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Abstract. Effect algebras are a generalization of many structures which arise in quantum
physics and in mathematical economics. We show that, in every modular Archimedean
atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-
continuous state ω on E, which is subadditive. Moreover, we show properties of finite and
compact elements of such lattice effect algebras.
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1 Introduction, basic definitions and some known facts

Effect algebras (introduced by D.J. Foulis and M.K. Bennett in [10] for modelling unsharp
measurements in a Hilbert space) may be carriers of states or probabilities when events are
noncompatible or unsharp resp. fuzzy. In this setting, the set E(H) of effects on a Hilbert
space H is the set of all Hermitian operators on H between the null operator 0 and the identity
operator 1, and the partial operation ⊕ is the restriction of the usual operator sum. D.J. Foulis
and M.K. Bennett recognized that effect algebras are equivalent to D-posets introduced in
general form by F. Kôpka and F. Chovanec (see [19]), firstly defined as axiomatic systems of
fuzzy sets by F. Kôpka in [18].

Effect algebras are a generalization of many structures which arise in quantum physics (see [2])
and in mathematical economics (see [8, 9]). There are some basic ingredients in the study of the
mathematical foundations of physics, typically the fundamental concepts are states, observables
and symmetries. These concepts are tied together in [11] by employing effect algebras.

It is a remarkable fact that there are even finite effect algebras admitting no states, hence
no probabilities. The smallest of them has only nine elements (see [28]). One possibility for
eliminating this unfavourable situation is to consider modular complete lattice effect algebras
(see [32]).

Having this in mind, we are going to show that, in every modular Archimedean atomic lattice
effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E,
which is subadditive.

We show some further important properties of finite elements in modular lattice effect algeb-
ras. Namely, the set G of all finite elements in a modular lattice effect algebra is a lattice ideal
of E. Moreover, any compact element in an Archimedean lattice effect algebra E is a finite join
of finite elements of E.
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Definition 1 ([10]). A partial algebra (E;⊕, 0, 1) is called an effect algebra if 0, 1 are two
distinct elements and ⊕ is a partially defined binary operation on E which satisfy the following
conditions for any x, y, z ∈ E:

(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,

(Eii) (x⊕ y)⊕ z = x⊕ (y ⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that x⊕ y = 1 (we put x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

We put ⊥ = {(x, y) ∈ E×E | x⊕y is defined}. We often denote the effect algebra (E;⊕, 0, 1)
briefly by E. On every effect algebra E the partial order ≤ and a partial binary operation 	
can be introduced as follows:

x ≤ y and y 	 x = z iff x⊕ z is defined and x⊕ z = y.

Elements x and y of an effect algebra E are said to be (Mackey) compatible (x ↔ y for short)
iff there exist elements x1, y1, d ∈ E with x = x1 ⊕ d, y = y1 ⊕ d and x1 ⊕ y1 ⊕ d ∈ E.

If E with the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called
a lattice effect algebra (a complete lattice effect algebra).

If, moreover, E is a modular or distributive lattice then E is called modular or distributive
effect algebra.

Lattice effect algebras generalize two important structures: orthomodular lattices and MV -
algebras. In fact a lattice effect algebra (E;⊕, 0, 1) is an orthomodular lattice [17] iff x∧ x′ = 0
for every x ∈ E (i.e., every x ∈ E is a sharp element). A lattice effect algebra can be organized
into an MV -algebra [4] (by extending ⊕ to a total binary operation on E) iff any two elements
of E are compatible iff (x ∨ y)	 x = y 	 (x ∧ y)) for every pair of elements x, y ∈ E [20, 5].

A minimal nonzero element of an effect algebra E is called an atom and E is called atomic
if under every nonzero element of E there is an atom.

We say that a finite system F = (xk)n
k=1 of not necessarily different elements of an effect

algebra (E;⊕, 0, 1) is ⊕-orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn (written
n⊕

k=1

xk or
⊕

F ) exists in E.

