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Abstract. The construction elements of the factorised form of the Yang–Baxter R operator
acting on generic representations of q-deformed s`(n + 1) are studied. We rely on the
iterative construction of such representations by the restricted class of Jordan–Schwinger
representations. The latter are formulated explicitly. On this basis the parameter exchange
and intertwining operators are derived.
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1 Introduction

Generic representations of s`q(n+1) can be iteratively constructed from Jordan–Schwinger ones
of s`q(m+1), m = 1, . . . , n, [1] as an application of the method of induced representations [2, 3].
This iterative relation is conveniently formulated in terms of Lax matrices [4], the Yang–Baxter
solutions intertwining a generic with the fundamental representation. The generic representation
of g`(n + 1) may be labelled by `1, . . . , `n+1, the eigenvalues of the Cartan subalgebra elements
in action on the lowest weight states.

∑
`i refers to the U(1) factor. The Lax matrix will be

denoted by L(u1, . . . , un+1), where the spectral parameter u is combined with the representation
parameters to ui = u + `i.

The Yang–Baxter operator R acting on the tensor product of two generic representations is
defined by the Yang–Baxter relation with two Lax matrices,

RL(u1, . . . , un+1)L(v1, . . . , vn+1) = L(v1, . . . , vn+1)L(u1, . . . , un+1)R. (1.1)

The solution of the Yang–Baxter relation has to be treated in the framework of the quantum
group theory, the emergence of which was initiated by solving problems of quantum integrable
systems. The q-deformed algebra and co-algebra relations are encoded in the particular Yang–
Baxter relation of the fundamental R matrix with Lax matrices (for a comprehensive review see
e.g. [5]). In [6] the universal R operator has been constructed, covering the case s`q(n + 1) in
particular, in algebraic terms based on the combinatorial structure of root systems. In [7, 8]
the solutions of Yang–Baxter relation have been constructed and studied with restriction to
cyclic representations of s`q(n + 1) and with the algebra relations modified for application to
the generalised chiral Potts model. In [9] a method for constructing the R operator in spectral
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decomposition has been developed applicable to tensor products of affinisable representations
of (super) algebras.

The generic Yang–Baxter operator (1.1) can be constructed as a product of operators per-
muting pairs of parameters. As elementary factor operators one may use the ones permuting
adjacent parameters of one Lax matrix, e.g. Wi(ui, ui+1) permuting ui with ui+1, and the opera-
tor F permuting un+1 with v1. The former are the intertwiners transforming between equivalent
representations with representation labels appearing in different order. The latter intertwine
between equivalent tensor product representations.

In studies of the chiral Potts model [10, 11, 12, 13] concerning cyclic representations of s`q(2)
the R operator is represented as a product of four Boltzmann weights which are identified as
intertwiners of equivalent cyclic representations. In the extension to the generalised chiral Potts
model involving cyclic representations of s`q(n + 1) this factorisation is used [7, 8, 14, 15].

Motivated by applications of integrable chains to problems of gauge field theory [16, 17],
where infinite-dimensional representations appear, we consider realisations of representation
generators in terms of Heisenberg canonical pairs. In the s`(2) case one pair, x, ∂, [∂, x] = 1
is sufficient and representations are spanned by monomials xm with 1 representing the lowest
weight vector. The factorisation of the R operator can be observed also in this formulation. For
example, its integral kernel appears factorised into four symmetric two-point functions being the
kernels of intertwining operators [18]. The construction of the R operator with s`(2) symmetry
in terms of canonical pairs and by factors permuting representation parameters in the product
of Lax matrices has been proposed in [19], applied to the study of Baxter operators in [20] and
worked out for the rational, trigonometric and elliptic cases in [21].

In the extension of this approach to higher rank the class of Jordan–Schwinger representations
plays the key role. This notion stands for the realisation of the s`(n + 1) algebra generators in
terms of n+1 canonical pairs described below and representation modules spanned by monomials
of xi with 1 representing the lowest weight vector. Generic representations can be constructed
iteratively based on the ones of Jordan–Schwinger type. We consider the trigonometric case with
generic values of the deformation parameter q, excluding roots of 1. Then these modules do not
involve cyclic representations and appear just as deformations of the classical representation
modules [2].

A treatment of the rational (q = 1) case is given in [22]; in the present paper the part of the
results concerning the intertwining and exchange operators is extended to the quantum case.
The case s`q(3) has been studied in [23] relying on direct calculations instead of the detailed
Lax matrix factorisation considered here.

In this paper we obtain the permutation and intertwining operators being the construc-
tion elements for Yang–Baxter R operators by the factorisation outlined above. The iterative
construction of the generic Lax matrix from Jordan–Schwinger ones helps to find the intertwi-
ners Wi, because the calculation reduces to the analysis of the lower rank g`(i + 1) case. Also
the parameter permutation operator F can be obtained by solving the reduced problem, where
the Lax matrices are substituted by the Jordan–Schwinger ones in two forms. Indeed one can do
the iterative construction in one way such that the Jordan–Schwinger Lax matrix involving v1

appears as the left-most factor or in the other way such that un+1 appears as the right-most
factor. Then the permutation of un+1 with v1 is determined by these Jordan–Schwinger Lax
matrices only.

In the next section we formulate the Jordan–Schwinger representations [24, 25] of s`q(n + 1)
and the corresponding Lax matrix in several versions. In Section 3 we derive factorised forms of
the Jordan–Schwinger Lax matrix. The dependence on the parameters u+ = u + 2`, u− = u− 1
appears separated, one enters by a left matrix factor and the other by a right one. Therefore the
factorised forms of the Lax matrix are useful for the simplification of the relation defining the
permutation operator F . The defining relation for F and its solution are discussed in detail in



Jordan–Schwinger Representations and Factorised Yang–Baxter Operators 3

Section 4. The defining relations can be represented as the discrete and deformed analogon of
a wave equation for a chain of n + 1 sites. The solution F is analogous to a standing wave, the
multiplicative superposition of a forward and a backward travelling wave expressed in terms of
the q-exponential. Further, in Section 5, the intertwining operators Wi are obtained. We find
first operators Di changing the Lax matrix with `i, `i+1 to the one with `i + 1, `i+1 − 1 up to
some remainders, and this leads to Wi as a power of Di.

