This problem is formulated in [D-L] = Downarowicz & Lacroix, The Law of Series, preprint.

Let $(X, \Sigma, \mu, T, \mathcal{P})$ be an invertible process on finitely many states, i.e., \mathcal{P} is a finite partition of a probability measure preserving invertible transformation (X, Σ, μ, T) , and we distinguish points up to their \mathcal{P} -names. Choose $B \in \Sigma$ such that $\mu(B) > 0$. Consider the *induced transformation* defined almost everywhere on $B, T_B(x) = T^{n_x}(x)$, where $n_x = \min\{n > 0 : T^n(x) \in B\}$. $(n_x \text{ is called the first}$ return time.) The conditional measure μ_B , given by $\mu_B(A) = \frac{\mu(A \cap B)}{\mu(B)}$, is invariant under T_B , so we have a new probability measure preserving invertible transformation (X, Σ, μ_B, T_B) called the *induced system*. (Because $\mu_B(B) = 1$, in this system we can replace X by B.)

We will consider two processes defined on this system. One is $(X, \Sigma, \mu_B, T_B, \mathcal{P})$, the process generated by the finite partition \mathcal{P} (note that this is NOT the *full* induced process – it only tell us about ONE symbol in the \mathcal{P} name of x at each moment when x visits B), the other is $(X, \Sigma, \mu_B, T_B, \mathcal{R})$, generated by the countable first return time partition $\mathcal{R} = \{R_n : n \in \mathbb{N}\}$, where $R_n = \{x : n_x = n\}$.

We will use the following language: a set $B \in \bigvee_{i=1}^{n} T^{i}\mathcal{P}$ will be called an *n*-cylinder. We will say that a property \mathfrak{P} holds for *n*-cylinders with μ -tolerance ϵ if the measure μ of the union of all *n*-cylinders which do not satisfy \mathfrak{P} is smaller than ϵ . A (finite or countable) partition \mathcal{P} is ϵ -independent of a sub-sigma-field $\mathcal{A} \subset \Sigma$ if for any finite (equivalently countable) \mathcal{A} -measurable partition α , holds

$$\sum_{A \in \alpha, B \in \mathcal{P}} |\mu(A \cap B) - \mu(A)\mu(B)| < \epsilon.$$

A process $(X, \Sigma, \mu, T, \mathcal{P})$ is called an ϵ -independent process it the "present" \mathcal{P} is ϵ -independent for the "past" $\mathcal{P}^- = \bigvee_{i>0} T^i \mathcal{P}$. For a measure preserving system (X, Σ, μ, T) , the process generated by \mathcal{P} is ϵ -independent of the process generated by another partition \mathcal{R} if for every n holds $\mathcal{P}^n = \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P}$ is $n\epsilon$ -independent of the full history of the process generated by $\mathcal{R}, \bigvee_{i=-\infty}^{\infty} T^i \mathcal{R}$.

In [D-L] we have proved a partial " ϵ -independence" result:

Lemma 3. Let $(X, \Sigma, \mu, T, \mathcal{P})$ be a process with positive entropy. Given $\epsilon > 0$ and $K \in \mathbb{N}$ there exists n_0 such that for every $n \ge n_0$ the following is true for *n*-cylinders with μ -tolerance ϵ : with respect to μ_B , the partition \mathcal{P} is ϵ -independent from jointly the past \mathcal{P}^- (of the "master" process $(X, \Sigma, \mu, T, \mathcal{P})$) and K first return times n_x , n_{T_Bx} , ..., $n_{T_B^Kx}$.

Although it is not included in the formulation, the lemma holds trivially for processes of entropy zero: in such case for majority of sufficiently long blocks B the "presence" is, up to a very small ϵ , determined by B, i.e., with respect to μ_B the partition \mathcal{P} is nearly a one-element partition, hence it is ϵ -independent from anything.

Because the full past of the process contains the past of the induced process, Lemma 3 implies that the process $(X, \Sigma, \mu_B, T_B, \mathcal{P})$ is not only an ϵ -independent process but also that it is ϵ -independent from the past, present and finite future (up to step K) of the process of return times. We were unable to remove the parameter K (pass with it to infinity). Hence the natural question is this:

Question. Does the following hold, for sufficiently large n, and for n-cylinders B with μ -tolerance ϵ : On (X, Σ, μ_B, T_B) the processes generated by \mathcal{P} and \mathcal{R} are ϵ -independent?