Here we define x1⊕x2⊕ · · · ⊕xn = (x1⊕x2⊕ · · · ⊕xn−1)⊕xn supposing that
n−1⊕
k=1

xk is defined

and
n−1⊕
k=1

xk ≤ x′n. We also define
⊕

∅ = 0. An arbitrary system G = (xκ)κ∈H of not necessarily

different elements of E is called ⊕-orthogonal if
⊕

K exists for every finite K ⊆ G. We say
that for a ⊕-orthogonal system G = (xκ)κ∈H the element

⊕
G exists iff

∨
{
⊕

K | K ⊆ G is
finite} exists in E and then we put

⊕
G =

∨
{
⊕

K | K ⊆ G is finite}. (Here we write G1 ⊆ G
iff there is H1 ⊆ H such that G1 = (xκ)κ∈H1).

An element u ∈ E is called finite if either u = 0 or there is a finite sequence {a1, a2, . . . , an}
of not necessarily different atoms of E such that u = a1 ⊕ a2 ⊕ · · · ⊕ an. Note that any atom
of E is evidently finite.

For an element x of an effect algebra E we write ord(x) = ∞ if nx = x⊕x⊕· · ·⊕x (n-times)
exists for every positive integer n and we write ord(x) = nx if nx is the greatest positive integer
such that nxx exists in E. An effect algebra E is Archimedean if ord(x) < ∞ for all x ∈ E.

Definition 2. Let E be an effect algebra. Then Q ⊆ E is called a sub-effect algebra of E if

(i) 0, 1 ∈ Q,

(ii) if x, y ∈ Q then x′ ∈ Q and x⊥y =⇒ x⊕ y ∈ Q.

If E is a lattice effect algebra and Q is a sub-lattice and a sub-effect algebra of E then Q is
called a sub-lattice effect algebra of E.



Modularity, Atomicity and States in Archimedean Lattice Effect Algebras 3

Note that a sub-effect algebra Q (sub-lattice effect algebra Q) of an effect algebra E (of
a lattice effect algebra E) with inherited operation ⊕ is an effect algebra (lattice effect algebra)
in its own right.

Let E be an effect algebra and let (Eκ)κ∈H be a family of sub-effect algebras of E such that:

(i) E =
⋃

κ∈H

Eκ.

(ii) If x ∈ Eκ1 \ {0, 1}, y ∈ Eκ2 \ {0, 1} and κ1 6= κ2, κ1, κ2 ∈ H, then x ∧ y = 0 and x ∨ y = 1.

Then E is called the horizontal sum of effect algebras (Eκ)κ∈H .
Important sub-lattice effect algebras of a lattice effect algebra E are

(i) S(E) = {x ∈ E | x ∧ x′ = 0} the set of all sharp elements of E (see [13, 14]), which is an
orthomodular lattice (see [16]).

(ii) Maximal subsets of pairwise compatible elements of E called blocks of E (see [26]), which
are in fact maximal sub-MV -algebras of E.

(iii) The center of compatibility B(E) of E, B(E) =
⋂
{M ⊆ E | M is a block of E} = {x ∈

E | x ↔ y for every y ∈ E} which is in fact an MV -algebra (MV -effect algebra).

(iv) The center C(E) = {x ∈ E | y = (y ∧ x) ∨ (y ∧ x′) for all y ∈ E} of E which is a Boolean
algebra (see [12]). In every lattice effect algebra it holds C(E) = B(E)∩S(E) (see [24, 25]).

For a poset P and its subposet Q ⊆ P we denote, for all X ⊆ Q, by
∨

Q X the join of the
subset X in the poset Q whenever it exists.

For a study of effect algebras, we refer to [7].

2 Finite elements, modularity and atomicity
in lattice effect algebras

It is quite natural, for a lattice effect algebra, to investigate whether the join of two finite
elements is again finite and whether each element below a finite element is again finite. The
following example shows that generally it is not the case.

