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model associated with different classes of reduction.
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1 Introduction

It is widely known that the standard integrable hierarchies can be supplemented by a set of
commuting flows of a negative order in a spectral parameter [1]. A standard example is pro-
vided by the modified KdV-hierarchy, which can be embedded in a new extended hierarchy.
This extended hierarchy contains in addition to the original modified KdV equation also the
differential equation of the sine-Gordon model realized as the first negative flow [2, 3, 4, 5, 6, 7].

Quite often the negative flows can only be realized in a form of non-local integral differential
equations. The cases where the negative flow can be cast in form of local differential equation
which has physical application are therefore of special interest. Recently in [11], a negative flow
of the extended AKNS hierarchy [8] was identified with a two-component generalization of the
Camassa–Holm equation. The standard Camassa–Holm equation [9, 10]

ut − utxx = −3uux + 2uxuxx + uuxxx − κux, κ = const (1.1)

enjoys a long history of serving as a model of long waves in shallow water. The two-component
extension [11, 13] differs from equation (1.1) by presence on the right hand side of a new term ρρx,
with the new variable ρ obeying the continuity equation ρt +(uρ)x = 0. Such generalization was
first encountered in a study of deformations of the bihamiltonian structure of hydrodynamic
type [12]. Various multi-component generalizations of the Camassa–Holm model have been
subject of intense investigations in recent literature [14, 15, 16, 17, 18].
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A particular connection between extended AKNS model and a two-component generalization
of the Camassa–Holm equation was found in [11] and in [13]. It was pointed out in [19] that the
second order spectral equation for a two-component Camassa–Holm model can be cast in form
of the first order spectral equation which after appropriate gauge transformations fits into an
sl(2) setup of linear spectral problem and associated zero-curvature equations.

The goal of this article is to formulate a general scheme for connecting an extended AKNS
model to a two-component Camassa–Holm model which would encompass all known ways of
connecting the solution f of the latter model to variables r and q of the former model. Our
approach is built on making gauge copies of an extended AKNS model labeled by angle θ
belonging to an interval 0 ≤ θ ≤ π/2 and then by elimination of one of two components
of the sl(2) wave function reach a second order non-linear partial differential equation which
governs the two-component Camassa–Holm model. We found that the construction naturally
decomposes into three different classes depending on whether angle θ belongs to an interior of
interval 0 ≤ θ ≤ π/2 or is equal to one of two boundary values unifying therefore the results
of [11] and [20]. The map between these three cases induces a Bäcklund like transformations
between different solutions f of the two-component Camassa–Holm equation.

2 A simple derivation of a relation between AKNS
and two-component Camassa–Holm models

Our starting point is a standard first-order linear spectral problem of the AKNS model:

Ψy = (λσ3 +A0) Ψ = λ

[
1 0
0 −1

]
Ψ +

[
0 q
r 0

]
Ψ, (2.1)

where λ is a spectral parameter, y a space variable and Ψ a two-component object:

Ψ =
[
ψ1

ψ2

]
. (2.2)

In addition, the system is augmented by a negative flow defined in terms of a matrix, which is
inverse proportional to λ:

Ψs = D(−1)Ψ =
1
λ

[
A B
C −A

]
Ψ. (2.3)

The compatibility condition arising from equations (2.1) and (2.3):

(A0)s −D(−1)
y +

[
λσ3 +A0, D

(−1)
]

= 0. (2.4)

has a general solution:

D(−1) =
1

4βλ
M0σ3M

−1
0 , A0 = M0 yM

−1
0 , (2.5)

in terms of the zero-grade group element, M0, of SL(2). Note that the solution, D(−1), of the
compatibility condition is connected to (1/λ)σ3-matrix by a similarity transformation.

The factor 1/4β in (2.5) is a general proportionality factor which implies a determinant
formula:

A2 +BC =
1

16β2
(2.6)

for the matrix elements of D(−1) .
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From (2.4) we find that(
Tr(A2

0)
)
s

= 2Tr(A0A0 s) = −2 Tr
(
A0

[
λσ3, D

(−1)
])

= 2Tr
(
λσ3

[
A0, D

(−1)
])

= 2Tr
(
λσ3D

(−1)
y

)
= 4Ay

or

Ay =
1
2
(rq)s. (2.7)

When projected on the zero and the first powers of λ the compatibility condition (2.4) yields

qs = −2B, rs = 2C, (2.8)

and

Ay = qC − rB, By = −2Aq, Cy = 2Ar, (2.9)

respectively. Note that the first of equations (2.9) together with equations (2.8) reproduces
formula (2.7).