2 Jordan–Schwinger representations

With n + 1 Heisenberg conjugated pairs we can construct operators generating the q-deformed
gl(n + 1) algebra. These generators induce by lowest weight construction representations of
the restricted Jordan–Schwinger type, where a constant function represents the vector of lowest
weight. We start at the definitions of the operators

EJ
ij =

xi

xj
[Nj ], E−J

ij = −xj

xi
[Nj ], ETJ

ij = −[Ni]
xj

xi
, E−TJ

ij = [Ni]
xi

xj
,

for i 6= j, i, j = 1, . . . , n+1. Ni = xi∂i acts as infinitesimal dilatation operator on the coordinate
operator xi. The square bracket denotes the q-number of the entry, [N ] = qN−q−N

q−q−1 .
These definitions result in 4 versions (distinguished by the label J , −J , TJ , −TJ) of the

Jordan–Schwinger representation of g`q(n + 1). The operators with superscripts −J , −TS are
related to the corresponding ones with J , TJ by inversion of coordinates xi → x−1

i with the
corresponding transformation of the derivative operators. The operators with superscript TJ ,
−TJ are related to the corresponding ones J , −J by transposition defined like result of partial
integration, xT

i = xi, NT
i = −Ni − 1, and a shift of Ni proportional to the identity operator,

Ni + 1 → Ni.
The commutation relation between the operators of the same superscript are close to the

g`q(n + 1) algebra relations, [EJ
ij , E

J
jk]q±1 = q∓NjEJ

ik for i 6= k and [EJ
ij , E

J
ji]1 = [Ni −Nj ]. Here

we use an appropriate modification of the commutator notation defined as [A,B]q = AB−qBA.
The relations for operators with superscript −TJ are the same and the ones for the operators
with the superscript TJ or −J are obtained by substituting the factor on r.h.s. of the first
relation as q∓Nj → q±Nj and supplementing the r.h.s. of the second relation by a minus sign.
These operators can be related to the Chevalley basis of the slq(n + 1) algebra as

eC
i = EC

i,i+1, fC
i = EC

i+1,i, 2hC
i = (−1)|C|[Ni −Ni+1], i = 1, . . . , n.

C stands for J , −J , TJ , −TJ and in the last relation the sign is dependent on the superscript
as (−1)|C| where |C| = 0 for C = J,−TJ and |C| = 1 for C = −J, TJ . The algebra relations
including Serre’s relations can be checked. Alternatively one can extend the construction to the
Cartan–Weyl generators by defining them by q-commutators iteratively,

Ei,i+1 = ei, Ei+1,i = fi (2.1)
Eij = [Ei,j−1, Ej−1,j ]q, i + 1 < j, Eij = [Ei,i−1, Ei−1,j ]q−1 , i > j + 1.

In the cases X = J,−JT this leads to

EJS
ij = q−(Ni+1+···+Nj−1)EJ

ij , i < j,

EJS
ij = q(Ni−1+···+Nj+1)EJ

ij , i > j, i, j = 1, . . . , n + 1.

The same relations apply to the case −JT . The resulting generators are distinguished by adding
to the superscript the letter S. The relation for the cases JT , −J are obtained by modifying
the factors on r.h.s. by changing the signs in the exponents of q. We define also

EC
ii = (−1)|C|Ni.



4 D. Karakhanyan and R. Kirschner

We study the Lax matrix in Jimbo’s form [26] where the matrix elements are related to the
generators as

Lij(u) = q−(u− 1
2
)− 1

2
(Eii+Ejj)Ej,i, i > j,

Lij(u) = q+(u− 1
2
)+ 1

2
(Eii+Ejj)Ej,i, i < j, Lii(u) = [u + Eii].

Substituting the Cartan–Weyl generators constructed in four versions CS = JS, −JS, JTS,
−JTS we obtain

LCS
ij (u) = q(u− 1

2
)(−1)|C|Nij)EC

j,i, i < j, (2.2)

LCS
ij (u) = q−(u− 1

2
)(−1)|C|Nji)EC

j,i, i > j, LCS
ii (u) = [u + (−1)|C|Ni]. (2.3)

We use the notation Nij defined as

Nij = 1
2Ni + Ni+1 + · · ·+ Nj−1 + 1

2Nj ,

where the addition on the indices is evaluated mod (n + 1). We shall use also

Nij + Nji =
n+1∑

1

Ns = 2ˆ̀, 1
2(Nij −Nji) = N ′

i,j .

These versions of Jordan–Schwinger Lax matrices allow factorised forms where the coordinates
and the dilatation operators are separated. Different forms give preference to some index value
i = 1, . . . , n + 1. In the case JS we introduce the set of quantum coordinates

Xi = q−Ni,n+1xi, i = 1, . . . , n + 1, Nn+1,n+1 = 0. (2.4)

Then we obtain

LJS(u) = X̂−1L̃JS(u)X̂, X̂ = diag (X1, . . . , Xn+1). (2.5)

The central factor involves the dilatation operators Ni only

L̃JS(u) =


[u− 1 + N1] qu−1[N1] . . . qu−1[N1] qu−1[N1]

q1−u[N2] [u− 1 + N2] . . . qu−1[N2] qu−1[N2]
. . . . . . . . . . . . . . .

q1−u[Nn+1] q1−u[Nn+1] . . . q1−u[Nn+1] [u− 1 + Nn+1]

 . (2.6)

In the case −JS we have with the same definition (2.4)

L−JS(u) = X̂L̃−JS(u)X̂−1, (2.7)

where L̃−JS(u) is obtained from L̃JS(u) by substituting Ni by −Ni.
In the cases TJS and −TJS we introduce the set of quantum coordinates

XT
i = xiq

−Ni,1 , i = 1, . . . , n + 1.

