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1 Flat surfaces and Billiards in Polygons

The first set of problems concerns general flat surfaces with nontrivial holonomy
and billiards in polygons.

Using any of various variations of a standard unfolding construction one can
glue flat surfaces from several copies of the billiard table. When the resulting
surface is folded back to the polygon, the geodesics on the surface are projected
to billiard trajectories, so billiards in polygons and flat surfaces are closely
related.

A quintessential example of a flat surface is given by the surface of the
standard cube in real three-space. With its induced metric it is a flat sphere
with eight singularities. Indeed, at each corner, three squares meet so that each
corner has a neighborhood that is isometric to a Euclidean cone, with cone angle
3π/2. These are indeed the only singularities of

the flat metric; we call them conical singularities of the flat surface. Since
the cone angle is not a multiple of 2π, parallel transport of a non-zero tangent
vector about a simple closed curve around a corner will result in a distinct
tangent vector; thus the holonomy is nontrivial. In general, a “flat surface” here
refers to a surface of zero Gaussian curvature with isolated conical singularities.

Having a Riemannian metric it is natural to study geodesics. Away from
singularities geodesics on a flat surface are (locally isometric to) straight lines.
The geodesic flow on the unit tangent bundle is then also presumably well
behaved. For simplicity, let “ergodic” here mean that a typical geodesic visits
any region of the surface, and furthermore (under unit speed parametrization)
spends a time in the region that is asymptotically proportional to the area of
the region.

Problem 1 (Geodesics on general flat surfaces) Describe the behavior of
geodesics on general flat surfaces. Prove (or disprove) the conjecture that the
geodesic flow is ergodic on a typical (in any reasonable sense) flat surface. Does
any (almost any) flat surface have at least one closed geodesic which does not
pass through singular points?

If the answer is positive then one can ask for the asymptotics for the number
of closed geodesics of bounded length as a function of the bound.

Note that typically a geodesic representative in a homotopy class of a simple
closed curve is realized by a broken line containing many geodesic segments going
from one conical singularity to the other. The counting problem for regular
closed geodesics (ones which do not pass through singularities) is quite different
from the counting problem for geodesics realized by broken lines.

The following questions treat billiards in arbitrary polygons in the plane.

Problem 2 (Billiards in general polygons) Does every billiard table have
at least one regular periodic trajectory? If the answer is affirmative, does this
trajectory persist under deformations of the billiard table?

If a periodic trajectory exists, find the asymptotics for the number of periodic
trajectories of bounded length as a function of the bound.
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Describe the behavior of a generic regular billiard trajectory in a generic
polygon; in particular, prove (or disprove) the assertion that the billiard flow is
ergodic.1

We note that the case of triangles is already highly non-trivial. For recent
work on billiards in obtuse triangles see [Sc1] and [Sc2].

In the case of triangles the notion of generic can be interpreted as follows.
The space of triangles up to similarity can be parametrized as the set of triples
(θ1, θ2, θ3) with

∑

θi = π and each θi > 0. It is naturally an open simplex.
Generic then refers to the natural Lebesgue measure.

To motivate the next problem we note that there is a close connection be-
tween the study of interval exchange transformations and billiards in rational
polygons (defined below). An important technique in the study of interval ex-
change maps is that of renormalization. Given an interval exchange on the unit
interval one can take the induced transformation on a subinterval. The resulting
map is again an interval exchange map, and if one renormalizes so that the new
interval has length one, then this gives a transformation on the space of unit
interval exchange maps. This transformation is called the Rauzy-Veech induc-
tion ([Ra], [Ve2]), and it has proved to be of fundamental importance. There is
a corresponding notion for the renormalization of translation surfaces given by
the Teichmüller geodesic flow.

Problem 3 (Renormalization of billiards in polygons) Is there a natural
dynamical system acting on the space of billiards in polygons so as to allow a
useful renormalization procedure?

