

Remark that Sturmian and Morse subshifts, when considered only on one–sided
sequences, are non–invertible almost distal systems.

Example 3.17. Let T be defined on Z = Y × Y by T (x, y) = (Sα(x), Sx(y)); the
dynamical system (Z, T ) is distal without being conjugate to a compact group rota-
tion. One can apply the same construction as above by coding the first coordinate,
thus obtaining a finite–to–one asymptotic extension of (Z, T ).

Example 3.18. A wide class of finite–to–one asymptotic extensions of rotations
or derived transformations is briefly described in [9], Section 37. It deserves to be
studied in detail; this would provide matter for a complete article.

Example 3.19. Wide classes of almost one–to–one, not finite–to–one, asymptotic
extensions of rotations on the 2-torus which are minimal point distal homeomor-
phisms (respectively minimal point distal noninvertible maps) on that torus are
described in [30] (respectively [24]).
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