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Abstract. A discrete harmonic surface is a trivalent graph which satisfies the balancing
condition in the 3-dimensional Euclidean space and achieves energy minimizing under local
deformations. Given a topological trivalent graph, a holomorphic function, and an associated
discrete holomorphic quadratic form, a version of the Weierstrass representation formula for
discrete harmonic surfaces in the 3-dimensional Euclidean space is proposed. By using the
formula, a smooth converging sequence of discrete harmonic surfaces is constructed, and
its limit is a classical minimal surface defined with the same holomorphic data. As an
application, we have a discrete approximation of the Enneper surface.
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1 Introduction

The purpose of the present paper is to construct a discrete version of the well known Weierstrass
representation formula for a minimal surface and to show its applications. A minimal surface
is defined as a minimizing surface of the area functional under local variations and a central
research object in geometric analysis. Minimal surfaces are seen everywhere in nature and also
used in engineering products because they enjoy both effectiveness and natural beauty at the
same time.

Recent years, various notions of discrete surfaces have been proposed. The triangulariza-
tions/polygonalizations of a topological surface have been traditionally used both in pure and
applied mathematics and been proved useful in history. Discretization of differential geometric
surface in geometric analysis by U. Pinkall and K. Polthier [3, 10], of integrable systems lead
by A. Bobenko et al. [1, 2, 4] are among those challenges. The present paper is based on the
discrete surface theory introduced in [5]. The notion of discrete surface to be harmonic and the
balancing condition are proposed there. The condition for discrete surface to be minimal under
the area variational formula is also given. It should be noted that isometry is a too rigid property
in discrete surface theory while those are important in classical surface theory. Surfaces with
harmonicity are much richer than minimal surfaces, area minimizing surfaces among isometric
surfaces in the Euclidean space, to be studied in the discrete case. We call discrete surfaces in
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the Euclidean space minimizing the energy functional, and satisfying the balancing condition as
a consequence discrete harmonic surfaces.

The convergence of a sequence of subdivided discrete surfaces of a given discrete surface is
studied in [6, 13]. Although we proved the energy monotonicity formula in the convergence,
the limit surface has singularities in general. We found there the balancing condition plays an
important role to control the regularity of the limit surface. As an application of the Weierstrass
representation formula is to establish a method to analyze the singularities for a good class of
discrete surfaces. We expect we should have a better control in the case of minimal surfaces or
harmonic surfaces which has a “Weierstrass representation formula” given by holomorphic data.

In order to establish a kind of Weierstrass representation formula for discrete harmonic sur-
faces, we need a notion of conformal structures of a discrete surface, and holomorphic quadratic
differentials with respect of the conformal structure. A notion of conformal structure for trian-
gularizations of a topological surface is introduced by W. Thurston [14] motivated in discrete
approximation of the Riemannian mapping between complex surfaces. He noticed a map be-
tween two surfaces preserving their circle packings can be used as a discrete conformal map
because they hold circles and contact angles. The notion develops discrete Riemann mapping
theorem [11] between complex surfaces and the discrete complex function theory (cf. [12]). On
the other hand, the notion of holomorphicity and holomorphic differential were introduced to
study discrete surfaces by U. Pinkall and W.Y. Lam in [9] and have been used for the study of
minimal surfaces by [7, 8].

By adapting those notions to discrete harmonic surfaces in our setting, we are successful to
construct a Weierstrass representation formula for discrete harmonic surfaces with the data of
their Gauss map and holomorphic quadratic differentials and construct a converging sequence
of discrete harmonic surfaces, which are obtained by iterating subdivision of a given discrete
harmonic surface.

Theorem (Weierstrass representation formula for a discrete harmonic surface, Theorem 6.2).
Given a topological planer trivalent graph M = (M,V,E), where V is the set of vertices, and E
is the set of edges. With respect to a complex coordinate z : M → C for a holomorphic func-
tion g on C and a holomorphic quadratic differential q on M associated with g, let us define
a map X : M → R3

X =

∫
Re dF,

with

dF (eab) =
iq(eab)

dg(eab)
(1− gagb, i(1 + gagb), ga + gb)

= −τ(eab)(1− gagb, i(1 + gagb), ga + gb), eab ∈ E, (1.1)

which connects the vertices va and vb in V . It defines a discrete harmonic surface in R3. The
above equation is called Weierstrass representation formula for a discrete harmonic surface.