2 Rational billiards, translation surfaces

quadratic differentials and SL(2, R) actions

An important special case of billiards is given by the rational billiards — billiards
in polygonal tables whose vertex angles are rational multiples of π. There is
a well-known procedure (see the surveys [MaTa], [Gu1]) which associates to a
rational billiard an object called a translation surface. One labels the sides of
the polygon and successively reflects the polygon across sides. The rationality
assumption guarantees that after a certain number of reflections a labelled side
appears parallel to itself. In that case the pair of sides with the same label
is glued by a parallel translation. The result is a closed surface with conical
singularities. The billiard flow on the polygon which involves reflection in the
sides is replaced by a straight line flow on the glued surface; under the natural
projection of the surface to the billiard table the geodesics are projected to
billiard trajectories. It turns out that many results in rational billiards are
found by studying more general translation surfaces.

A translation surface is defined by the following data.

1On behalf of the Center of Dynamics of Pennsylvania State University A. Katok promised

a prize for a solution of this problem.

3



• a finite collection of disjoint polygons ∆1, . . . , ∆n embedded into the ori-
ented Euclidean plane.

• a pairing between the sides of the polygons: to each side s of any ∆i is
associated a unique side s′ 6= s of some ∆j in such way that the two sides
s, s′ in each pair are parallel and have the same length |s| = |s′|. The
pairing respects the induced orientation: gluing ∆i to ∆j by a parallel
translation sending s to s′ we get an oriented surface with boundary for
any pair s, s′.

• a choice of the positive vertical direction in the Euclidean plane.

A classical example is the square with opposite unit sides identified, giving
the flat torus. This example arises from billiards in a square of side length
1/2. Another example is a regular octagon with opposite sides identified. It
arises by the unfolding process from billiards in a right triangle whose other
angles are π/8, 3π/8. When translation surfaces arise from billiards the polygons
in the gluings can be taken to be congruent, so translation surfaces arising
from rational billiards always have extra symmetries not possessed by general
translation surfaces. In this sense translation surfaces coming from rational
billiards are always rather special.

Note that a translation surface is in particular a flat surface in the sense de-
scribed before. It is locally Euclidean except possibly at the points correspond-
ing to the vertices of the polygons. These points can be conical singularities,
but the total angle around such a vertex — its cone angle — is always an integer
multiple of 2π. For example, in the case of the regular octagon, the 8 vertices
are identified to a single point with cone angle 6π.

Since the gluing maps are translations which are of course complex analytic,
the underlying structure is that of a Riemann surface X . Moreover since trans-
lations preserve the form dz in each polygon, these forms dz fit together to give
a holomorphic 1-form ω on X . Thus translation surfaces are often denoted by
(X, ω). In this language a cone angle 2kπ at a singularity corresponds to a zero
of order k − 1 of ω. The orders of the zeroes form a tuple α = (α1, . . . , αn),
where

∑

αi = 2g−2 and g is the genus of the surface. In the case of the regular
octagon, there is a single zero of order 2 so α = (2). The set of all (X, ω) whose
zeroes determine a fixed tuple α form a moduli space H(α) , called a stratum.
We may think of the points of this moduli space as glued polygons where the
vectors corresponding to the sides are allowed to vary. Since each (X, ω) has
the underlying structure of a Riemann surface, remembering just the complex
structure gives a projection from each stratum to the Riemann moduli space.
One can introduce “markings” in order to get a well-defined projection map
from spaces of marked Abelian differentials to Teichmüller space.

Studying translation surfaces from the different viewpoints of geometry and
complex analysis has proved useful.

If we loosen our restrictions on the gluings so as to allow reflections in the
origin as well as translations, then there is still an underlying Riemann surface;
the resulting form is a quadratic differential. The structure is sometimes also
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called a half-translation surface. Now the cone angles are integer multiples of π.
Thus each quadratic differential determines a set of zeroes whose orders again
give a tuple β = (β1, . . . , βn) with

∑

βi = 4g − 4. We similarly have strata
of quadratic differentials Q(β). If we fix a genus g, and introduce markings,
then the union of the strata of quadratic differentials (including those that are
naturally seen as the squares of Abelian differentials) of genus g fit together to
form the cotangent bundle over Teichmüller space.

