A Formula for the Logarithm of the KZ Associator*

Benjamin ENRIQUEZ † and Fabio GAVARINI ‡

† IRMA (CNRS), rue René Descartes, F-67084 Strasbourg, France E-mail: enriquez@math.u-strasbg.fr

[‡] Universitá degli Studi di Roma "Tor Vergata", Dipartimento di Matematica, Via della Ricerca Scientifica 1, I-00133 Rome, Italy E-mail: gavarini@mat.uniroma2.it

Received October 03, 2006, in final form November 10, 2006; Published online November 13, 2006 Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper080/

Abstract. We prove that the logarithm of a group-like element in a free algebra coincides with its image by a certain linear map. We use this result and the formula of Le and Murakami for the Knizhnik–Zamolodchikov (KZ) associator Φ to derive a formula for $\log(\Phi)$ in terms of MZV's (multiple zeta values).

Key words: free Lie algebras; Campbell–Baker–Hausdorff series, Knizhnik–Zamolodchikov associator

2000 Mathematics Subject Classification: 17B01; 81R50

To the memory of Vadim Kuznetsov.

1 Logarithms of group-like elements

Let F_n be the free associative algebra generated by free variables x_1, \ldots, x_n , let $\mathfrak{f}_n \subset F_n$ be the free Lie algebra with the same generators, and let $\widehat{\mathfrak{f}}_n$, \widehat{F}_n be their degree completions (where x_1, \ldots, x_n have degree 1). A group-like element of \widehat{F}_n is an element of the form X = 1+ (terms of degree > 0), such that $\Delta(X) = X \otimes X$, where Δ is the completion of the coproduct $F_n \to F_n^{\otimes 2}$, for which x_1, \ldots, x_n are primitive. It is well-known that the exponential defines a bijection exp: $\widehat{\mathfrak{f}}_n \to \{\text{group-like elements of } \widehat{F}_n\}$ (also denoted $x \mapsto e^x$). We denote by log the inverse bijection.

We denote by $CBH_n(x_1, \ldots, x_n)$ the multilinear part (in x_1, \ldots, x_n) of $\log(e^{x_1} \cdots e^{x_n})$. Define a linear map

$$cbh_n: F_n \to \mathfrak{f}_n$$

by $\operatorname{cbh}_n(1) = 0$ and $\operatorname{cbh}_n(x_{i_1} \cdots x_{i_k}) := \operatorname{CBH}_k(x_{i_1}, \dots, x_{i_k})$. This map extends to a linear map $\widehat{\operatorname{cbh}}_n \colon \widehat{F}_n \to \widehat{\mathfrak{f}}_n$.

Proposition 1. If $X \in \widehat{F}_n$ is group-like, then $\log(X) = \widehat{\operatorname{cbh}}_n(X)$.

Proof. It is known that $F_n = U(\mathfrak{f}_n)$, so that the symmetrization is an isomorphism sym: $S(\mathfrak{f}_n) \to F_n$. Denote by p_n : $F_n \to \mathfrak{f}_n$ the composition of sym⁻¹ with the projection $S(\mathfrak{f}_n) = \bigoplus_{k \geq 0} S^k(\mathfrak{f}_n)$ onto $S^1(\mathfrak{f}_n) = \mathfrak{f}_n$. We first prove:

Lemma 1. $p_n = \cosh_n$.

^{*}This paper is a contribution to the Vadim Kuznetsov Memorial Issue "Integrable Systems and Related Topics". The full collection is available at http://www.emis.de/journals/SIGMA/kuznetsov.html

Proof. If \mathfrak{g} is a Lie algebra, let $p_{\mathfrak{g}}$: $U(\mathfrak{g}) \to \mathfrak{g}$ be the composition of the inverse of the symmetrization $S(\mathfrak{g}) \to U(\mathfrak{g})$ with the projection onto the first component of $S(\mathfrak{g})$. If $\phi: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra morphism, then we have a commutative diagram

$$\begin{array}{ccc} U(\mathfrak{g}) & \stackrel{p_{\mathfrak{g}}}{\longrightarrow} & \mathfrak{g} \\ U(\phi)\downarrow & & \downarrow \phi \\ U(\mathfrak{h}) & \stackrel{p_{\mathfrak{h}}}{\longrightarrow} & \mathfrak{h} \end{array}$$

