
Is Entropy Effectively Computable?

Given an explicit dynamical system and given ε > 0 , is it possible in principle to com-
pute the associated entropy, either topological or measure-theoretic, with a maximum error
of ε ? In practice, is there an effective procedure to carry out this computation in a rea-
sonable length of time? In the most general case, the answer to both questions is certainly
no: Cellular automaton mappings from a Cantor set (namely a full shift) to itself have an
explicit finite description, yet Hurd, Kari and Culik have shown that the associated topolog-
ical entropy is not algorithmically computable in general. For iterated smooth mappings in
dimension ≥ 2 , or for smooth diffeomorphisms in dimension ≥ 3 , Misiurewicz has pointed
out that topological entropy does not always depend continuously on parameters.1 This
suggests that computation may be very difficult. On the other hand, for piecewise monotone
interval mappings, perhaps the simplest interesting dynamical systems, there is an effective
computation which depends only on being able to order finitely many forward images of the
critical points. A proof is sketched in [19, §5.10], based on [1]. (Compare [14]. For unimodal
or bimodal maps, the most efficient procedure is based on comparison with constant slope
maps. Compare [4], [5], as well as [18].)

One quite general computational method, based on the exponential growth of length
or volume, has been studied by Newhouse and Pignataro [22] (see also [21], [25]). As an
example, they tabulate some entropy estimates for the Hénon family, but without any precise
error bounds.

Diffeomorphisms of dimension two provide a rich family of reasonably stable examples
with a great deal of available theory. (Compare [3], [6]-[13], [15], [17], [24].) Thus it seems
natural to ask whether topological entropy can be effectively computed in this case. For
orientation preserving diffeomorphisms F of the 2-sphere, every finite invariant set S =
F (S) with n elements determines a class βS of elements in the n-stranded braid group.
There is a minimum possible topological entropy htop(β) associated with any such braid-
class; and an effective computation for this associated entropy has been given by Bestvina
and Handel. The topological entropy htop(F ) can be described as the supremum, over all
finite F -invariant sets, of these braid-entropies.2 Thus one way of looking for good lower
bounds for htop(F ) would be to search for periodic orbits and then compute the associated
htop(βS) . It seems likely that one could find upper bounds which are good enough to prove
that htop(F ) is Turing computable; although it is not at all certain that one could find an
algorithm which is fast enough to be useful. For other related ideas towards computation,
see [10].

There are two well known families of 2-dimensional diffeomorphisms, namely the Hénon
family on R2 , and the “standard family” of torus diffeomorphisms. Either of these would
provide excellent test cases.

For diffeomorphisms which preserve some standard area form, one can ask the same
question about measure-theoretic entropy. Again Hénon maps and standard family maps

1 Compare [20] (but see also [25], [21]). One simple example is the family of maps ft(z) =
tz2 from the closed unit disk to itself, with htop(f1) > 0 , but htop(ft) = 0 for |t| < 1 .

2 This is proved in [6, Theorem 9.3], using [17]. However, in the case of homeomorphisms ,
Mary Rees has given an example on T 2 with htop > 0 , but with no periodic orbits.
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seem like ideal objects to study.3 The area preserving Hénon case (compare [12]) is harder
to deal with, since to define h(F ) it is necessary to restrict F to the union K(F ) of
all bounded orbits, and to require that K(F ) have positive area. Again, the question is
whether entropy can be computed (in theory, and if possible in practice) up to an error
which can be made arbitrarily small. According to Pesin, the measure-entropy of F can be
computed as the limit as n →∞ of 1/n times the average of log ‖DF ◦n‖ . (Compare [2].)
For torus diffeomorphisms, and probably also for area preserving Hénon maps, this gives a
sequence of effectively computable upper bounds. However, I am not aware of any effective
lower bound.
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