Much of the modern treatment of the subject arises from the study of the
action of the group SL(2, R) on each moduli space H(α). Understanding the
orbit of a translation surface allows one to understand much of the structure
of the translation surface itself. For each (X, ω) realized as a union of glued
polygons ∆i, and A ∈ SL(2, R), let A act on each ∆i by the linear action on R

2.
Since A preserves parallel lines, this gives a map of (X, ω) to some A · (X, ω).
We have a similar action for A ∈ GL+(2, R). If we introduce markings then the
projection of the orbit to Teichmüller space gives an isometric embedding of the
hyperbolic plane into Teichmüller space equipped with the Teichmüller metric.
The projection of the orbit of (X, ω) is called a Teichmüller disc. Similarly, we
have Teichmüller discs for quadratic differentials. The image of the disc in the
moduli space is typically dense. However there are (X, ω) whose orbit is closed
in its moduli space H(α). These are called Veech surfaces. We will discuss these
in more detail in the next section.

2.1 Veech surfaces

This section discusses problems related to Veech surfaces and Veech groups.
Given a translation surface (X, ω), or quadratic differential, one can discuss its
affine diffeomorphism group; that is, the homomorphisms that are diffeomor-
phisms on the complement of the singularities, with constant Jacobian matrix
(with respect to the flat metric). The group of Jacobians, SL(X, ω) ⊂ SL(2, R)
can also be thought of as the stabilizer of (X, ω) in the moduli space under the
action of SL(2, R) on the moduli space of all translation surfaces. (The SL(2, R)
action is discussed in the next section). The Jacobians of orientation preserv-
ing affine diffeomorphisms form a discrete subgroup of SL(2, R), also called a
Fuchsian group. The image in PSL(2, R) is the Veech group of the surface. One
can also think of this group as a subgroup of the mapping class group of the
surface. Hyperbolic elements of this group correspond to pseudo-Anosovs in
the mapping class group; parabolic elements to reducible maps and elliptics to
elements of finite order.

The surface (X, ω) is called a Veech surface if this group is a lattice (that
is of co-finite volume) in PSL(2, R). By a result of Smillie [Ve4] it is known
that a surface is a Veech surface if and only if its SL(2, R)-orbit is closed in the
corresponding stratum.

In genus 2 it is known [McM1] that if SL(X, ω) contains a hyperbolic element
then in its action on the hyperbolic plane, it has as its limit set the entire circle
at infinity. Consequently, it is either a lattice or infinitely generated. There are
known examples of the latter, see [HuSt2] and [McM1].

5



Problem 4 (Characterization of Veech surfaces) Characterize all Veech
surfaces (for each stratum of each genus).

This problem is trivial in genus one; in genus two K. Calta [Ca] and C. Mc-
Mullen [McM2] have provided solutions. In the papers [KnSm] and Puchta [Pu]
the acute rational billiard triangles that give rise to Veech surfaces were classi-
fied. In [SmWe] there is a criterion for a surface (X, ω) to be a Veech surface
that is given in terms of the areas of triangles embedded in (X, ω).

Problem 5 (Fuchsian groups) Which Fuchsian groups are realized as Veech
groups? Which subgroups of the mapping class group appear as Veech groups?
This is equivalent to asking which subgroups are the stabilizers of a Teichmüller
disc.

Problem 6 (Purely cyclic) Is there a Veech group that is cyclic and gener-
ated by a single hyperbolic element? Equivalently, is there a pseudo-Anosov map
such that its associated Teichmüller disk, is invariant only under powers of the
pseudo-Anosov?

Problem 7 (Algorithm for Veech groups) Is there an algorithm for deter-
mining the Veech group of a general translation surface or quadratic differential?

An interesting class of Veech surfaces are the square-tiled surfaces. These
surfaces can be represented as a union of glued squares all of the same size,
see [Zo3], [HuLe1].