As an application of the theorem, we have

Theorem (Theorem 7.1 and Corollary 7.2). A smoothly converging sequence of discrete har-
monic surfaces Xn : Mn → R3 with a given initial discrete harmonic surface X0 : M0 → R3 with
the holomorphic data g and q is constructed, where Mn are iterated subdivisions of M0 in C.
The limit is a classical minimal surface given by the classical Weierstrass representation with
the holomorphic data.

The limit surface is considered as a hidden continuous object in a given discrete surface. We
expect the method is useful to draw minimal surfaces in computer graphics. Actually, in the
last section, we show as an example a sequence of discrete harmonic surfaces which converges
to the Enneper surface, a famous classical minimal surface.
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2 Minimal surfaces in differential geometry

In geometric analysis, minimal surfaces have been studied intensively with variational methods.
A minimal surface is a solution of the Euler–Lagrange equation to the area functional. To be
more precise, for a given isometric immersion X : M → R3 of a smooth surface M with the unit
normal vector field N : M → S2, consider its smooth deformation

Xt = X + tN for t ∈ (−ε, ε).

Because the area variation formula is expressed as for A(t) = Area(Xt), we have the Steiner
formula

dA(t) =
(
1− 2tH + 4t2K +O

(
t3
))
dA

for a local variation Xt of a given surface X0 with H and K as its mean curvature and Gauss
curvature, a minimal surface is characterized to be a surface with the mean curvature H = 0.

It is known that a differential surface admits an isothermal coordinate (u, v) with which the
first fundamental from is expressed as

I = e2λ
(
du2 + dv2

)
.

With respect the complex coordinate z = u+ iv; the Laplacian is given as

∆ = e−2λ

(
∂2

∂u2
+

∂2

∂v2

)
.

The structure equations for a smooth surface X : M → R3 with N the unit normal vector field
and Q = ⟨Xzz, N⟩ are given

Theorem 2.1 (structure equations for a smooth surface).

Xzz =
1

4
e2λHN, Xzz = 2λzXz +QN, Nz = −2e−2λQXz −

1

2
HXz,

where H is the mean curvature of X. The integrability conditions are given for Q, H and λ

λzz = −e−2λQQ+
1

16
e2λH2 = 0, 4Qz = e2λHz.

When M is a minimal surface, the above equations are given

Xzz = 0, Xzz = 2λzXz +QN, Nz = −2e−2λQXz.

That indicates X is a vector valued harmonic function and Xz is a vector valued holomorphic
function satisfying

⟨Xz, Xz⟩ = 0.

Additionally, Qdzdz is a holomorphic quadratic differential, due to Xzz = 0.
The Weierstrass representation for a minimal surface is given as

Theorem 2.2 (Weierstarss representation formula for a minimal surface). With a holomor-
phic quadratic differential Q and a meromorphic function g, let us define a vector valued func-
tion X : M → R3

X = Re

∫
Q

gz
dz

(
1

2

(
1− g2

)
,
i

2

(
1 + g2

)
, g

)
∈ R3.

It is a minimal surface with the Gauss map

N =
1

1 + |g|2
(
g + g, i(g − g), |g|2 − 1

)
∈ S2.
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Moreover, the 1-parameter family

X(θ) = Re

∫
eiθ

Q

gz
dz

(
1

2

(
1− g2

)
,
i

2

(
1 + g2

)
, g

)
∈ R3

is proved to be a family of minimal surfaces and called an associated family of X0. The minimal
surface X(π/2) is called the conjugate minimal surface of X0.

3 Basic knowledge of discrete surfaces

Let us review some results on discrete surfaces in [5, 6, 13] that we used in the present paper.

Definition 3.1 (discrete surface [5]). Consider a trivalent graph M = (M,V,E) with the
set V = V (M) of vertices and the set E = E(M) of oriented edges of M , and a non-degenerate
vector field N : M → S2. Namely, N takes different values for vertices next to each other. Its
realization X : M → R3 is called a discrete surface in R3 with N as its Gauss map, when it has
a non-degenerate corresponding tangent vector space of each vertex determined by the three
nearest vertices of the vertex whose unit normal vector is equals to N .