Combining the above equations we find that

A = −By

2q
=
qsy
4q

=
Cy

2r
=
rsy
4r
. (2.10)

The spectral equation (2.1) reads in components:

ψ1 y = λψ1 + qψ2, ψ2 y = −λψ2 + rψ1. (2.11)

Now we eliminate the wave-function component ψ2 by substituting

ψ2 =
1
q

(ψ1y − λψ1)

into the remaining second equation of (2.11). In this way we obtain for ψ1

ψ1yy −
qy
q
ψ1y +

λqy
q
ψ1 − λ2ψ1 − rqψ1 = 0.

Introducing

ψ = e−
∫

p dyψ1 (2.12)

with the integrating factor

p(y) =
1
2

(ln q)y

allows to eliminate the term with ψ1y and obtain

ψyy =
(
λ2 − λ (ln q)y −Q

)
ψ (2.13)

with

Q =
1
2

(ln q)yy −
1
4

(ln q)2y − rq =
qyy

2q
− 3

4

(
qy
q

)2

− rq (2.14)

as in [20].
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Eliminating ψ2 from equation (2.3) yields for ψ the following equation:

ψs =
1
4λ

(
qs
q

)
y

ψ − 1
2λ

qs
q
ψy. (2.15)

Compatibility equation ψyys − ψsyy = 0 yields(
qsy
4q

)
y

=
1
2
(rq)s (2.16)

in total agreement with (2.7). To eliminate r from (2.16) we use that

r =
−Ay + qC

B
(2.17)

as follows from the first equation from (2.9). Replacing C by 1/(B16β2) − A2/B as follows
from the determinant relation (2.6) and recalling that B = −qs/2 according to equation (2.8)
we obtain after substituting r from (2.17) into (2.16):(

qsy
q

)
y

=

(
qsyy

qs
− qsyqy

qqs
+

1
2β2

q2

q2s
−
q2sy
2q2s

)
s

. (2.18)

Note that alternatively we could have eliminated q from equation(rsy
4r

)
y

=
1
2
(rq)s

and obtained an equation for r only. It turns out that the equation for r follows from equa-
tion (2.18) by simply substituting r for q.

For brevity we introduce, as in [20], f = ln q. Then expression (2.18) becomes:

(fsfy)y = −

(
f2

y

2
+
f2

sy

2f2
s

− 1
2β2f2

s

− fsyy

fs

)
s

. (2.19)

The above relation can be cast in an equivalent form:

fss

2β2f3
s

+ fsyfy +
1
2
fsfyy −

fssyy

2fs
+
fssyfsy

2f2
s

+
fssfsyy

2f2
s

−
fssf

2
sy

2f3
s

= 0, (2.20)

which first appeared in [11]. The relation (2.20) is also equivalent to the following condition(
1
fs

)
s

= β2

(
f2

s fy − fssy +
fssfsy

fs

)
y

. (2.21)

For a quantity u defined as:

u = β2

(
f2

s fy − fssy +
fssfsy

fs

)
− 1

2
κ, (2.22)

with κ being an integration constant, it holds from relation (2.21) that

uy =
(

1
fs

)
s

. (2.23)
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Next, as in [21], we define a quantity m as β2f2
s fy and derive from relations (2.22) and (2.23)

that

m = β2f2
s fy = u+ β2

(
fssy −

fssfsy

fs

)
+

1
2
κ = u− β2fs

(
fs

(
1
fs

)
s

)
y

+
1
2
κ

= u− β2fs(fsuy)y +
1
2
κ. (2.24)

Taking a derivative of m with respect to s yields

ms = β2
(
2fyfsfss + f2

s fsy

)
= 2m

fss

fs
+ β2f2

s fsy = −2mfs

(
1
fs

)
s

+ β2f2
s fsy

= −2mfsuy + β2f2
s fsy. (2.25)