Problem 8 (Orbits of square-tiled surfaces) Classify the SL(2, R) orbits
of square-tiled surfaces in any stratum. Describe their Teichmüller discs. A
particular case of this problem is that of the stratum H(1, 1).

This above problem is solved only for the stratum H(2), see [HuLe1], [McM4].

2.2 Minimal sets and analogue of Ratner’s theorems

The next set of questions concern the SL(2, R) action. They are motivated
by trying to find an analogue of the SL(2, R) action on the moduli spaces to
Ratner’s celebrated theorems on the actions of subgroups of a Lie group G on
G/Γ where Γ is a lattice subgroup.

Problem 9 (Orbit closures for moduli spaces) Determine the closures of
the orbits for the GL+(2, R)-action on H(α) and Q(β). Are these closures al-
ways complex-analytic (complex-algebraic?) orbifolds? Characterize the closures
geometrically.

Note that by a theorem of Kontsevich any GL+(2, R)-invariant complex-
analytic subvariety is represented by an affine subspace in period coordinates.

Consider the subset H1(α) ⊂ H(α) of translation surfaces of area one. It is a
real codimension one subvariety in H(α) invariant under the action of SL(2, R).
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In the period coordinates it is defined by a quadratic equation (the Riemann
bilinear relation). It is often called a unit hyperboloid. It is worth noting that it
is a manifold locally modelled on a paraboloid. The invariant measure on H(α)
gives a natural invariant measure on the unit hyperboloid H1(α). Similarly one
can define the unit hyperboloid Q1(β). It was proved by Masur and Veech that
the total measure of any H1(α), Q1(β) is finite.

Problem 10 (Ergodic measures) Classify the ergodic measures for the ac-
tion of SL(2, R) on H1(α) and Q1(β).

McMullen [McM3] has solved Problems 9 and 10 in the case of translation
surfaces in genus 2.

A subset Ω is called minimal for the action of SL(2, R) if it is closed, invariant,
and it has no proper closed invariant subsets. The SL(2, R) orbit of a Veech
surface is an example of a minimal set.

Problem 11 (Minimal sets) Describe the minimal sets for the action of the
group SL(2, R) on H1(α) and Q1(β). Since Veech surfaces give rise to minimal
sets, this problem generalizes the problem of characterizing Veech surfaces.

The problem below is particularly important for numerous applications. One
application is to counting problems.

Problem 12 (Analog of Ratner theorem) Classify the ergodic measures for

the action of the unipotent subgroup

(

1 t
0 1

)

t∈R

on H1(α) and Q1(β). We note

that a solution of Problem 10 does not imply a solution of this problem. In
particular this problem is open even in genus 2.

Similarly classify the orbit closures on these moduli spaces.

There are some results in special cases on this problem, see [EsMaSl] and
[EsMkWt].

K. Calta [Ca] and C. McMullen [McM2] have found in genus 2 unexpected
closed sets invariant under the action of GL+(2, R) which we now describe. One
can form a family of translation surfaces from a given (X, ω) by varying the
periods of the 1-form ω along cycles in the relative homology — those that
join distinct zeroes — while keeping the “true” periods (that is, the absolute
cohomology class of ω) fixed. One may also break up a zero of higher order into
zeroes of lower order while keeping the absolute periods fixed. The resulting
family of translation surfaces gives a leaf of the kernel foliation passing through
(X, ω).