Because a discrete surface does not have a Riemannian metric, we define the first fundamental
form and the second fundamental form at each vertex is the weighted average over those of
triangles surrounding the vertex. To be more precise, for each vertex v ∈ V , let us denote the
set Ev of edges emerging at v

Ev = {e ∈ E | o(e) = v},

and the adjacency vertices of v, v1, v2, and v3. Then in R3

X1 = X(v1), X2 = X(v2), X3 = X(v3)

are the adjacency vertices of X0 = X(v0), and the unit normal vectors at X0, X1, X2, and X3

are denoted by N0, N1, N2 and N3, respectively.

Consider the triangle △0,a,b formed by the three vertices X0, Xa, and Xb, for a, b ∈ {1, 2, 3}
with a ̸= b, and define its first and second fundamental formulas

Iab =

(
⟨Xa −X0, Xa −X0⟩ ⟨Xa −X0, Xb −X0⟩
⟨Xb −X0, Xa −X0⟩ ⟨Xb −X0, Xb −X0⟩

)
,

IIab =

(
⟨Xa −X0, Na −N0⟩ ⟨Xa −X0, Nb −N0⟩
⟨Xb −X0, Na −N0⟩ ⟨Xb −X0, Nb −N0⟩

)
,

and Hab and Kab by the trace of the matrix I−1
ab IIab as are in the classical case.

Now we define the mean curvature H(v0) and the Gauss curvature K(v0) at v0 by their
weighted average by the areas of the triangles, i.e.,

H(v0) :=
1

A(v0)

∑
a,b

√
det IabHab, K(v0) :=

1

A(v0)

∑
a,b

√
det IabKab,

where A(v0) is the sum of the area of the three triangles. See [5] for the details.

It should be noted that isometry of triangularizations is rigid, and [9] pointed out isometry
is too strong requirement to be satisfied to develop rich discrete surface theory. Actually, in our
setting as well, we have the following.
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Theorem 3.2 (conditions for discrete minimal surfaces, [5]). The conditions for being a minimal
surface is

⟨Xa −X0, Xb −X0⟩ = ⟨Xb −X0, Xc −X0⟩ = ⟨Xc −X0, Xa −X0⟩,

where a, b, c = 1, 2, 3.

That indicates a local structure of minimal surfaces at each vertex is the identical, i.e.,
trivalent with equal length and the same angle 2π/3 between two of them. The class is rather
too rigid.

On the other hand, harmonic realizations of a discrete surface seem to be richer and useful
to develop geometry.

Definition 3.3 (balancing condition and harmonic surface). When X : M → R3 satisfies the
balancing conditions at each vertex;∑

e∈Ev

dX(e) = (X1 −X0) + (X2 −X0) + (X3 −X0) = 0, v ∈ E, (3.1)

where Xa = X(va) for a = 1, 2, 3 are the adjacency vertices, we call X a harmonic realization
and X(M) a harmonic surface.

We have proved a harmonic surface achieves minimizing of the energy function

E =
1

2

∑
u∼v

∥Xu −Xv∥2

under local deformation [5].

4 Construction of a sequence of iterated subdivisions
of a given discrete surface

One of the major interests of the discrete surface theory is to discover a continuum object hidden
in a discrete surface and study the relation between them. A candidate of the continuum object
is a converging limit, if there exists, of a sequence of discrete surfaces obtained by iterated
subdivisions of a discrete surface.

In [6, 13], for a given discrete surface, its subdivision is constructed. Let us quickly review
that.

Triangulations of a smooth surface has been useful in many aspect of mathematical study
and it applications to problems in the real world. In that case, a triangle lies on a plane or
a surface, and is subdivided by using the metric on it. In our case, a discrete surface does not
have a face which lies on a plane or a surface. So the subdivision is not trivial. We take two
steps of the subdivisions process. Namely, first we construct a topological subdivision and then
realize it in R3 to have a subdivision of a discrete surface in R3.