These coordinates can be factorised in terms of diagonal matrices similar to (2.5), (2.7),

LTJS(u) = X̂T L̃TJS(u)X̂−1
T , L−TJS(u) = X̂−1

T L̃−TJS(u)X̂T ,

X̂T = diag (XT
1 , . . . , XT

n+1).

The central factor is in the case −TJS

L̃−TJS(u) =


[u− 1 + N1] qu−1[N2] . . . qu−1[Nn] qu−1[Nn+1]

q1−u[N1] [u− 1 + N2] . . . qu−1[Nn] qu−1[Nn+1]
. . . . . . . . . . . . . . .

q1−u[N1] q1−u[N2] . . . q1−u[Nn] [u− 1 + Nn+1]


and the corresponding matrix for the case TJS is obtained from the latter by changing the sign
in front of all Ni.
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3 Factorisation of Lax matrices

The simple form of the Jordan–Schwinger representation Lax matrix (2.2) leads to factorised
expressions. Let us formulate and proof the details in the version JS. We introduce the following
notations

Λ = q2N̂ ′
∗,n+1 , N̂ ′

∗,n+1 = diag (N ′
1,n+1, . . . , N

′
n,n+1,−ˆ̀),

B̂ = qN̂Λ, N̂ = diag (N1, . . . , Nn+1),
M1,−1(A) = m̂1,−1 −Aσ−.

We use the standard matrices σ− = ên+1,1, m̂1 and m̂1,−1,

m̂1 =


1 0 . . . 0 0
0 1 . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . 1 0
1 1 . . . 1 1

 , m̂1,−1 =


1 −1 . . . 0 0
0 1 . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . 1 −1
0 0 . . . 0 1

 (3.1)

and its inverse m̂−1
1,−1 with all upper-triangular elements including the diagonal equal to 1 and

the other equal to 0.

Proposition 1. The Jordan–Schwinger form of the Jordan–Schwinger Lax matrix (2.2) can be
written as

LJS(u) = X̂−1Λ−1M1,−1

(
q−2(u−1+2ˆ̀)

)
B̂[u− 1]M−1

1,−1(q
u−1)X̂. (3.2)

Proof. We start the proof from the triangular factorisation used earlier [4]. The central Lax
matrix factor (2.6) can be represented as a product of 3 matrices, the central factor being upper
triangular and the first and third factors being lower triangular of special type

L̃JS(u) = ML(u)KJS(u)MR(u),

MR(u) = D−1
R (u− 1)m̂1DR(u− 1), ML(u) = D−1

L (MR(u))−1 DL,

DR(u) = diag (q−2u, . . . , q−2u, 1), DL = diag (qα1 , . . . , qαn , 1), αi = −2Nn+1,i.

The matrix m̂1 has unit elements on the diagonal and on the last row with all others vanishing.
The upper-triangular central factor is given by

KJS(u) =


[u− 1]qN1 λ[u− 1][N1] . . . λ[u− 1][N1] qu−1[N1]

0 [u− 1]qN2 . . . λ[u− 1][N2] qu−1[N2]
. . . . . . . . . . . . . . .
0 0 . . . 0 k∗

 ,

k∗ = qNn+1−
∑n+1

1 Ns

[
u− 1 +

n+1∑
1

Ns

]
. (3.3)

The essential ingredients of the first and the third factors of the triangular factorisation enter in
terms of diagonal matrices DR(u), DL. The lower-triangular form is provided by the standard
matrix m̂1 (3.1).

Now we observe that the central upper-triangular factor can be further factorised and the
same diagonal feature appears. The form of KJS(u) (3.3) suggests the first step of further
factorisation

KJS(u) = diag
(
qN1 , . . . , qNn , k∗λq1−u

)
K̃JS diag

(
[u− 1], . . . , [u− 1],

qu−1

λ

)
. (3.4)
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Then we use the standard matrix m̂1,−1, to obtain

K̃JS = B−1m̂1,−1Bm̂−1
1,−1B = diag (. . . qβi . . . ), (3.5)

βi are determined up to a constant, βi = 2
∑n+1

i Ns + c, i = 1, . . . , n + 1. We choose c =
−Nn+1 −

∑n+1
1 Ns, thus

βi = Ni + 2N ′
i,n+1, i = 1, . . . , n, βn+1 = −

n∑
1

Ns.

We consider now the complete factorised expression for the Lax matrix, L(u) = X̂−1MLKMRX̂.
It is appropriate to modify the definition of the left and right lower-triangular factors including
one of the diagonal factors into which KJS has been decomposed now

M ′
R(u) = diag

(
1, . . . ,

qu

λ[u]

)
MR(u + 1).

We obtain

LJS(u) = X̂−1Λ−1M ′−1
R (u− 1 + 2ˆ̀)m̂1,−1Bm̂−1

1,−1[u− 1]M ′
R(u− 1)X̂.

The two steps (3.4) and (3.5) result in the factorisation of the upper-triangular central fac-
tor KJS(u) where the dependence on the operators Ni and on the spectral parameter u enter
in terms of diagonal matrices.

The lower triangular special matrix m̂1 can be related to the upper triangular special mat-
rix m̂1,−1 with the help of σ− = ên+1,1

M ′−1
R (u) = M−1

R (u + 1) diag
(
1, . . . , 1, 1− q−2u

)
= M1,−1

(
q−2u

)
m̂−1

1,−1.