It follows from [Ca] and [McM2] that for any Veech surface (X, ω) ∈ H(2),
the union of the complex one-dimensional leaves of the kernel foliation passing
through the GL+(2, R)-orbit of (X, ω) is a closed complex orbifold N of com-
plex dimension 3. By construction N is GL+(2, R)-invariant. Note that the
GL+(2, R)-orbit of the initial Veech surface (X, ω) is closed and has complex di-
mension 2, so what is surprising is that the union of the complex one-dimensional
leaves passing through each point of the orbit GL+(2, R) · (X, ω) is again closed.
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We may ask a similar question in higher genus. Let O ⊂ H(α1, . . . , αm) be a
GL+(2, R)-invariant submanifold (suborbifold) on translation surfaces of genus
g. Let H(α′

1, . . . , α
′

n) be a stratum of surfaces of genus g that is adjacent, in
that each αi is the sum of corresponding α′

j . The complex dimension of the
leaves of the kernel foliation in H(α′

1, . . . , α
′

n) is n − m.
Consider the closure of the union of leaves of the kernel foliation in the

stratum H(α′

1, . . . , α
′

n) passing through O; this is a closed GL+(2, R)-invariant
subset N ⊂ H(α′

1, . . . , α
′

n) of dimension at least dimC O + n − m.

Problem 13 (Kernel foliation) Is N a complex-analytic (complex-algebraic)
orbifold? When is dimC N = dimC O + n − m ? On the other hand when
does N coincide with the entire connected component of the enveloping stratum
H(α′

1, . . . , α
′

n) ?

One of the key properties used in [McM3] for the classification of the closures
of orbits of GL(2, R) in each of H(1, 1) and H(2) was the knowledge that on any
translation surface of either stratum, one can find a pair of homologous saddle
connections.

For example, cutting a surface (X, ω) in H(1, 1) along two homologous saddle
connections joining distinct zeroes decomposes the surface into two tori, allowing
one to apply the machinery of Ratner’s Theorem.

Problem 14 (Decomposition of surfaces) Given a connected component of
the stratum H(α) of Abelian differentials (or of quadratic differentials Q(β) find
those configurations of homologous saddle connections (or homologous closed
geodesics), which are present on every surface in the stratum.

For quadratic differentials the notion of homologous saddle connections (ho-
mologous closed geodesics) should be understood in terms of homology with
local coefficients, see [MaZo].

The last two problems in this section concern the Teichmüller geodesic flow
on the moduli spaces. This is the flow defined by the 1-parameter subgroup
(

et 0
0 e−t

)

t∈R

on H(α1, . . . , αm).

In any smooth dynamical system the Lyapunov exponents (see [BaPe], [Fo2])
are important. Recently, A. Avila and M. Viana [AvVi] have shown the sim-
plicity of the spectrum for the cocycle related to the Teichmüller geodesic flow
(strengthening the earlier result of Forni on positivity of the smallest Lyapunov
exponent).

Problem 15 (Lyapunov exponents) Study individual Lyapunov exponents
of the Teichmüller geodesic flow:
– for all known SL(2; R)-invariant subvarieties;
– for strata;
– for strata of large genera as the genus tends to infinity.

Are they related to characteristic numbers of any natural bundles over ap-
propriate compactifications of the strata?
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The motivation for this problem is a beautiful formula of Kontsevich [Ko]
representing the sum of the first g Lyapunov exponents in differential-geometric
terms.

It follows from the Calabi Theorem [Cb] that given a real closed 1-form
ω0 with isolated zeroes Σ (satisfying some natural conditions) on a smooth
surface S of real dimension two, one can find a complex structure on S and
a holomorphic 1-form ω such that the ω0 is the real part of ω. Consider the
resulting point (X, ω) in the corresponding stratum. For generic (X, ω) the
cocycle related to the Teichmüller geodesic flow acting on H1(X, R) defines a
pair of transverse Lagrangian subspaces H1(X, R) = L0 ⊕ L1 by means of the
Oseledets Theorem ([BaPe]). These subspaces correspond to contracting and to
expanding directions.

Though the pair (X, ω) is not uniquely determined by ω0, the subspace
L0 ⊂ H1(X, R) does not depend on (X, ω) for a given ω0. Moreover, L0 does
not change under small deformations of ω0 that preserve the cohomology class
[ω] ∈ H1(S, Σ; R). We get a topological object L0 defined in implicit dynamical
terms.