A planar trivalent graph has a triangulation of a plane as its dual graph in the plane. The
triangulation is subdivided in the canonical way, and then take its dual to have a trivalent
graph. This is called the Goldberg–Coxeter subdivision. We take it as a topological subdivision,
and have a sequence of a topological discrete surface Mn obtained by the iteration of this process
for a given discrete surface M0.

Now we take the second step to construct a sequence of discrete surfaces in R3. For a given
discrete surface Xn in R3, we take a part of it to have a planar graph Mn in the plane, and apply
the Goldberg–Coxeter subdivision to have a new planar trivalent graph Mn+1. We understand
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a) b) c)

Figure 1. Goldberg–Coxeter subdivision. (a) A part of trivalent graph consisting hexagons and an

octagon. (b) Take an n-gon inside each n-gon and then connect between the new vertex and original

vertex. (c) Remove original edges, we obtain the subdivision of (a).

the process to be topological. Next we realize Mn+1 in R3. When Xn : Mn → R3 is given, we
consider it an a boundary condition of the equations whose solution should satisfy the balancing
condition and to be Xn+1.

When the convergence of a sequence of iteratively subdivided discrete surfaces is discussed,
it is found that a naive subdivision obtained by solving the Dirichlet problem with the original
discrete surface as its the boundary condition does not work, and its modification to make the
subdivision to be a discrete harmonic, i.e., that satisfies the balancing condition, is proved to
be appropriate in the discussion of convergence [13].

We have the following theorem for the convergence.

Theorem 4.1 (Tao [13], Kotani–Naito–Tao [6]). Let {Xi} be a sequence of discrete harmonic
surfaced iteratively constructed from X0 = X as above.

(1) The sequence {Xn} forms a Cauchy sequence in the Hausdorff topology and satisfies the
energy monotonicity formula.

(2) The limit of the Cauchy sequence M∞ =
⋃
Mi is divided into three kinds of sets:

M∞ = MF ∪MV ∪MS .

The first one MF is the set of accumulating points associated with each face in Mi. The
second one is the set of all vertices, replaced as in the above step, i.e., MV =

⋃
iMi. The

third one MS is the set of the rest of the accumulating points. We know little about MS
in general, however, we prove an un-branched discrete surface do not have such MS .

The regularity of the limit set is not trivial at all, although we have the energy monotonicity
formula. That gives a motivation of the present paper. When we have a representation formula
with holomorphic data, we can expect to develop finer analysis of singularities.

5 Discrete holomorphic quadratic differentials

Let M = (M,V,E) be a discrete surface with the set V of vertices and the set E of oriented
edges of M . By definition, M is a trivalent graph. It has a non-degenerate unit normal vector
field N : V → S2, namely, the normal vector Nv at v are different from the normal vector at any
of its nearest neighboring vertices.

Let us introduce a complex coordinate system. Namely, for each vertex v in V , assign a con-
nected plane subgraph Uv of M , and a realization z : Uv → U from Uv to a domain U ⊂ C.
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The notion of the holomorphic quadratic differentials is introduced in [9] for a triangulation
of a topological surface. We imitate theirs to define a holomorphic quadratic differential for
a discrete surface in our setting.

Let q : E → C be a discrete function with a discrete 1-form τ : E → C, i.e., τ(eab) = −τ(eba)
for each oriented edge eab which connects a vertex va to a vertex vb and eba its reverse edge, is
uniquely defined by

q(eab) = ⟨τ(eab), idz(eab)⟩, 0 = ⟨τ(eab), dz(eab)⟩,

where dz(eab) = z(vb)− z(va) ∈ C, and ⟨ , ⟩ is a complex innerproduct in C.
From the definition, we see τ(eab) = −τ(eba). Actually τ is explicitly given as

q(e) = iτ(e)dz(e).

Definition 5.1 (discrete holomorphic quadric differential). When a discrete function q which
satisfies∑

e∈Ev

q(e) = 0 for all v ∈ V

with the discrete 1-form τ defined as above satisfies∑
e∈Ev

τ(e) = 0 for all v ∈ V,

it is called a holomorphic quadratic differential.

It is easily checked that the notion is preserved under the Möbius transformation in the
coordinate z.