This allows to write the Jordan–Schwinger form of the Lax matrix as has been claimed, com-
pleting the proof. �

The representation constraint

Φc =
n+1∑

1

Ns = (−1)|C|2`Î (3.6)

reduces the algebra to a simple one and fixes the representation of s`q(n+1) which is irreducible
for generic values of `. The constraint operator commutes with Ni but not with the coordinate
operators. Actually the Lax matrices depend only on coordinate ratios which commute with Φc.
Therefore we transform the obtained factorisation formulae first into forms expressed in terms
of ratios of coordinates dividing out one of them. Then the constraint can be imposed simply
by substituting the related N operator by the expression obtained from the constraint equa-
tion (3.6). In the case JS we write

Xi = xn+1q
γX ′

i,

X ′
i = q−

ˆ̀− 1
2
−N ′

i,n+1−γ xi

xn+1
, X̃ ′

i = q
ˆ̀+ 1

2
+N ′

i,n+1−γ̃ xi

xn+1
, i = 1, . . . , n, (3.7)

and modify the definition of the diagonal matrices of the coordinates as

X̂ = diag (X ′
1, . . . , X

′
n, 1), X̂d = diag (X̃ ′

1, . . . , X̃
′
n, 1), Γ(γ) = diag (1, . . . , 1, q−γ).
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Now xn+1 can be cancelled in the expression for the Lax matrix (3.2) and the representation
constraint can be imposed by simply replacing the operator ˆ̀ by the number `. The form of
the spectral parameter dependence becomes more symmetric after the shift u′ = u + ` and it is
convenient to introduce u+ = u′ + `, u− = u′ − 1− `. Then we have

LJS(u+, u−) = X̂d−1Γ−1(γ̃)M1,−1

(
q−2u+

)
B̂M−1

1,−1

(
q−2u−

)
Γ(γ)X̂. (3.8)

In the case TJS we write

X ′
Tj = q

ˆ̀−N ′
i1+−γT

xj

x1
, X̃ ′

Tj = q−
ˆ̀+N ′

i1+−γ̃T
xj

x1
, j = 2, . . . , n + 1 (3.9)

X̂T = diag (1, X ′
T2, . . . , XTn+1), X̂d

T = diag (1, X̃ ′
T2, . . . , X̃Tn+1),

ΓT (γ) = diag (q−γ , 1, . . . , 1), B̂T = diag
(
q−

∑n+1
2 Ns , qN2−2N ′

2,1 , . . . , qNn+1−2N ′
n+1,1

)
.

Now x1 can be cancelled in the expression for the Lax matrix and the representation constraint
can be imposed by eliminating N1 in favour of ˆ̀ and replacing the operator ˆ̀ by the number −`

LTJS(u−, u+) = X̂T ΓT (γ)M−1
1,−1

(
q−2u−

)
B̂−1

T M1,−1

(
q−2u+

)
Γ−1

T (γ̃T )X̂d−1
T . (3.10)

4 Parameter exchange operator

4.1 The defining relation

We consider the defining equation for an operator interchanging representation parameters in
the product of two Jordan–Schwinger Lax matrices,

F̂Ly(u−, u+)Lx(v+, v−) = Ly(u−, v+)Lx(u+, v−)F̂ . (4.1)

Let us substitute Ly(u−, u+) by the Lax matrix in the version TJS (3.10), Ly(u−, u+) =
LTJS(u−, u+) with the definitions given in (3.9) and the substitution of the canonical pairs
by yi, ∂yi as indicated by subscript y and Lx(v+, v−) by the one in the version JS (3.8),
Lx(v+, v−) = LJS(v+, v−) with the definitions given in (3.7). We rely on the fact that in
all cases the quantum coordinates X ′

i commute with all coordinate operators X̃ ′
j and try as

ansatz

F̂ = F
(
Ŷ d

T , X̂d
)
.

The defining condition reduces to

F̂ B̂−1
Ty M1,−1

(
q−2u+

)
Γ−1

T (γ̃T )Ŷ d−1
T X̂d−1Γ−1(γ̃)M1,−1

(
q−2v+

)
B̂x

= B̂−1
Ty M1,−1

(
q−2v+

)
Γ−1

T (γ̃T )Ŷ d−1
T X̂d−1Γ−1(γ̃)M1,−1

(
q−2u+

)
B̂xF̂ .

The condition is now specified by the assumption that the phases depend on the spectral and
the representation parameters as γ̃(v+), γ̃T (u+), on l.h.s. and that also the arguments u+, v+

in the phases are subject to the interchanging operation by F̂ .

Proposition 2. The parameter exchange operator F̂ acting as in (4.1) on the product of Jordan–
Schwinger Lax matrices of version TJS (3.10) for Ly and JS (3.8) for Lx and with specifying
γ̃(u) = γ̃T (u) = u has the form

F = (Xd
1 )u+−v+ eq2(qu+−v++1Z)eq−2(−qv+−u+−1Z),

Z =
n∑
2

qv+−1X̃ ′
j Ỹ

′
TjX

′−1
1 + Ỹ ′

Tn+1X̃
′−1
1 ,

eq2(Z) denotes the deformed exponential. The definition of X̃ ′
j, Ỹ ′

Tj has been given in (3.7),
(3.9).
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The proof will be arranged in three parts. In the first part, up to the end of this subsection,
the defining conditions are written in a convenient form. The result is reminicent of a chain with
n+1 sites where the boundaries at sites 1 and n+1 give extra contributions as compared to the
bulk region. In the bulk, outside the boundary sites, we find q-deformed discrete waves. This is
the second step of the proof given in Subsection 4.2. In the final step, in Subsection 4.3, we show
how the boundary conditions fix the wave number and result in a multiplicative superposition
of travelling waves.

The defining condition can be transformed to

Ŷ d
T ΓT (v+)M−1

1,−1

(
q−2v+

)
B̂TyF̂ B̂−1

Ty M1,−1

(
q−2u+

)
Γ̂−1

T (u+)Y d−1
T

= X̂d−1Γ−1(u+)M1,−1

(
q−2u+

)
B̂xF̂ B̂−1

x M−1
1,−1

(
q−2v+

)
Γ(v+)X̂d.