Example 1. Let B be an infinite complete atomic Boolean algebra, C a finite chain MV -
algebra. Then

1. The set F of finite elements of the horizontal sum of B and C is not closed under order
(namely, the top element 1 is finite but the coatoms from B are not finite).

2. The set F of finite elements of the horizontal sum of two copies of B is not closed under
join (namely, the join of two atoms in different copies of B is the top element which is not
finite).

Theorem 1. Let E be a modular lattice effect algebra, x ∈ E. Then

(i) If x is finite, then, for every y ∈ E, (x ∨ y)	 y is finite [1, Proposition 2.16].

(ii) If x is finite, then every z ∈ E, z ≤ x is finite.

(iii) If x is finite, then every chain in the interval [0, x] is finite.

(iv) If x is finite, then [0, x] is a complete lattice.

(v) If x and y are finite, then x ∨ y is finite.

(vi) The set F of all finite elements of E is a lattice ideal of E.
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Proof. (i) See [1, Proposition 2.16].
(ii) This follows at once from [1, Proposition 2.16] by putting y = x	 z.
(iii) This is an immediate consequence of [1, Proposition 2.15] that gives a characterization

of finite elements in modular lattice effect algebras using the height function and of general and
well-known facts about modular lattices (which can be found, for instance, in [15, § VII.4] and
are also recalled in [1, § 2.2, page 5]).

(iv) Since the interval [0, x] has no infinite chains it is complete by [6, Theorem 2.41].
(v) Indeed x ∨ y = ((x ∨ y)	 y)⊕ y and, clearly, the sum of finite elements is finite.
(vi) It follows immediately from the above facts. �

Special types of effect algebras called sharply dominating and S-dominating have been in-
troduced by S. Gudder in [13, 14]. Important example is the standard Hilbert spaces effect
algebra E(H).

Definition 3 ([13, 14]). An effect algebra (E,⊕, 0, 1) is called sharply dominating if for every
a ∈ E there exists a smallest sharp element â such that a ≤ â. That is â ∈ S(E) and if b ∈ S(E)
satisfies a ≤ b then â ≤ b.

Similarly to [33, Theorem 2.7] we have the following.

Theorem 2. Let E be a modular Archimedean lattice effect algebra and let E1 = {x ∈ E |
x is finite or x′ is finite}. Then

(i) E1 is a sub-lattice effect algebra of E.

(ii) For every finite x ∈ E, there exist a smallest sharp element x̂ over x and a greatest sharp
element x̃ under x.

(iii) E1 is sharply dominating.

Proof. (i): Clearly, x ∈ E1 iff x′ ∈ E1 by definition of E1. Further for any finite x, y ∈ E1 we
have by Theorem 1 that x ∨ y ∈ E1 and x⊕ y ∈ E1 whenever x⊕ y exists. The rest follows by
de Morgan laws and the fact that v ≤ u, u is finite implies v is finite (Theorem 1).

(ii), (iii): Let x =
⊕n

i=1 kiai for some set {a1, . . . , an} of atoms of E. Clearly, for any index
j, 1 ≤ j ≤ n, kjaj ∧

⊕n
i=1,i6=j kiai = 0 and

⊕n
i=1,i6=j kiai ≤ (kjaj)′. Hence by [22, Lemma 3.3]

najaj ∧
⊕n

i=1,i6=j kiai = 0 and
⊕n

i=1,i6=j kiai ≤ (najaj)′. By a successive application of the above
argument this yields the existence of the sum

⊕n
i=1 naiai. Then by Theorem 1 the interval [0, x̂],

x̂ =
⊕n

i=1 naiai is a complete lattice effect algebra, hence it is sharply dominating. Moreover
by [34, Theorem 3.5],

⊕n
i=1 naiai is the smallest sharp element x̂ over x. It follows by [13] that

there exists a greatest sharp element x̃ under x in [0, x̂] and so in E and E1 as well.
If x′ =

⊕m
i=1 libi for some set {b1, . . . , bm} of atoms of E then w =

⊕m
i=1 nbi

bi is the smallest
sharp element over x′. Hence w′ is the greatest sharp element under x both in E and E1. �

Note that, in any effect algebra E, the following infinite distributive law holds (see [7, Propo-
sition 1.8.7]):( ∨

α

cα

)
⊕ b =

∨
α

(cα ⊕ b)

provided that
∨

α cα and (
∨

α cα)⊕ b exist.