Remark 5.2. The holomorphic quadratic differential q can be written by using a harmonic
function with respect to the cotangent Laplacian ∆cot (cf. [10]). More precisely, for a func-
tion u : V → R, define a C-valued function λabc for every triple (a, b, c) such that

⟨λijk,dz(eab)⟩ = ub − ua, where (a, b) = (i, j), (j, k), (k, i),

and take τ such that for a triple Tleft and Tright of vertices which make a triangle left to the
edge e and a triangle right to the edge e,

τ(e) = λTleft
− λTright

.

Then the q defined from the τ satisfies∑
e∈Ev

q(e) = ∆cotu.

The q is holomorphic if and only if u is harmonic with respect to ∆cot.

6 Weierstrass representation formula
for a discrete harmonic surface

Given a topological trivalent graph

M = (V,E) ⊂ C
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with a complex coordinate z of U ⊂ M ⊂ C. Now we are ready to give a Weierstrass represen-
tation with a pair of a holomorphic function g in z and a holomorphic quadratic differential q
on M associated with g.

A holomorphic quadratic differential associated with g is an extended notion, i.e., a function
in the form of

q(e) = iτ(e)dg(e)

with a discrete 1-form τ satisfying∑
e∈Ev

q(e) = 0,
∑
e∈Ev

τ(e) = 0 for all v ∈ V.

This notion is preserved when g is replaced by its linear fractional transformation.
Let us define F : V → C3 by

dF (eab) =
iq(eab)

dg(eab)
(1− gagb, i(1 + gagb), ga + gb)

= −τ(eab)(1− gagb, i(1 + gagb), ga + gb), eab ∈ E,

which connect the vertices va and vb in V . Then we have the following lemma.

Lemma 6.1.

dF (eab)

q(eab)
= cab (Na ×Nb + i(Nb −Na)) , (6.1)

where

cab =

(
1 + |ga|2

)(
1 + |gb|2

)
|gb − ga|2

,

and for

N =
1

1 + |g|2
(
g + g, i(g − g), |g|2 − 1

)
. (6.2)

Proof. The statement is obtained by simple calculations. The first term of the right-hand side
of (6.1) Na ×Nb is parallel to the vector with the three elements. The first one

i
[
(ga − ga)

(
|gb|2 − 1

)
− (gb − gb)

(
|ga|2 − 1

)
= i

[
(gagb − 1)(gb − ga)− (gagb − 1)(gb − ga),

the second one follows

(gb + gb)
(
|ga|2 − 1

)
− (ga + ga)

(
|gb|2 − 1

)]
= −(gagb + 1)(gb − ga)− (gagb + 1)(gb − ga),

and the third one follows

i[(ga + ga)((gb − gb)− (gb + gb)(ga − ga)] = i[(ga + gb)(gb − ga)]− (ga + gb)(gb − ga)].

Thus we obtain

Na ×Nb =
−i(

1 + |ga|2
)(
1 + |gb|2

) [(gb − ga)(1− gagb,−i(1 + gagb), ga + g)

−(gb − ga)(1− gagb, i(1 + gagb), ga + gb)]
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=
1

(1 + |ga|2)(1 + |gb|2)

[
(gb − ga)

dF (eab)dg(eab)

q
+ (gb − ga)

dF (eab)dg(eab)

q

]
= c−1

ab

[
dF/q + dF/q

]
(eab),

where

cab =

(
1 + |ga|2

)(
1 + |gb|2

)
|gb − ga|2

.

Similarly, we compute Nb −Na with three elements. The first one is[
(gb + gb)

(
1 + |ga|2

)
− (ga + ga)

(
1 + |gb|2

)](
1 + |ga|2

)(
1 + |gb|2

) =
[(1− gagb)(gb − ga) + (1− gagb)(gb − ga)](

1 + |ga|2
)(
1 + |gb|2

) ,

the second one follows

i
[
(gb − gb)

(
1 + |ga|2

)
− (ga − ga)

(
1 + |gb|2

)](
1 + |ga|2

)(
1 + |gb|2

)
=

i[−(1 + gagb)(gb − ga) + (1 + gagb)(gb − ga)](
1 + |ga|2

)(
1 + |gb|2

) ,

the third one follows[(
|gb|2 − 1

)(
|ga|2 + 1

)
−
(
|ga|2 − 1

)(
|gb|2 + 1

)](
1 + |ga|2

)(
1 + |gb|2

) =
[(ga + gb)(gb − ga) + (ga + gb)(gb − ga)](

1 + |ga|2
)(
1 + |gb|2

) .