Problem 16 (Dynamical Hodge decomposition) Study properties of dis-
tributions of the Lagrangian subspaces in H1(S; R) defined by the Teichmüller
geodesic flow, in particular, their continuity. Is there any topological or geomet-
ric way to define them?

The Lagrangian subspaces are an interesting structure relating topology and
geometry.

2.3 Geometry of individual flat surfaces

Let (X, ω) be a translation surface (resp. quadratic differential). Fix a direction
0 ≤ θ < 2π and consider a vector field (resp. line field) on each polygon of unit
vectors in direction θ. Since the gluings are by translations (or by rotations
by π about the origin followed by translations) which preserve this vector field,
there is a well-defined vector field on (X, ω) (resp. line field) defined except at
the zeroes. There is a corresponding flow φθ

t (resp. foliation). A basic question
is to understand the dynamics of this flow or foliation. In the case of a flat torus
this is classical. For any direction either every orbit in that direction is closed
or every orbit is dense and uniformly distributed on the surface. This property
is called unique ergodicity.

For a general translation surface a saddle connection is defined to be a leaf
joining a pair of conical singularities. There are only countably many saddle
connections in all possible directions. For any direction which does not have a
saddle connection, the flow or foliation is minimal, which means that for any
point, if the orbit in either the forward or backward direction does not hit a
conical singularity then it is dense. Veech [Ve3] showed that as in the case of a
flat torus, every Veech surface satisfies the dichotomy that for any θ, the flow
or foliation has the property that either
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• every leaf which does not pass through a singularity is closed. This implies
that the surface decomposes into a union of cylinders of parallel closed
leaves. The boundary of each cylinder is made up of saddle connections.
The directional flow is said to be completely periodic if it has this property.

• the foliation is minimal and uniquely ergodic.

Problem 17 (Converse to dichotomy) Characterize translation surfaces for
which

(1) the set of minimal directions coincides with the set of uniquely ergodic
directions;

(2) the set of completely periodic directions coincides with the set of non-
uniquely ergodic directions.

Note that Property (2) implies Property (1).
In genus g = 2 it is known that for every translation surface which is not

a Veech surface there is a direction θ which is minimal and not uniquely er-
godic [ChMa]. On the other hand using work of Hubert–Schmidt [HuSt2],
B. Weiss has given an example of a surface which is not a Veech surface and yet
for which Property (2) holds. (This surface is obtained as a ramified covering
over a Veech surface with a single ramification point.)

As mentioned above, a closed orbit avoiding the conical singularities of the
flat surface determines a cylinder of parallel lines, all of the same length. It is
of interest to find the asymptotics for the number of cylinders (in all possible
directions) of lengths less than a given number. In the case of the standard flat
torus the number of cylinders of length at most L is asymptotic to

1

ζ(2)
πL2.

Each Veech surface also has quadratic asymptotics [Ve3] and the same is true
for generic surfaces in each stratum [EsMa].

Problem 18 (Quadratic asymptotics for any surface) Is it true that ev-
ery translation surface or quadratic differential has exact quadratic asymptotics
for the number of saddle connections and for the number of regular closed
geodesics?

Problem 19 (Error term for counting functions) What can be said about
the error term in the quadratic asymptotics for counting functions

N((X, ω), L) ∼ c · L2

on a generic translation surface (X, ω)? In particular, is it true that

lim sup
L→∞

log |N(S, L) − c · L2|

log L
< 2?

Is the lim sup the same for almost all flat surfaces in a given connected
component of a stratum?
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The classical Circle Problem gives an estimate for the error term in the case
of the torus.

Veech proved that for Veech surfaces the limsup in the error term is actually
a limit, see [Ve3]. However, nothing is known about the value of this limit. One
may ask whether there is a uniform bound for this limit for Veech surfaces in a
given stratum or even for the square-tiled surfaces in a given stratum.

2.4 Topological and geometric properties of strata

Problem 20 (Topology of strata) Is it true that the connected components
of the strata H(α) and of the strata Q(β) are K(π, 1)-spaces (i.e. their universal
covers are contractible)?