Proposition 1. Let {bα | α ∈ Λ} be a family of elements in a lattice effect algebra E and let
a ∈ E with a ≤ bα for all α ∈ Λ. Then( ∨

{bα | α ∈ Λ}
)
	 a =

∨
{bα 	 a | α ∈ Λ}

if one side is defined.
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Proof. Assume first that (
∨
{bα | α ∈ Λ})	 a is defined. Then

∨
{bα | α ∈ Λ} exists. Clearly,

bα 	 a ≤ (
∨
{bα | α ∈ Λ}) 	 a for all α ∈ Λ. Let bα 	 a ≤ c for all α ∈ Λ. Let us put

d = c ∧ ((
∨
{bα | α ∈ Λ}) 	 a). Then bα 	 a ≤ d for all α ∈ Λ and d ≤ (

∨
{bα | α ∈ Λ}) 	 a.

Hence d⊕a exists and bα ≤ d⊕a for all α ∈ Λ. This yields
∨
{bα | α ∈ Λ} ≤ d⊕a. Consequently,∨

{bα | α ∈ Λ} 	 a ≤ d, so d =
∨
{bα | α ∈ Λ} 	 a ≤ c.

Now, assume that
∨
{bα 	 a | α ∈ Λ} is defined. Then

∨
{bα 	 a | α ∈ Λ} ≤ 1 	 a, which

gives
∨
{bα 	 a | α ∈ Λ} ⊕ a exists. Hence by the above infinite distributive law∨
{bα 	 a | α ∈ Λ} ⊕ a =

∨
{(bα 	 a)⊕ a | α ∈ Λ} =

∨
{bα | α ∈ Λ}. �

Now we are ready for the next proposition that was motivated by [35, § 6, Theorem 20] for
complete modular lattices.

Proposition 2. Let E be a modular lattice effect algebra, z ∈ E and let Fz = {x ∈ E |
x is finite, x ≤ z} and suppose that

∨
Fz = z. Then the interval [0, z] is atomic.

Proof. Let 0 6= y ∈ E, y ≤ z. We shall show that there exists an atom a ≤ y. We have (by the
same argument as in [1, Lemma 3.1 (a)] for complete lattices) that∨

{(x ∨ (z 	 y))	 (z 	 y) | x ∈ Fz}

=
∨
{x ∨ (z 	 y) | x ∈ Fz} 	 (z 	 y) = z 	 (z 	 y) = y.

This yields (x∨(z	y))	(z	y) 6= 0 for some x ∈ Fz. By Theorem 1 (i) (x∨(z	y))	(z	y) ∈ Fz,
(x ∨ (z 	 y))	 (z 	 y) ≤ y. Hence, there exists an atom a ≤ (x ∨ (z 	 y))	 (z 	 y) ≤ y. �

Corollary 1. Let E be a modular lattice effect algebra and let F = {x ∈ E | x is finite} and
suppose that

∨
F = 1. Then E is atomic.

Corollary 2. Let E be a modular lattice effect algebra. Let at least one block M of E be
Archimedean and atomic. Then E is atomic.

Proof. Let us put F = {x ∈ E | x is finite}. Clearly, F contains all finite elements of the
block M . Hence by [30, Theorem 3.3] we have 1 =

∨
M (F ∩ M). From [23, Lemma 2.7] we

obtain that the joins in E and M coincide. Therefore 1 =
∨

M (F ∩M) =
∨

E(F ∩M) ≤
∨

E F .
By Corollary 1 we get that E is atomic. �

Further recall that an element u of a lattice L is called a compact element if, for any D ⊆ L
with

∨
D ∈ L, u ≤

∨
D implies u ≤

∨
F for some finite F ⊆ D.