Namely, by putting

cab(Nb −Na) := i
(
dF/q − dF/q

)
(eab),

we show

cab[Na ×Nb + i(Nb −Na)] =
(
F/q + F/q

)
−
(
dF/q − dF/q

)
(eab) = 2dF (eab)/q(eab). ■

Now we check the balancing condition (3.1). Let v1, v2, and v3 be the neighboring vertices
of a vertex v0, and e0a be the oriented edge connecting v0 to va with a = 1, 2, 3.

Note

dF (e0a) = −τ(e0a)(1− g0ga, i(1 + g0ga), g0 + ga)

= −τ(e0a)
(
1− g20 − g0(ga − g0), i

(
1 + g20 + g0(ga − g0)

)
, 2g0 + ga − g0

)
= −τ(e0a)

(
1− g20, i(1 + g20), 2g0

)
+ iτ(e0a)(ga − g0)g0(i,−1,−i)

= −τ(e0a)
(
1 + |g0|2

)
N + q(e0a)g0(i,−1,−i).

The balancing condition∑
a=1,2,3

Re(dF (eoa)) = 0

follows from∑
a=1,2,3

q(e0a) = 0,
∑

a=1,2,3

τ(e0a) = 0.
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Theorem 6.2 (Weierstrass representation formula for a discrete harmonic surface). Given
a trivalent graph M = (M,V,E) and its complex coordinate z : U ⊂ M → C, with a planar
part U of M . For simplicity, we consider M ⊂ C. For a holomorphic function g in z on C and
a holomorphic quadratic differential q on a M associate with g, let us define a map X : M → R3

X =

∫
RedF,

with

dF (eab) =
iq(eab)

dg(eab)
(1− gagb, i(1 + gagb), ga + gb)

= −τ(eab)(1− gagb, i(1 + gagb), ga + gb), eab ∈ E, (6.3)

which connect the vertices va and vb in V . It defines a discrete harmonic surface in R3. The
above equation is called Weierstrass representation formula for a discrete harmonic surface.

It should be noted the vector field N defined by (6.2) is not a normal vector field unless q is
real valued. We call it pseudo normal to the discrete harmonic surface. The constructed surfaces
are not always closed globally. It would be interesting to study monodromies of the surfaces.
However, we may construct discrete Enneper-like harmonic surfaces (see Section 8).

7 Convergence of discrete harmonic surfaces
to a minimal surface

In this section, we construct a sequence of discrete harmonic surfaces expressed with the Weier-
strass representation formula (6.3) with two holomorphic data g and q, and show its smooth
convergence to a classical minimal surface with its Weierstrass date g and q. Key to the proof
is to construct such a sequence with the “common” g and q on C.

To illustrate our idea, let us consider a sequence of discrete harmonic surfacesXλn : Mλn → R3

via the Weierstrass representation formula with common holomorphic function g and holomor-
phic quadratic differential q associated with g, where Mλn is a regular hexagonal lattice on C
with edge length λn > 0 obtained by homothety with multiplier λn of the initial one. Because
the Weierstrass representation formula is a discrete approximation of the classical one, it is
straightforward to show the following.

Theorem 7.1. Let us denote the discrete harmonic surface Xλn constructed as above by Xn.
The sequence {Xn} converges to a (classical) closed minimal surface X∞ : M∞ → R3 when
λn → 0, and the mean curvature and the Gauss curvature of Xn smoothly converge to that of
the limit surface.

Proof. It is easy to see the sequence is a Cauchy sequence in the Hausdorff topology and have
a minimal surface X∞ : M∞ → R3 as its limit which is defined by the classical Weierstrass
representation formula with g and q.