The quantum coordinates X ′
i, Y ′

Ti do not enter the resulting condition. We shall suppress
temporarily primes and the signs on the dual coordinates X̃ ′

i, Ỹ ′
TiX̂

d, Ŷ d
T indicating the deviation

from X ′
i, Y ′

Ti. We consider the transformation of the arguments of F̂ by B̂TyF̂ B̂−1
Ty ,

qβT
1 ŶT q−βT

1 = ŶT b̂T1 = ŶT diag
(
1, q−1, . . . , q−1

)
,

qβT
i ŶT q−βT

i = ŶT b̂Ti = ŶT diag
(
1, q, . . . , q,

i
q, . . . , q−1

)
, i = 2, . . . , n + 1.

The transformation by B̂xF̂ B̂−1
x acts similar,

qβiX̂q−βi = X̂b̂i = X̂ diag
(
q−1, . . . , q−1,

i
q, . . . , q, 1

)
, i = 1, . . . , n,

qβn+1X̂q−βn+1 = X̂b̂n+1 = X̂ diag
(
q−1, . . . , q−1, 1

)
.

The commutation relation of the quantum coordinates are

XiXj = qXjXi, 1 ≤ i < j ≤ n, YTiYTj = qYTjYTi, 2 ≤ i < j ≤ n + 1.

This results in an analogous pattern for the similarity transformations:

XiX̂X−1
i = X̂ŝi = X̂ diag

(
q−1, . . . ,

i
1, q, . . . q, 1

)
, i = 1, . . . , n,

YTiŶT Y −1
Ti = ŶT ŝTi = ŶT diag

(
1, q−1, . . . ,

i
1, q, . . . q

)
, i = 2, . . . , n + 1.

We complete the definitions by ŝn+1 = Î, ŝT1 = Î. Then the action on F̂ is

B̂TyF̂ B̂−1
Ty = diag

(
. . . F y

i . . .
)
, B̂xF̂ B̂−1

x = diag
(
. . . F x

i . . .
)
,

where the following abbreviations are convenient

F y
i = F

(
X̂, Ŷ b̂Ti

)
, F x

i = F
(
X̂b̂i, Ŷ

)
,

YTjF
y
i Y −1

Tj = F
(
X̂, Ŷ b̂TiŝTj

)
= F y

i,j , X−1
j F x

i Xj = F
(
X̂b̂iŝ

−1
j , Ŷ

)
= F x

i,j .

The abbreviations allow to write the defining condition as

ΓT (v+){l.h.s.}Γ−1
T (u+) = Γ−1(u+){r.h.s.}Γ(v+), (4.2)

{l.h.s.} = diag
(
F y

j−1,j

)
+ ŶT m̂−1

1,−1Ŷ
−1
T diag

(
F y

j,j − F y
j−1,j

)
+

q−2v+

1− q−2v+

(
ŶT M̂1Ŷ

−1
T diag

(
F y

j,j − F y
j−1,j

)
+

(
1− q−2(u+−v+)

)
ŶT m̂−1

1,−1σ̂−Ŷ −1
T F y

n+1,1

)
,

{r.h.s.} = diag
(
F x

j+1,j

)
+ diag

(
F x

j,j − F x
j+1,j

)
X̂−1m̂−1

1,−1X̂

+
q−2v+

1− q−2v+

(
diag

(
F x

j,j − F x
j+1,j

)
X̂−1M̂1X̂ +

(
1− q−2(u+−v+)

)
F x

1,n+1X̂
−1σ−m̂−1

1,−1X̂
)
.

We have used the properties of the matrices M1,−1(q−2u) in particular the decomposition of
their products with diagonal matrices.
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4.2 Travelling waves

Let us consider first the equations resulting from the matrix elements (i, j) with i, j 6= 1, n + 1.
From the diagonal we have

F y
j,j − q−2v+F y

j−1,j = F x
j,j − q−2v+F x

j+1,j . (4.3)

Since

b̂Tj ŝTj = b̂j ŝ
−1
j = diag

(
1, . . . , 1,

j
q, 1, . . . , 1

)
, (4.4)

b̂Tj−1ŝTj = b̂j+1ŝ
−1
j = diag

(
1, . . . , 1,

j

q−1, 1, . . . , 1
)
, j = 2, . . . , n,

these equations are fulfilled by requiring the equality of the first terms on both sides and of the
second terms

F y
j,j = F x

j,j , F y
j−1,j = F x

j+1,j (4.5)

and this implies F = F (X̂ · Ŷ ), i.e. the dependence assumed in the ansatz is specified as on the
n + 1 products of the diagonal elements, X1, X2YT2, . . . , XnYTn, YTn+1.

The non-diagonal bulk matrix elements in (4.2)result in the conditions

Y −1
Tj

(
F y

j,j − F y
j−1,j

)
X−1

j = Y −1
Ti

(
F x

i,i − F x
i+1,i

)
X−1

i , i, j 6= 1, n + 1. (4.6)

We have obtained a multiplicatively formulated difference equation close to a wave equation.
Instead of a displacement of the position variable at site i we have its multiplication by q±1, and
we find solutions corresponding to waves of such multiplicative displacements going forward or
backward in the chain.

In order to find a particular solution we try the ansatz

F+ =
∏
k↑

f(Zk), Zk = XkYTk.