Moreover, the lattice L is called compactly generated if every element of L is a join of compact
elements.

It was proved in [21, Theorem 6] that every compactly generated lattice effect algebra is
atomic. If moreover E is Archimedean then every compact element u ∈ E is finite [21, Lemma 4]
and conversely [23, Lemma 2.5].

Example 2 ([33, Example 2.9]). If a is an atom of a compactly generated Archimedean
lattice effect algebra E (hence atomic) then naa need not be an atom of S(E).

Indeed, let E be a horizontal sum of a Boolean algebra B = {0, a, a′, 1 = a⊕ a′} and a chain
M = {0, b, 1 = 2b}. Then S(E) = B and 1 = 2b is not an atom of S(E).

Remark 1. The atomicity of the set of sharp elements S(E) is not completely solved till now.
For example, if E is a complete modular Archimedean atomic lattice effect algebra then S(E)
is an atomic orthomodular lattice (see [23]).

This remark leads us to
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Proposition 3. Let E be a modular Archimedean atomic lattice effect algebra. Then S(E) is
an atomic orthomodular lattice.

Proof. Let x ∈ S(E), x 6= 0. From [30, Theorem 3.3] we get that there is an atom a of E such
that naa ≤ x. Then by Theorem 1 the interval [0, naa] is a complete modular atomic lattice
effect algebra. This yields that [0, naa] is a compactly generated complete modular lattice effect
algebra and all elements of [0, naa] are compact in [0, naa]. Hence also S([0, naa]) is a compactly
generated complete modular lattice effect algebra i.e. it is atomic. Clearly, any atom p of
S([0, naa]) is an atom of S(E) and p ≤ x. �

A basic algebra [3] (lattice with sectional antitone involutions) is a system L = (L;∨,∧,
(a)a∈L, 0, 1), where (L;∨,∧, 0, 1) is a bounded lattice such that every principal order-filter [a, 1]
(which is called a section) possesses an antitone involution x 7→ xa.

Clearly, any principal ideal [0, x], x ∈ L of a basic algebra L is again a basic algebra. Moreover,
any lattice effect algebra is a basic algebra. Note that every interval [a, b], for a < b in an effect
algebra E can be organized (in a natural way) into an effect algebra (see [36, Theorem 1]), hence
every interval [a, b] in E possesses an antitone involution.

The following Lemma is in fact implicitly contained in the proof of [21, Theorem 5].

Lemma 1 ([21, Theorem 5]). Let L be a basic algebra, u ∈ L, u 6= 0 a compact element.
Then there is an atom a ∈ L such that a ≤ u.

Lemma 2. Let E be an Archimedean lattice effect algebra, u ∈ E a compact element. Then u
is a finite join of finite elements of E.

Proof. If u = 0 we are finished. Let u 6= 0. Let Q be a maximal pairwise compatible subset
of finite elements of E under u. Clearly, 0 ∈ Q 6= ∅. Assume that u is not the smallest upper
bound of Q in E. Hence there is an element c ∈ E such that c is an upper bound of Q, c 6≥ u.
Let us put d = c∧u. Then d < u. Clearly, the interval [d, 1] is a basic algebra and u is compact
in [d, 1]. Hence by Lemma 1 there is an atom b ∈ [d, 1] such that b ≤ u. Let us put a = b 	 d.
Then a is an atom of E. Let M be a block of E containing the compatible set Q ∪ {d, b, u}.
Evidently a ∈ M and Q ∪ {q ⊕ a | q ∈ Q} ⊆ M is a compatible subset of finite elements of E
under u. From the maximality of Q we get that {q ⊕ a | q ∈ Q} ⊆ Q. Hence, for all n ∈ N,
na ∈ Q, a contradiction with the assuption that E is Archimedean. Therefore u =

∨
Q. Since u

is compact there are finitely many finite elements q1, . . . , qn of Q such that u =
∨n

i=1 qi. �

Remark 2. The condition that E is Archimedean in Lemma 2 cannot be omitted (e.g., the
Chang MV -effect algebra E = {0, a, 2a, 3a, . . . , (3a)′, (2a)′, a′, 1} is not Archimedean, every
x ∈ E is compact and the top element 1 is not a finite join of finite elements of E).