Due to

⟨Na,dF (eab)⟩ = τ(eab)(za − zb) (for two adjacency vertices va and vb),

the pseudo Gauss map N converges to the Gauss map (unit normal vector field) of a limit
minimal surface because the distance between two adjacency vertices in C goes to zero as n
goes to the infinity. Now we recall the definitions of the first fundamental form and the second
fundamental form for a discrete surface Xn and a unit vector field N (not necessarily the normal
vector) are difference analog of the classical one, they converge to that of X∞ with the unit
normal vector N , and therefore the mean curvature and the Gauss curvature converges to that
of the mean curvature and the Gauss curvature of the limit surface. ■
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Now let us construct a sequence of trivalent discrete harmonic surfaces Xn : Mn → R3

with M0 = M given by the Weierstrass representation formula with common g and q, and its
convergence. For the purpose, we have M = (M,V,E) a planar trivalent graph with a complex
coordinate z ∈ C. For simplicity, we consider M embedded in C.

For a given discrete harmonic surface X : M → R3, we have a sequence of topological discrete
surfaces Mn by the Goldberg–Coxeter subdivisions in C. In this section, we take twice of this
process to construct Mn from Mn+1 so that it looks like a homothety of multiplier 1/4 in each
subdivision step and all faces (polygonals) in Mn become the homothetic polygons multiplied
with 1/4 in Mn+1.

Given a holomorphic function g on C, a holomorphic quadratic differential qn of each Mn is
uniquely determined by g up to scalar multiplicity. Because the Goldberg–Coxeter subdivisions
are homothety and Mn converges to C in the Hausdorff topology (i.e.,

⋃
Mn is dense in C), we

can construct qn consistently and a differential form q on C so that qn is a restriction of q. The
classical holomorphicity of q follows from the discrete holomorphicity.

When we take the Goldberg–Coxeter subdivision, then λn = 4−nλ and then by similar
argument in Theorem 7.1, we have the statement.

Corollary 7.2. For a given discrete harmonic surface with holomorphic data g and q, we con-
struct a sequence of discrete harmonic surfaces which smoothly converges to a classical minimal
surface with the holomorphic data g and q.

8 Trivalent Enneper surface as numerical examples

Given a regular hexagonal lattice in C = (C, z), the Weierstrass representation with a pair of
a holomorphic function g on C and a holomorphic quadratic differential q defined on E associate
with g is given by Theorem 6.2.

In this section, as an application, we study the convergence of the sequence of discrete sur-
faces Xn which are obtained by subdivision of a given discrete surface X0 with the Weierstrass
data q and g.

Lemma 8.1. Let X : (M,V,E) → R3 be a trivalent graph in R3, The holomorphic quadratic
form q with respect to g is determined uniquely up scalar multiple.

Proof. Take a vertex v0 ∈ V and its nearest neighboring vertices v1, v2, and v3. Their im-
age in R3 are denoted by x0 = X(v0) and xa = X(va) with a = 1, 2, 3. Let qa = q(e0a),
and ca = g(xa)− g(x0). Then the conditions for q to be a holomorphic quadratic differentials is
given as two linear equations:

q1 + q2 + q3 = 0,
q1
c1

+
q2
c2

+
q3
c3

= 0.

The solution to them can be expressed

q1 = νc1(c3 − c2), q2 = νc2(c1 − c3), q3 = νc3(c2 − c1),

with an arbitrary scalar ν ∈ C. ■

Now we compute trivalent Enneper surface and their convergence. Let X = (V,E) be a reg-
ular hexagonal lattice whose edge length λ > 0 in BR(0) ⊂ C. and a holomorphic function g be
g(z) = z. Then by Lemma 8.1, we may calculate the holomorphic quadratic differential q as

q1 = ν(g(z1)− g(z))(g(z2)− g(z3)), q2 = ν(g(z2)− g(z))(g(z3)− g(z1)),

q3 = ν(g(z3)− g(z))(g(z1)− g(z2)), (8.1)
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Figure 2.

for an arbitrary scalar ν ∈ C. By using the Weierstrass formula (1.1) in Theorem 6.2, we obtain
the local formula

F (za) = F (z) +
iqa

g(za)− g(z)

 1− g(za)g(z)
i(1 + g(za)g(z))
g(za) + g(z)

 ∈ C3. (8.2)

Taking F (z0) = w0 ∈ C3 for a fixed vertex z0 ∈ V ⊂ C and a fixed w0 ∈ C3. we may
calculate F (z) using (8.2) along a path from z0 to z ∈ V ⊂ C. By defining X(z) = Re(F (z)),
we call the surface X a trivalent Enneper surface (see Figure 5).