Then l.h.s. of (4.6) results in

Y −1
Tj

(
F y

j,j − F y
j−1,j

)
X−1

j =
j−1∏

f(qZk)
(
f(qZj)− f

(
q−1Zj

))
Z−1

j

∏
j+1

f(qZk),

and this becomes independent of j provided(
f(qZj)− f

(
q−1Zj

))
Z−1

j = c′+f(qZj). (4.7)

This can be rewritten as

f(q−2Z) =
(

1−
c′+
q

Z

)
f(Z),

i.e. the functional equation for the q-deformed exponential. We set c′+ = qc+ and obtain

f+(Z) = eq−2(c+Z), F+ = eq−2

(
c+

∑
XjYj

)
.

The multiplication property of the q-exponential [27], eq(V )eq(U) = eq(U + V ) for UV = qV U
allows to write the products in F+ in terms of a q-exponential again. The alternative ansatz

F− =
∏
k↓

f(Zk), Zk = XkYTk
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leads to the condition(
f(qZj)− f

(
q−1Zj

))
Z−1

j = c′−f
(
q−1Zj

)
(4.8)

for the independence of j. We obtain (for c′− = −q−1c−)

f−(Z) = eq2(c−Z), F− = eq2

(
c−

∑
XjYj

)
.

The boundary conditions result in a combination of these solutions. The multiplicative form of
the defining equations results in a product instead of a sum. Before analysing the boundary we
show that indeed the product of the obtained solutions of (4.6) is a solution too. This is true if
the chain has one site only,

Z−1
(
f+(qZ)f−(qZ)− f+

(
q−1Z

)
f−

(
q−1Z

))
= Z−1

(
f+(qZ)− f+

(
q−1Z

))
f−(qZ) + f+

(
q−1Z

)
Z

(
f−(qZ)− f−

(
q−1Z

))
= c′+f+(qZ)f−(qZ) + c′−f+

(
q−1Z

)
f−

(
q−1Z

)
= (c+ + c−)f+(qZ)f−

(
q−1Z

)
.

In the last step the functional equation of the q-exponentials and c′± = ±q±1c± has been used.
The proof for the general case of the chain with many sites can be done relying on the multipli-
cation property of the q-exponential.

4.3 Boundary conditions

We reconsider the equations arising from the diagonal now focussing on the boundary. For
i = j = n + 1 and i = j = 1 we have from (4.2)

F y
n+1,n+1 − q−2v+F y

n,n+1 = qγd(u+)−γd(v+)
(
F x

n+1,n+1 − q−2u+F x
1,n+1

)
, (4.9)

qγd
T (u+)−γd

T (v+)
(
F y

1,1 − q−2u+F y
n+1,1

)
= F x

1,1 − q−2v+F x
2,1.

The relations (4.4) extend to the boundary as

b̂T1ŝT1 = q−1b̂1ŝ
−1
1 , b̂Tn+1ŝTn+1 = qb̂n+1ŝ

−1
n+1,

b̂Tn+1ŝT1 = qb̂2ŝ
−1
1 , b̂TnŝTn+1 = q−1b̂1ŝ

−1
n+1.

A consistent solution is possible if we specify the dependence of the additional phases as

γ̃(u) = γ̃T (u) = u.

Then the boundary diagonal equations are fulfilled if

F y
1,1q

u+−v+ = F x
1,1, F y

n+1,1q
v+−u+ = F x

2,1, (4.10)

F y
n+1,n+1 = qu+−v+F x

n+1,n+1, F y
n,n+1 = qv+−u+F x

1,n+1.

These sufficient conditions are solved by

F = X
u+−v+

1 F ′(Z2, . . . , Zn, Zn+1), (4.11)

Zk = XkYkX
−1
1 , k = 2, . . . , n, Zn+1 = qαYn+1X

−1
1 .

This is compatible with the bulk solution to the non-diagonal equations because c± may depend
on the variables referring to the boundary.

We can write the non-diagonal equations (i, j) in (4.2) in the form

Y −1
Tj qδj,1u+

(
F y

j,j − q−δj,12(u+−v+)F y
j−1,j

)
qδj,n+1v+X−1

j
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= Y −1
Ti qδi,1v+

(
F x

i,i − q−δi,n+12(u+−v+)F x
i+1,i

)
qδi,n+1u+X−1

i .

The diagonal equations have been solved by relating F y
j,j , F y

j−1,j to F x
j,j , F x

j+1,j as in (4.5), (4.10).
This reduces the non-diagonal conditions to

Y −1
Tj

(
F y

j,j − F y
j−1,j

)
X−1

j = qu+
(
F y

1,1 − q−2(u+−v+)F y
n+1,1

)
X−1

1

= Y −1
Tn+1

(
F y

n+1,n+1 − F y
n,n+1

)
qv+ . (4.12)

We start now with the ansatz compatible with the bulk conditions (4.3), (4.6) and with the
diagonal boundary conditions (4.9)

F = X
u+−v+

1 F+(Z ′)F−(Z ′), F±(Z ′) = eq∓2(c±Z ′), Z ′ =
n+1∑

2

Zk. (4.13)

The first factor takes care of the diagonal boundary relations but is not relevant in the following.
We shall see that the product form with specific constants c± results only from the relation
involving j = 1. First we check that the specification of the argument Zk in (4.11) does not
invaliditate the condition of independence of j of the first expression in (4.12)

Y −1
Tj

(
F y
±j,j − F y

±j−1,j

)
X−1

j = c′±F±
(
q±1Z

)
X−1

1 q.

The relation involving j = n + 1 is obeyed by F± separately and also by the product; it fixes
just α in (4.11) because the difference equation for the factor f±(Zn+1) is modified to

qv++αZ−1
(
f±(qZ)− f±

(
q−1Z

))
= c′±qf±

(
q±1Z

)
and for α = −v+ + 1 the difference to the corresponding equations for j = 2, . . . , n (4.7), (4.8)
disappears.

Notice that bT1sT1 = diag(1, q−1, . . . , q−1) and bT,n+1sT1 = diag(1, q, . . . , q). The condition
involving j = 1 is

qv+
(
qu+−v+F+

(
q−1Z ′)F−

(
q−1Z ′)− qv+−u+F+(qZ ′)F−(Z ′)

)
= (c′+ + c′−)qF+(qZ ′)F−

(
q−1Z ′).