In terms of quantities u and ρ = fs equations (2.23) and (2.25) take the following form

ρs = −ρ2uy, (2.26)

ms = −2mρuy + β2ρ2ρy, (2.27)

for m given by

m = u− β2ρ(ρuy)y +
1
2
κ. (2.28)

An inverse reciprocal transformation (y, s) 7→ (x, t) is defined by relations:

Fx = ρFy, Ft = Fs − ρuFy (2.29)

for an arbitrary function F . Equations (2.26), (2.27) and (2.28) take a form

ρt = − (uρ)x , (2.30)

mt = −2mux −mxu+ β2ρρx, (2.31)

m = u− β2uxx +
1
2
κ (2.32)

in terms of the (x, t) variables. Equation (2.30) is called the compatibility condition, while
equation (2.31) is the two-component Camassa–Holm equation [11], which agrees with standard
Camassa–Holm equation (1.1) for ρ = 0.

3 General reduction scheme from AKNS system
to the two-component Camassa–Holm equation

Next, we perform the transformation

Ψ → U(θ, f)Ψ =
[
ϕ
η

]
(3.1)

on AKNS two-component Ψ function from (2.2). U(θ, f) stands for an orthogonal matrix:

U(θ, f) = Ω(θ) exp
(
−1

2
fσ3

)
, 0 ≤ θ ≤ π

2
, (3.2)
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where Ω(θ) is given by

Ω(θ) = σ3e
i θσ2 =

[
cos θ sin θ
sin θ − cos θ

]
(3.3)

and f is a function of y and s, which is going to be determined below for each value of θ.
Note that Ω−1(θ) = Ω(θ) and Ω(0) = σ3, Ω(π/2) = σ1.
Taking a derivative with respect to y and s on both sides of (3.1) one gets[

ϕ
η

]
y

=
(
UyU−1 + U

[
λ q
r −λ

]
U−1

)[
ϕ
η

]
, (3.4)[

ϕ
η

]
s

=
(
UsU−1 + UD(−1)U−1

)[
ϕ
η

]
. (3.5)

Thus, the flows of the new two-component function defined in (3.2) are governed by the gauge
transformations of the AKNS matrices λσ3 + A0 and D(−1), respectively. This ensures that
the original AKNS compatibility condition (2.4) still holds for the rotated system defined by
equations (3.4) and (3.5).

From equation (3.4) we derive that:

λ (ϕ cos(2θ) + η sin(2θ)) = ϕy +
1
2
ϕ
(
fy cos(2θ)− sin(2θ)

(
qe−f + ref

))
+ η

(
1
2
fy sin(2θ)− ref sin2(θ) + qe−f cos2(θ)

)
. (3.6)

Repeating derivation with respect to y one more time yields[
ϕ
η

]
yy

=
[(
UyU−1 + U

[
λ q
r −λ

]
U−1

)
y

+
(
UyU−1 + U

[
λ q
r −λ

]
U−1

)2] [
ϕ
η

]
= U

[
λ2 − λfy + f2

y /4− fyy/2 + qr qy − fyq

ry + fyr λ2 − λfy + f2
y /4 + fyy/2 + qr

]
U−1

[
ϕ
η

]
. (3.7)

For [
ϕ̄
η̄

]
= Ω(θ)

[
ϕ
η

]
the result is[

ϕ̄
η̄

]
yy

=
[
λ2 − λfy + f2

y /4− fyy/2 + qr (qy − fyq)e−f

(ry + fyr)ef λ2 − λfy + f2
y /4 + fyy/2 + qr

] [
ϕ̄
η̄

]
and shows in a transparent way that the condition for eliminating η̄ from the equation for ϕ̄yy

requires (qy − fyq) exp(−f) = 0 or q = exp(f). Similarly, the condition for eliminating ϕ̄ from
the equation for η̄yy requires (ry + fyr) exp(f) = 0 or r = exp(−f). Clearly these reductions
reproduce results of the previous section.