Corollary 3. Let E be a modular Archimedean lattice effect algebra, u ∈ E a compact element.
Then u is finite.

Proof. Since u is a finite join of finite elements of E and in a modular lattice effect algebra
a finite join of finite elements is finite by Theorem 1 we are done. �

Thus we obtain the following common corollary of Proposition 2 and Corollary 3.

Theorem 3. Let E be a modular Archimedean lattice effect algebra, z ∈ E and let Cz = {x ∈ E |
x is compact, x ≤ z} and suppose that

∨
Cz = z. Then the interval [0, z] is atomic. Moreover,

if z = 1 and
∨

C1 = 1 then E is atomic.
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3 States on modular Archimedean atomic lattice effect algebras

The aim of this section is to apply results of previous section in order to study (o)-continuous
states on modular Archimedean atomic lattice effect algebras.

Definition 4. Let E be an effect algebra. A map ω : E → [0, 1] is called a state on E if
ω(0) = 0, ω(1) = 1 and ω(x⊕ y) = ω(x) + ω(y) whenever x⊕ y exists in E. If, moreover, E is
lattice ordered then ω is called subadditive if ω(x ∨ y) ≤ ω(x) + ω(y), for all x, y ∈ E.

It is easy to check that the notion of a state ω on an orthomodular lattice L coincides with
the notion of a state on its derived effect algebra L. It is because x ≤ y′ iff x ⊕ y exists in L,
hence ω(x ∨ y) = ω(x⊕ y) = ω(x) + ω(y) whenever x ≤ y′ (see [17]).

It is easy to verify that, if ω is a subadditive state on a lattice effect algebra E, then in fact
ω(x)+ω(y) = ω(x∨ y)+ω(x∧ y) for all x, y ∈ E (see [29, Theorem 2.5]), so that ω is a modular
measure, as defined for example in [1, § 5, page 13].

Assume that (E ;≺) is a directed set and E is an effect algebra. A net of elements of E is
denoted by (xα)α∈E . Then xα ↑ x means that xα1 ≤ xα2 for every α1 ≺ α2, α1, α2 ∈ E and
x =

∨
{xα | α ∈ E}. The meaning of xα ↓ x is dual. A net (xα)α∈E of elements of an effect

algebra E order converges to a point x ∈ E if there are nets (uα)α∈E and (vα)α∈E of elements
of E such that

uα ↑ x, vα ↓ x, and uα ≤ xα ≤ vα for all α ∈ E .

We write xα
(o)−→ x, α ∈ E in E (or briefly xα

(o)−→ x).
A state ω is called (o)-continuous (order-continuous) if, for every net (xα)α∈E of elements

of E, xα
(o)−→ x =⇒ ω(xα) → ω(x) (equivalently xα ↑ x ⇒ ω(xα) ↑ ω(x)).

We are going to prove statements about the existence of (o)-continuous states which are
subadditive.

Theorem 4. Let E be a Archimedean atomic lattice effect algebra, c ∈ C(E), c finite in E,
c 6= 0, [0, c] a modular lattice. Then there exists an (o)-continuous state ω on E, which is
subadditive.

Proof. Note that, for every central element z of a lattice effect algebra E, the interval [0, z]
with the ⊕ operation inherited from E and the new unit z is a lattice effect algebra in its own
right.

Since c is central we have have the direct product decomposition E ∼= [0, c] × [0, c′]. Hence
E = {y ⊕ z | y ∈ [0, c], z ∈ [0, c′]}.