It is solved by fixing c′± in (4.13) by the following conditions

qu+−v+c′+ − qv+−u+c′− = 0, λ[u− v]qv+ = (c′+ + c′−)q.

This leads to the result for the operator interchanging the parameters u+, v+ in the product of
two Jordan–Schwinger Lax matrices as formulated in the proposition (Z = qv+−1Z ′), completing
the proof.

5 Intertwiners

The formulation of the iterative construction of a generic Lax matrix from Jordan–Schwinger
ones takes to introduce canonical pairs xi,k, ∂i,k, i = 1, . . . , k+1, k = 1, . . . , n. The corresponding
generators and Lax matrices will be denoted by superscript k, being constructed from the
canonical pairs xi,k1 , ∂i,k1 , k1 ≤ k as above.

The Lax matrix representing g`q(n + 1) is obtained in terms of the one of g`q(n) as

[u− 1]L(n)(u) = LJS,n(u)Ln−1′(u− 1), (5.1)
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where the first factor is the g`q(n + 1) Jordan–Schwinger Lax matrix (n + 1)× (n + 1) and the
second factor is calculated in terms of the Lax matrix L(n−1) of g`q(n) as

Ln−1′(u) = L
(n−1)
αβ (v)êαβ + q−uA(n−1)

α ên+1,α + [u]ên+1n+1, α, β, γ = 1, . . . , n, (5.2)

A(n−1)
α = −

n∑
γ=1

L(n−1)
γα (0)Xγ,n.

At each iteration step one representation parameter enters by imposing the representation con-
straint (3.6). This involves to change the coordinates to their ratio xi,k → x′i,k = xi,k

xk+1,k
and

to eliminate N
(k)
k+1 in favour of

∑k+1
1 N

(k)
s = `k+1. We use the notation N

(k)
i = xi,k∂i,k. The

parameter `n+1 does not enter the second factor in (5.1).
In this way the result depends besides of the spectral parameter on the representation pa-

rameters `1, . . . , `n+1 and we write L(n)(`1, . . . , `n+1|u).
We shall construct intertwiners Wm, m = 1, . . . , n acting as

WmL(n)(`1, . . . , `m, `m+1, . . . `n+1|u) = L(n)(`1, . . . , `m+1, `m, . . . `n+1|u)Wm. (5.3)

For n = 1 the complete Lax operator is obtained from (5.1), (5.2) with the trivial 1× 1 matrix
L(0)(`1|u) = [u + `1]

L(1)(`1, `2|u) =

 [u + E
(1)
11 ] qu+ 1

2
(E

(1)
11 +E

(1)
22 −1)E

(1)
21

q−u− 1
2
(E

(1)
11 +E

(1)
22 −1)E

(1)
12 [u + E

(1)
22 ]

 .

We have

D1 = E
(1)
21 =

1
x1,1

[
N

(1)
1

]
, N

(1)
1 ≡ x1,1∂1,1

and the remaining g`q(2) generators are given by

E
(1)
11 = `1 + N

(1)
1 , E

(1)
12 = x1,1

[
`2 − `1 −N

(1)
1

]
, E

(1)
22 = `2 −N

(1)
1 .

Then we check easily

D1L
(1)
αβ(`1, `2|u) = L

(1)
αβ(`1 + 1, `2 − 1|u)D1 + [`2 − `1]δ2

αδ1
βq−u− 1

2
(`1+`2−1), (5.4)

and further

Dn
1 L

(1)
αβ(`1, `2|u) = L

(1)
αβ(`1 + n, `2 − n|u)Dn

1

+ [n][`2 − `1 + 1− n]δ2
αδ1

βq−u− 1
2

(
E

(1)
11 +E

(1)
22 −1

)
,

from which one deduces that

W1 = D`2−`1+1
1 .

Passing to the g`q(3) Lax matrix L(2) according to (5.1) one sees that the same operator W1 =
D`2−`1+1

1 intertwines the representation parameters `1, `2 there. Taking into account that the
first factor in (5.1) commutes with D1 and does not depend on `1 and `2, while the second factor
obeys (5.4) one concludes that (5.4) becomes:

D1L
(2)
αβ(`1, `2, `3|u) = L

(2)
αβ(`1 + 1, `2 − 1, `3|u)D1
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+ [`2 − `1]q
(
q−u− 1

2
(E

(2)
11 +E

(2)
22 −1)δ2

αδ1
β − q−u− 1

2
(E

(2)
11 +E

(2)
33 −1)δ3

αδ1
βx23q

E
(2)
33 −E

(1)
22

)
,

here E
(2)
αβ stand for the g`q(3) generators and the intertwining operator is again given by D`2−`1+1

1 .
The analogous relation in g`q(4) case looks like:

D1L
(3)
αβ(`1, `2, `3, `4|u) = L

(3)
αβ(`1 + 1, `2 − 1, `3, `4|u)D1+

+ [`2 − `1]q
(
q−u− 1

2
(E

(3)
11 +E

(3)
22 −1)δ2

αδ1
β

− q−u− 1
2
(E

(3)
11 +E

(3)
33 −1)δ3

αδ1
β

(
x2,2q

E
(2)
33 −E

(1)
22 + (q2 − 1)

x2,3

x3,3

[
N

(3)
3

])
− q−u− 1

2
(E

(3)
11 +E

(3)
44 −1)δ4

αδ1
β

(
x2,3q

E
(3)
44 −E

(2)
22 −N

(3)
3 +1 − x2,2x3,3q

E
(3)
44 −E

(1)
22 +1

))
,

E
(3)
αβ stand for generators of g`q(4).
This means that by recurrent construction the g`q(n + 1) Lax matrix inherits the `1 and `2

intertwining operator form the g`q(2) case for any n > 2. Indeed, because Jordan–Schwinger Lax
matrix commutes with D1 while the second matrix multiplier in (5.1) produces inhomogeneous
terms upon commutation with D1 only in the first column. D1 does not commute only withA(n)

1 .
Then the matrix multiplication rule tells that inhomogeneous terms can appear only in first
column of complete Lax operator and this proves the assertion.