To obtain a more general result we return to equation (3.7). Projecting on the ϕ-component
in equation (3.7) gives

ϕyy = λ2ϕ− λfyϕ+
(

1
4
f2

y + qr

)
ϕ+

(
−1

2
fy cos(2θ) +

1
2
(qe−f + ref ) sin(2θ)

)
y

ϕ

+
(
−1

2
fy sin(2θ)− qe−f cos2 θ + ref sin2 θ

)
y

η. (3.8)
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Next, we will eliminate η in order to obtain an equation for the one-component variable ϕ. This
is analogous to the calculation made below equation (2.11), where the first order two-component
AKNS spectral problem was reduced to second order equation for the one-component function ψ.
To accomplish the task we must choose f so that the identity

1
2
fy sin(2θ) = ref sin2 θ − qe−f cos2 θ + c0 (3.9)

holds, where c0 is an integration constant. The identity (3.9) ensures that terms with η drop
out of equation (3.8).

Note, that for θ = π/4 and c0 = 0 we recover identity fy = r exp(f)−q exp(−f) from [11, 19].
For θ = 0, c0 = 1 and θ = π/2, c0 = −1 we get, respectively, q = exp(f) and r = exp(−f) as
in [20]. From now on we take c0 = 0 as long as 0 < θ < π/2.

Let us shift a function f by a constant term, ln (tan θ):

f −→ fθ = f + ln (tan θ) . (3.10)

Then relation (3.9) can be rewritten for 0 < θ < π/2 as

fθy = refθ − qe−fθ (3.11)

which is of the same form as the relation found in reference [11]. It therefore appears that for
all values of θ in the the 0 < θ < π/2 relation between function f and AKNS variables q and r
remains invariant up to shift of f by a constant.

Now, we turn our attention back to equation (3.5) rewritten as[
ϕ
η

]
s

= U
(
−1

2
fsσ3 +

1
λ

[
A B
C −A

])
U−1

[
ϕ
η

]
.

For the ϕ component we find:

ϕs = −1
2
fs (ϕ cos(2θ) + η sin(2θ)) +

1
2λ
ϕ
(
2A cos(2θ) + Cef sin(2θ) +Be−f sin(2θ)

)
+

1
λ
η
(
A sin(2θ) + Cef sin2 θ −Be−f cos2 θ

)
. (3.12)

For 0 < θ < π/2 we choose

B =
(
A− 1

4β

)
efθ , C = −

(
A+

1
4β

)
e−fθ , (3.13)

which agrees with the determinant formula A2 +BC = 1/16β2 and implies identities:

2A−Be−fθ + Cefθ = 0, (3.14)

Be−fθ + Cefθ = − 1
2β
. (3.15)

The first of these identities, (3.14), ensures that the last three terms containing η on the right
hand side of equation (3.12) cancel.

Recall at this point relation (3.6). Simplifying this relation by invoking identity (3.9) and
plugging it into equation (3.12) gives

ϕs = − fs

2λ
ϕy +

1
λ
ϕ

(
−1

4
fsfy cos(2θ) +

fs

4
sin(2θ)

(
qe−f + ref

)
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+A cos(2θ) +
1
2
Be−f sin(2θ) +

1
2
Cef sin(2θ)

)
. (3.16)

From (3.13) we find

refθ =
Cy

2A
efθ =

1
2A

(
fy

(
A+

1
4β

)
−Ay

)
, (3.17)

qe−fθ = −By

2A
e−fθ =

−1
2A

(
fy

(
A− 1

4β

)
+Ay

)
(3.18)

and therefore

qe−fθ + refθ =
fy

4Aβ
− Ay

A
. (3.19)

Due to the above relation and identity (3.15) equation (3.16) becomes

ϕs = − fs

2λ
ϕy +

1
λ
ϕ

(
− 1

4β

(
1− fsfy

4A

)
− Ay

A

fs

4

)
. (3.20)

Taking derivative of (3.9) with respect to s we find

1
2
fsy = Cefθ +Be−fθ +

1
2
fs

(
qe−fθ + refθ

)
= − 1

2β
+
fsfy

8Aβ
− fsAy

2A
. (3.21)

Thus equation (3.20) becomes

ϕs = − fs

2λ
ϕy +

fsy

4λ
ϕ. (3.22)