It is known [KoZo], [La] that the strata H(α) and Q(β) need not be con-
nected. With the exception of the four strata listed below, there are intrinsic
invariants that allow one to tell which component a given translation surface or
quadratic differential belongs to.

Problem 21 (Exceptional Strata) Find a geometric invariant which distin-
guishes different connected components of the four exceptional strata Q(−1, 9),
Q(−1, 3, 6), Q(−1, 3, 3, 3) and Q(12).

At the moment the known invariant (called the extended Rauzy class) dis-
tinguishing connected components is given in combinatorial and not geometric
terms. ([La])
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[HuLe1] P. Hubert, S. Lelièvre: Square-tiled surfaces in H(2). Israel Journal
of Math. (2005) (to appear); Eprint in math.GT/0401056

[HuSt1] P. Hubert, T. A. Schmidt: Veech groups and polygonal coverings.
J. Geom. and Phys. 35, 75–91 (2000)

[HuSt2] P. Hubert, T. A. Schmidt: Infinitely generated Veech groups. Duke
Math. J. 123, 49–69 (2004)

[HuSt3] P. Hubert and T. Schmidt: Affine diffeomorphisms and the Veech
dichotomy. In: B. Hasselblatt and A. Katok (ed) Handbook of
Dynamical Systems, Vol. 1B. Elsevier Science B.V. (2005)

[KnSm] R. Kenyon and J. Smillie: Billiards in rational-angled triangles,
Comment. Mathem. Helv. 75, 65–108 (2000)

[KfMaSm] S. Kerckhoff, H. Masur, and J. Smillie: Ergodicity of billiard flows
and quadratic differentials. Annals of Math., 124, 293–311 (1986)

[Ko] M. Kontsevich: Lyapunov exponents and Hodge theory. “The
mathematical beauty of physics” (Saclay, 1996), (in Honor of C.
Itzykson) 318–332, Adv. Ser. Math. Phys., 24. World Sci. Publish-
ing, River Edge, NJ (1997)

12



[KoZo] M. Kontsevich, A. Zorich: Connected components of the mod-
uli spaces of Abelian differentials. Invent. Math., 153:3, 631–678
(2003)

[La] E. Lanneau: Connected components of the moduli spaces of
quadratic differentials. Preprint (2003)

[Ma1] H. Masur: Ergodic theory of flat surfaces. In: B. Hasselblatt and
A. Katok (ed) Handbook of Dynamical Systems, Vol. 1B Elsevier
Science B.V. (2005)

[MaTa] H. Masur and S. Tabachnikov: Rational Billiards and Flat

Structures. In: B. Hasselblatt and A. Katok (ed) Handbook of Dy-
namical Systems, Vol. 1A, 1015–1089. Elsevier Science B.V. (2002)

[MaZo] H. Masur and A. Zorich: Multiple Saddle Connections on Flat
Surfaces and Principal Boundary of the Moduli Spaces of Quadratic
Differentials, Preprint 73 pp. (2004); Eprint in math.GT/0402197

[McM1] C. McMullen: Teichmüller geodesics of infinite complexity, Acta
Math. 191, 191–223 (2003)

[McM2] C. McMullen: Billiards and Teichmüller curves on Hilbert modular
surfaces. J. Amer. Math. Soc., 16, no. 4, 857–885 (2003)

[McM3] C. McMullen: Dynamics of SL2(R) over moduli space in genus two.
Preprint (2003)

[McM4] C. McMullen: Teichmüller curves in genus two: Discriminant and
spin. Math. Ann. (to appear).

[McM5] C. McMullen: Teichmüller curves in genus two: The decagon and
beyond. J. Reine Angew. Math. (to appear).

[Pu] J.-Ch. Puchta: On triangular billiards, Comment. Mathem. Helv.
76, 501–505 (2001)

[Ra] G. Rauzy. Echanges d’intervalles et transformations induites. Acta
Arithmetica. XXXIV 315-328 (1979)
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