It follows from Lemma 3.10 of [4] that if $k \geq 0$ and F_k is the free algebra with generators y_1, \ldots, y_k , then $p_k(y_1, \ldots, y_k) = \text{CBH}_k(y_1, \ldots, y_k)$. If now $\mathbf{i} = (i_1, \ldots, i_k)$ is a sequence of elements of $\{1, \ldots, n\}$, we have a unique morphism $\phi_{\mathbf{i}}$: $\mathfrak{f}_k \to \mathfrak{f}_n$, such that $y_1 \mapsto x_{i_1}, \ldots, y_k \mapsto x_{i_k}$.

Then

$$p_n(x_{i_1}\cdots x_{i_k}) = p_{\mathfrak{f}_n} \circ U(\phi_i)(y_1\cdots y_k) = \phi_i \circ p_{\mathfrak{f}_k}(y_1\cdots y_k)$$

= $\phi_i(CBH_k(y_1,\ldots,y_k)) = CBH_k(x_{i_1},\ldots,x_{i_k}) = cbh_n(x_{i_1}\cdots x_{i_k}),$

which proves the lemma.

End of proof of Proposition 1. We denote by $\widehat{p}_n : \widehat{F}_n \to \widehat{\mathfrak{f}}_n$ the map similarly derived from the isomorphism $\widehat{F}_n \simeq \widehat{\oplus}_{k \geq 0} S^k(\widehat{\mathfrak{f}}_n)$ (where $\widehat{\oplus}$ is the direct product). Then $p_n = \operatorname{cbh}_n$ implies $\widehat{p}_n = \widehat{\operatorname{cbh}}_n$.

If now $X \in \widehat{F}_n$ is group-like, let $\ell := \log(X)$. We have $X = 1 + \ell + \ell^2/2! + \cdots$; here $\ell^k \in S^k(\widehat{\mathfrak{f}}_n)$, so $\widehat{p}_n(X) = \ell$. Hence $\widehat{\operatorname{cbh}}_n(X) = \ell = \log(X)$.

2 Corollaries

The KZ associator is defined as follows. Let A_0 , A_1 be noncommutative variables. Let F_2 be the free associative algebra generated by A_0 and A_1 , let $\mathfrak{f}_2 \subset F_2$ be its (free) Lie subalgebra generated by A_0 and A_1 . Let \widehat{F}_2 and $\widehat{\mathfrak{f}}_2$ be the degree completions of F_2 and \mathfrak{f}_2 (A_0 and A_1 have degree 1).

The KZ associator Φ is defined [1] as the renormalized holonomy from 0 to 1 of the differential equation

$$G'(z) = \left(\frac{A_0}{z} + \frac{A_1}{z - 1}\right)G(z),\tag{1}$$

i.e., $\Phi = G_1 G_0^{-1}$, where $G_0, G_1 \in \widehat{F}_2 \otimes \mathcal{O}_{]0,1[}$ are the solutions of (1) with $G_0(z) \sim z^{A_0}$ as $z \to 0^+$ and $G_1(z) \sim (1-z)^{A_1}$ as $z \to 1^-$; here $\mathcal{O}_{]0,1[}$ is the ring of analytic functions on]0,1[, and $\widehat{F}_2 \otimes V$ is the completion of $F_2 \otimes V$ w.r.t. the topology defined by the $F_2^{\geq n} \otimes V$ (here $F_2^{\geq n}$ is the part of F_2 of degree $\geq n$).

We recall Le and Murakami's formula for Φ [3]. We say that a sequence $(a_1, \ldots, a_n) \in \{0, 1\}^n$ is admissible if $a_1 = 1$ and $a_n = 0$. If (a_1, \ldots, a_n) is admissible, we set

$$\omega_{a_1,\dots,a_n} = \int_0^1 \omega_{a_1} \circ \dots \circ \omega_{a_n},$$

where $\omega_0(t) = dt/t$, $\omega_1(t) = dt/(t-1)$ and $\int_a^b \alpha_1 \circ \cdots \circ \alpha_n = \int_{a \le t_1 \le \cdots \le t_n \le b} \alpha_1(t_1) \wedge \cdots \wedge \alpha_n(t_n)$. Up to sign, the ω_{a_1,\dots,a_n} are MZV's (multiple zeta values).