Since c is finite in E and hence in [0, c] we have by Theorem 1 that the interval [0, c] is
a complete modular atomic lattice effect algebra. From [32, Theorem 4.2] we get a subadditive
(o)-continuous state ωc on [0, c].

Let us define ω : E → [0, 1] ⊆ R by setting ω(x) = ωc(y), for every x = y ⊕ z, y ∈ [0, c], z ∈
[0, c′]. It is easy to check that ω is an (o)-continuous state on E, which is subadditive. These
properties follow by the fact that the effect algebra operations as well as the lattice operations
on the direct product [0, c]× [0, c′] are defined coordinatewise and ωc is a state on the complete
modular atomic lattice effect algebra [0, c] with all enumerated properties. �

Corollary 4. Let E be a modular Archimedean atomic lattice effect algebra, c ∈ C(E), c finite
in E, c 6= 0. Then there exists an (o)-continuous state ω on E, which is subadditive.

In [16] it was proved that for every lattice effect algebra E the subset S(E) is an orthomodular
lattice. It follows that E is an orthomodular lattice iff E = S(E). If E is atomic then E is
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an orthomodular lattice iff a ∈ S(E) for every atom a of E. This is because if x ∈ E with
x ∧ x′ 6= 0 exists then there exists an atom a of E with a ≤ x ∧ x′, which gives a ≤ x′ ≤ a′ and
hence a ∧ a′ = a 6= 0, a contradiction.

Theorem 5. Let E be an Archimedean atomic lattice effect algebra with S(E) 6= E. Let F =
{x ∈ E | x is finite} be an ideal of E such that F is a modular lattice. Then there exists an
(o)-continuous state ω on E, which is subadditive.

Proof. Let x ∈ E \ S(E). From Theorem [30, Theorem 3.3] we have that there are mutually
distinct atoms aα ∈ E and positive integers kα, α ∈ E such that x =

⊕
{kαaα | α ∈ E} =∨

{kαaα | α ∈ E}, and x ∈ S(E) iff kα = naα = ord(aα) for all α ∈ E . Hence there is an atom
a ∈ E such that a 6∈ S(E) i.e., a ≤ a′.

We shall proceed similarly as in [32, Theorem 3.1].
(i): Assume that a ∈ B(E). Then also naa ∈ B(E) (by [26]) and, by [31, Theorem 2.4],

naa ∈ S(E). Thus naa ∈ B(E) ∩ S(E) = C(E).
(ii): Assume now that a 6∈ B(E). Then there exists an atom b ∈ E with b 6↔ a. As F is

a modular lattice we have [0, b] = [a∧ b, b] ∼= [a, a∨ b] which yields that a∨ b covers a both in F
and E. Hence there exists an atom c ∈ E such that a⊕ c = a∨ b, which gives c ≤ a′. Evidently,
c 6= b as b 6≤ a′. If c 6= a then a∨ c = a⊕ c = a∨ b, which implies b ≤ a∨ c ≤ a′, a contradiction.
Thus c = a and a ∨ b = 2a.

Let p ∈ E be an atom. Then either p 6↔ a which, as we have just shown, implies that
p ≤ p ∨ a = 2a ≤ naa, or p ↔ a and hence p ↔ naa for every atom p ∈ E. By [27], for every
x ∈ E we have x =

∨
{u ∈ E|u ≤ x, u is a sum of finite sequence of atoms}. Since naa ↔ p for

every atom p and hence naa ↔ u for every finite sum u of atoms, we conclude that naa ↔ x for
every x ∈ E. Thus again naa ∈ B(E) ∩ S(E) = C(E).

Since naa is finite and the interval [0, naa] is modular we can apply Theorem 4. �

Corollary 5. Let E be a modular Archimedean atomic lattice effect algebra with S(E) 6= E.
Then there exists an (o)-continuous state ω on E, which is subadditive.

Proof. It follows immediately from Theorem 1 (vi) and Theorem 5. �
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[19] Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21–34.
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