For the well-definedness of X, we may show that the formula (8.2) is closed along any closed
path in the hexagonal lattice.

Lemma 8.2. For any z1, . . . , z5, and z6 be a closed path in a regular hexagonal lattice in C, the
formula (8.2) is closed along the path.

Proof. Let coordinates of z1, . . . , z6 and z7, . . . , z12 be

zj = λe(j−1)πi/3 + z0, j = 1, . . . , 6, zk = 2λe(k−7)πi/3 + z0, k = 7, . . . , 12,

see Figure 2. By (8.1) and (8.2), we obtain

dF (ej,j+1) = F (zj+1)− F (zj) = i(zj+6 − zj−1)

 1− zjzj+1,
i(1 + zjzj+1)
zj + zj+1

 , (8.3)

for j = 1, . . . , 6, (in case of j = 1, set j − 1 to be 6). Substituting explicit complex coordinates
into (8.3), we obtain

dF (ej,j+1) = iλ
(
2e(j−1)πi/3 − e(j−2)πi/3

) 1− λ2
(
e(j−1)πi/3 + z0

)(
ejπi/3 + z0

)
i
(
1 + λ2(e(j−1)πi/3 + z0

)(
ejπi/3 + z0

))
λ
(
e(j−1)πi/3 + ejπi/3 + 2z0

)


=
√
3e(j+1)πi/3


(
1− λ2

(
z0 + eiπ(j−1)/3

) (
z0 + ejπi/3

))
i
(
1 + λ2

(
z0 + eiπ(j−1)/3

) (
z0 + ejπi/3

))
λ
(
2z0 −

√
3e−πi/6ejπi/3

)
 ,

and

dF (z1,2) + dF (z2,3) + dF (z3,4) + dF (z4,5) + dF (z5,6) + dF (z6,1) = 0 ∈ C3. ■
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M0 M1 M2

Figure 3. Regular hexagonal lattices Mk to construct trivalent Enneper surfaces Xk. Gray disks

express B√
3(0) ⊂ C. Note that classical Enneper surface from BR(0) have exactly self-intersections

if R ≥
√
3.

M0 and M1 M1 and M2

Figure 4. Left: Goldberg–Coxeter construction fromM0 (black) toM1 (blue). Right: Goldberg–Coxeter

construction from M1 (black) to M2 (blue).

By taking Goldberg–Coxeter subdivision of the regular hexagonal lattice M , we obtain a reg-
ular hexagonal lattice M1. Constructing the same manner from M1, we may obtain a trivalent
Enneper surface X1. Continuing this procedure, we obtain a sequence {Xj}j=0 of trivalent
Enneper surfaces (see Figure 5).

We compute that the sequence {Xj} converges a classical Enneper surfaces Xclassical, Gauss
maps and mean curvatures of {Xj} converge the Gauss map and the mean curvatures ofXclassical,
respectively (see Figures 3 and 4). In fact, the Enneper surface Xclassical appeared in the limit is

X =
√
3ν

(
u3/3− u2v + u

)
, Y =

√
3ν

(
− v3/3 + v2u− v

)
, Z =

√
3ν

(
u2 − v2

)
,

where ν is the scalar used in (8.1). We show numerical results of convergence

Xk(zj)−Xclassical(zj), Nk(zj)−N(zj), Hk(zj)−H(zj)

in Figure 6.
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Figure 5. Upper row: Trivalent Enneper surface Xk (with ν = 1 in holomorphic quadratic differential

on B√
3(0) ⊂ C), where Xk is the (k− 1)-times Goldberg–Coxeter subdivision of X1. Vertex coloring are

proportional to mean curvature (the larger the absolute value, the darker the color). Lower row: Their

pseudo normal vector (pseudo Gauss map).
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Figure 6. Blue: maximum values of difference of mean curvatures between Xk and Xclassical. Red:

maximum values of norm of difference between the Gauss map of Xk and the Gauss map of Xclassical.

Magenta: maximum difference of Xk and Xclassical.
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