We now turn our attention to equation (3.8). The last term containing η vanishes due to the
identity (3.9). In addition it holds that

fsy

2fs
+

1
2βfs

= −1
2
fy cos(2θ) +

1
2

(
qe−f + ref

)
sin(2θ) =

1
2

(
qe−fθ + refθ

)
(3.23)

as follows from relations (3.19) and (3.21). Also, it holds from relations (3.17)–(3.18) that for
0 < θ < π/2:

rq =
(
fsy

2fs
+

1
2βfs

)2

− 1
4
f2

y = g2 − f2
y /4, (3.24)

where

g =
fsy

2fs
+

1
2βfs

. (3.25)

Thus, the remaining constant (the ones which do not contain λ) terms on the right hand side
of equation (3.8) are equal to

1
4
f2

y + qr +
(
−1

2
fy cos(2θ) +

1
2
(qe−f + ref ) sin(2θ)

)
y

=
1
4
f2

y + qr +
1
2

(
qe−fθ + refθ

)
y

= g2 + gy. (3.26)

Therefore, we can write equation (3.8) as:

ϕyy =
(
λ2 − λfy −Q

)
ϕ, Q = −g2 − gy (3.27)

with g given by (3.25). The above spectral problem together with equation (3.22) ensures via
compatibility condition ϕyys − ϕsyy = 0, that

Qs +
1
2
fyyfs + fyfsy = 0 (3.28)

holds. The latter is equivalent to the two-component Camassa–Holm equation (2.19).
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4 The θ = 0 case and Bäcklund transformation
between different solutions

We now consider θ at the boundary of the 0 < θ < π/2 interval. For illustration we take θ = 0,
the remaining case θ = π/2 can be analyzed in a similar way. Plugging θ = 0 into relation (3.26)
we obtain

rq|θ=0 = −1
4
f2

y +
1
2
fyy + g2 + gy = g2 − 1

4
f2

y +
(

1
2
fy + g

)
y

.

Comparing with relation (3.24) we get

rq|θ=0 = rq|θ +
(

1
2
fy + g

)
y

(4.1)

which describes a relation between the product rq for zero and non-zero values of the angle θ,
with rq|θ being associated with θ within an interval 0 < θ < π/2.

Recall that q = exp(f) for θ = 0. It follows that A = qsy/4q = (fsy + fsfy)/4 and equa-
tion (2.7) is equivalent to

(rq|θ=0)s =
1
2
(fsy + fsfy)y. (4.2)

On the other hand, it follows from (2.17) and C = 1/(16β2B)−A2/B that

rq|θ=0 =
1
2

(
fyy −

1
2
f2

y −
f2

sy

2f2
s

+
1

2β2f2
s

+
fsyy

fs

)

and accordingly equation (4.2) is equivalent to the two-component Camassa–Holm equation
(2.19).

From (3.18) one finds for 0 < θ < π/2 that:

q = P−(fθ)efθ , (4.3)

where

P±(f) = ±1
2
fy + g = ±fy

2
+
fsy

2fs
+

1
2βfs

.

Obviously P±(fθ) = P±(f).
We are now ready to show that

f̄ = fθ + ln (P−(fθ)) = fθ + ln
(
−
fθ y

2
+
fθ sy

2fθ s
+

1
2βfθ s

)
satisfies the two-component Camassa–Holm equation (2.19) for any f or fθ, which satisfies
equation (2.19). For 0 < θ < π/2, it holds that q = exp(f̄) and therefore

A = qsy/4q = (f̄sy + f̄sf̄y)/4 = (fsy + fsfy)/4 +
fsP− y + P− ys + P− sfy

4P−
. (4.4)

We will now show that

(rq|θ)s = (rq|θ=0)s −
(

1
2
fy + g

)
ys

=
1
2
(fsy + fsfy)y +

(
fsP−y + P−ys + P−sfy

2P−

)
y

. (4.5)
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Using equation (4.2) one can easily show that equation (4.5) holds if the following relation

− (fy + P−)s =
fsP− y + P− ys + P− sfy

2P−
is true. We note that the above relation can be rewritten as

(P2
−)s + 2fysP− + fsP− y + P− sy + P− sfy = 0 .