If (i_1, \ldots, i_n) is an arbitrary sequence in $\{0, 1\}^n$, and (a_1, \ldots, a_n) is an admissible sequence, define integers $C_{i_1, \ldots, i_n}^{a_1, \ldots, a_n}$ by the relation

$$\sum_{\substack{(i_1,\dots,i_n)\in\{0,1\}^n\\ =\sum_{\substack{S\subset\{\alpha|a_\alpha=0\},\\ T\subset\{\beta|a_\beta=1\}}} (-1)^{\operatorname{card}(S)+\operatorname{card}(T)} A_1^{\operatorname{card}(T)} A(a_1,\dots,a_n)^{S,T} A_0^{\operatorname{card}(S)},$$

where for any $S \subset \{\alpha | a_{\alpha} = 0\}$, $T \subset \{\beta | a_{\beta} = 1\}$, $A(a_1, \ldots, a_n)^{S,T} := \prod_{\alpha \in [1, n] \setminus (S \cup T)} A_{a_{\alpha}}$ (the product is taken in decreasing order of the α 's).

Theorem 1 ([3]).

$$\Phi = 1 + \sum_{n \ge 1} \sum_{\substack{(a_1, \dots, a_n) \text{ admissible} \\ (i_1, \dots, i_n) \in \{0, 1\}^n}} \omega_{a_1, \dots, a_n} C_{i_1, \dots, i_n}^{a_1, \dots, a_n} A_{i_n} \cdots A_{i_1}.$$

Since $\Phi \in \widehat{F}_2$ is a group-like element, Proposition 1 implies that $\log(\Phi) = \widehat{\mathrm{cbh}}_2(\Phi)$, therefore:

Corollary 1.

$$\log(\Phi) = \sum_{n \ge 1} \sum_{\substack{(a_1, \dots, a_n) \text{ admissible} \\ (i_1, \dots, i_n) \in \{0, 1\}^n}} \omega_{a_1, \dots, a_n} C_{i_1, \dots, i_n}^{a_1, \dots, a_n} CBH_n(A_{i_n}, \dots, A_{i_1}).$$

Using the explicit formula of [2], one computes similarly the logarithm of the analogue Ψ of the KZ associator of the equation $G'(z) = (A/z + \sum_{\zeta \mid \zeta^n = 1} b_{\zeta}/(z-\zeta))G(z)$.

Proposition 1 also implies:

Lemma 2. Let \mathfrak{g} be a nilpotent Lie algebra, G be the associated Lie group, let $a < b \in \mathbb{R}$. Fix $h(z) \in C^0([a,b],\mathfrak{g})$ and let H be the holonomy from a to b of the differential equation H'(z) = h(z)H(z), where $H(z) \in C^1([a,b],G)$. Then

$$\log(H) = \sum_{n>1} \int_{a \le z_1 \le \dots \le z_n \le b} CBH_n(h(z_n), \dots, h(z_1)) dz_1 \cdots dz_n.$$

Acknowledgements

We first established the formula for $\log(\Phi)$ in Corollary 1 by analytic computations (using a direct proof of Lemma 2). It was the referee who remarked its formal similarity with the formula of Le and Murakami (Theorem 1); this remark can be expressed as the equality $\log(\Phi) = \widehat{\operatorname{cbh}}_2(\Phi)$. This led us to try and understand whether this formula followed from the group-likeness of Φ , which is indeed the case (Proposition 1). C. Reutenauer then pointed out that a part of our argument is a result in his book.

- [1] Drinfeld V., On quasitriangular quasi-Hopf algebras and a group closely connected with $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$, Leningrad Math. J., 1991, V.2, 829–860.
- [2] Enriquez B., Quasi-reflection algebras, multiple polylogarithms at roots of 1, and analogues of the group GT, math.QA/0408035.
- [3] Le T.T.Q., Murakami J., Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J., 1996, V.142, 39-65.
- [4] Reutenauer C., Free Lie algebras, London Mathematical Society Monographs. New Series, Vol. 7, Oxford Science Publications, New York, The Clarendon Press, Oxford University Press, 1993.