We pass now to the operator D2 intertwining `2 and `3

D2 =
1

x2,2

[
N

(2)
2

]
qN

(2)
1 −N

(1)
1 +

x1,1

x1,2

[
N

(2)
1

]
.

One finds that the wanted homogeneous transformation rule:

D2Lαβ(`1, `2, `3|u) = Lαβ(`1, `2 + 1, `3 − 1|u)D2, (5.5)

in g`q(3) case is violated in two matrix elements of the Lax operator, L32 and L31, by appearance
in the r.h.s. of (5.5) of inhomogeneous terms

[`3 − `2]qu− 1
2
(E

(2)
22 +E

(2)
33 −1) and x1,1[`3 − `2]qu− 1

2
(E

(2)
22 +E

(2)
33 +N

(2)
1 −N

(2)
2 −1),

correspondingly.
The next intertwining operator is calculated from

D3 = qN
(3)
1 +N

(3)
2 −N

(2)
1 −N

(2)
2

1
x3,3

[
N

(3)
3

]
+ qN

(3)
1 −N

(2)
1

x2,2

x2,3

[
N

(3)
2

]
+

x1,2

x1,3

[
N

(3)
1

]
.

The considered examples lead us to the

Proposition 3. The intertwining operator Wm def ined by (5.3) can be constructed as

Wm = D`m+1−`m+1
m ,

where

Dm =
x1,m−1

x1,m

[
N

(m)
1

]
+ qN

(m)
1 −N

(m−1)
1

x2,m−1

x2,m

[
N

(m)
2

]
+ qN

(m)
1 −N

(m−1)
1 +N

(m)
2 −N

(m−1)
2

x3,m−1

x3,m

[
N

(m)
3

]
+ · · ·

+ q

m−2∑
k=1

(N
(m)
k −N

(m−1)
k ) xm−1,m−1

xm−1,m

[
N

(m)
m−1

]
+ q

m−1∑
k=1

(N
(m)
k −N

(m−1)
k ) 1

xm,m

[
N (m)

m

]
. (5.6)
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Proof. We start the proof with the case m = n and check first the intertwining relation in the
undeformed case q → 1, where

Dn|q=1 = ∂n,n + xn−1,n−1∂n−1,n + · · ·+ x1,n−1∂1n.

The ansatz for q 6= 1 is obtained by substituting the derivatives as ∂i,n → x−1
i,n [N (n)

i ] and including
a factor qαi in each term. αi are then determined to result in (5.6) by demanding that

DnL
(n)
αβ (`1, `2, . . . , `n, `n+1|u) = L

(n)
αβ (`1, `2, . . . , `n + 1, `n+1 − 1|u)Dn + · · · ,

where the dots stands for the contribution to the single matrix element Ln+1,n, for which the r.h.s.

contains the additional inhomogeneous term [`n+1 − `n]q−u− 1
2
(E

(n)
nn +E

(n)
n+1n+1−1). This remainder

disappears in the corresponding relation for Wn = D
`n+1−`n+1
n . Note that the canonical pairs

with k < n− 1 are passive in this step.
In the case m < n similar remainders appear in the commutation relation of Dm with L(n)

in the matrix elements Lij , 1 ≤ j ≤ m, m + 1 ≤ i ≤ n + 1. It is sufficient to consider
i = m + 1, j = m and check the vanishing of these remainders for the commutation with Wm.
The commutation with other matrix elements does not result in more conditions because the
corresponding generators Eij , 1 ≤ i ≤ k, k + 1 ≤ j ≤ n + 1 are obtained from Ek+1,k by (2.1).
In this way Wm interchanges the representation labels `m, `m+1 not only in L(m) but in all Lax
matrices L(n), n ≥ m, proving the assertion. �

6 Discussion

The intertwining operators Wi and the parameter exchange operator F can be used to obtain
the generic Yang–Baxter R operator in a factorised form. This provides a convenient approach
because the defining conditions for these factors are much simpler compared to the one for R.

It is instructive to compare with the treatment of the rational (q = 1) case [22] in detail,
although the reduction to Jordan–Schwinger representations was not used there. In both cases
the Lax matrices are factorised to separate coordinate from shift operators. In our case we are
lead to modified coordinate operators with q-deformed commutation relations. The intertwin-
ers are given by powers of operators, where the powers are determined from the representation
labels in the same way. How the operators appearing in the q = 1 case are deformed is clearly
seen in Proposition 3. In the rational case the exchange operator appears as a power calcu-
lated from representation labels of a coordinate difference expression. The expression involving
the q-exponential is the appropriate deformation for the restricted case of Jordan–Schwinger
representations.

The representation spaces can be spanned on polynomial functions of x′i,k, on which the
above canonical pairs of operators act by multiplication or differentiation, the constant function
representing the lowest weight vector of a generic representation. This polynomial representation
works for the algebra elements and also for the complete R operator. However the action of
the Wi, F as constructed above lead from polynomials to branched functions, i.e. to quite
different realisations of the algebra representations. This may be regarded as less important as
long as the latter appear merely as construction elements of R, but requires more investigation
in general.

We observe similarities in the result for F and Wi. Both are expressed in terms of the set
canonical pairs of two Jordan–Schwinger representations. It should be possible to relate both
expressions by transformations of these canonical pairs.

We have obtained construction elements needed for the treatment of integrable systems
defined by a generalised Heisenberg spin chain with the ordinary spin replaced by generic rep-
resentations of s`q(n + 1).
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