The last equation is fully equivalent to the two-component Camassa–Holm equation (3.28) as
can be seen by rewriting Q from relation (3.27) as Q = −(P− + fy/2)2 − (P− + fy/2)y. This
completes the proof for relation (4.5).

It follows from (2.17) and C = 1/(16β2B)−A2/B that

rq|θ =
1
2

(
f̄yy −

1
2
f̄2

y −
f̄2

sy

2f̄2
s

+
1

2β2f̄2
s

+
f̄syy

f̄s

)
.

Thus, due to (4.4) and (4.5) we have proved explicitly that

f̄ = f + ln
(

tan θ
(
−fy

2
+
fsy

2fs
+

1
2βfs

))
= fθ + lnP−(fθ) (4.6)

is a solution of a 2-component version of the Camassa–Holm equation. Thus the transformation

f → f̄

maps a solution f of a 2-component version of the Camassa–Holm equation to a different
solution f̄ . For example, let us consider, as in [21], the Camassa–Holm function:

f(y, s) = ln
a

(1)
1 a

(1)
2 z1e

s
2z1

+2yz1 + a
(2)
1 a

(2)
2 z2e

s
2z2

+2yz2

(z2 − z1)a
(2)
1 a

(1)
2

, (4.7)

where a(j)
i , i, j = 1, 2 and z1 and z2 are constants. The function f solves equation (2.19) for

β2 = 1. Then, as an explicit calculation verifies, the map f → f̄ with f̄ given by expression (4.6)
yields another solution of equation (2.19) for β2 = 1 and θ 6= 0.

For θ = π/2 we have r = exp(−f) and comparing with the result for 0 < θ < π/2:

r = P+(fθ)e−fθ , (4.8)

we get a Bäcklund transformation

f → fθ − ln (P+(fθ)) = fθ − ln
(
fθy

2
+
fθsy

2fθs
+

1
2βfθs

)
.

Additional Bäcklund transformations can be obtained by comparing expressions for q and r
variables in terms of f for the boundary values of θ.

We first turn our attention to the case of θ = 0 for which we have q = exp(f) and

r =
1
2

(
fyy −

1
2
f2

y −
f2

sy

2f2
s

+
1

2β2f2
s

+
fsyy

fs

)
e−f =

(
P2

+ − P+fy + P+y

)
e−f . (4.9)

From the AKNS equation (2.18) we see immediately that f = ln q must satisfy the 2-component
Camassa–Holm equation (2.19). Note, in addition, that the AKNS equation (2.18) is still valid
if we replace q by r and therefore

f − ln
(
P2

+ − P+fy + P+y

)
must satisfy the 2-component Camassa–Holm equation (2.19) as well.
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Next, for θ = π/2 we have r = exp(−f) and

q =
1
2

(
−fyy −

1
2
f2

y −
f2

sy

2f2
s

+
1

2β2f2
s

+
fsyy

fs

)
ef =

(
P2
− + P−fy + P−y

)
ef . (4.10)

Comparing expressions for q and r we find find that if f is a solution of the 2-component
Camassa–Holm equation (2.19) then so is also

f + ln
(
P2
− + P−fy + P−y

)
.

To summarize we found the following Bäcklund maps

f →
{
fθ ± ln (P∓(fθ)) , fθ = f + const,

f ± ln
(
P2
∓ ± P∓fy + P∓y

)
.

The top row lists maps between θ = 0, π/2 cases and θ within the interval 0 < θ < π/2 [20].
The bottom row shows new maps derived for the θ = 0 and π/2 cases only.

5 Conclusions

These notes describe an attempt to construct a general and universal formalism which would
realize possible connections between the 2-component Camassa–Holm equation and AKNS hie-
rarchy extended by a negative flow.

Construction yields gauge copies of an extended AKNS model connected by a continuous
parameter (angle) θ taking values in an interval 0 ≤ θ ≤ π/2. Eliminating one of two components
of the sl(2) wave function gives a second order non-linear partial differential equation for a single
function f of the two-component Camassa–Holm model. Functions f corresponding to different
values of θ in an interior of interval 0 ≤ θ ≤ π/2 differ only by a trivial constant and fall into
a class considered in [11]. Two remaining and separate cases correspond to θ equal to 0 and π/2
and agree with a structure described in [20].
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