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Abstract. The bi-Hamiltonian structure of the two known vector generalizations of the
mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-
stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted
by the Lie groups G = SO(N + 1), SU(N). The derivation of the bi-Hamiltonian structure
uses a parallel frame and connection along the curve, tied to a zero curvature Maurer–Cartan
form on G, and this yields the mKdV recursion operators in a geometric vectorial form. The
kernel of these recursion operators is shown to yield two hyperbolic vector generalizations
of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies
are described in an explicit form, given by wave map equations and mKdV analogs of
Schrödinger map equations.
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1 Introduction

There has been much recent interest in the close relation between integrable partial differential
equations and the differential geometry of plane and space curves (see [10, 11, 12, 13, 20]
for an overview and many results). The present paper studies flows of curves in Riemannian
manifolds modeled by real symmetric spaces G/SO(N) for arbitrary N ≥ 2, where G is a com-
pact semisimple Lie-group with an involutive automorphism that leaves fixed a Lie subgroup
SO(N) ⊂ G. Such spaces [16] are exhausted by the groups G = SO(N +1), SU(N) and describe
curved G-invariant geometries that are a natural generalization of Euclidean spaces.

It is shown that if non-stretching curves are described using a moving parallel frame and
an associated frame connection 1-form in G/SO(N) then the frame structure equations for
torsion and curvature encode O(N − 1)-invariant bi-Hamiltonian operators. These operators
will be demonstrated to produce a hierarchy of integrable flows of curves in which the frame
components of the principal normal along the curve satisfy O(N − 1)-invariant vector soliton
equations. The hierarchies for both SO(N + 1)/SO(N), SU(N)/SO(N) will be seen to possess
a scaling symmetry and accordingly will be organized by the scaling weight of the flows. The
0 flow just consists of a convective (traveling wave) equation, while the +1 flow will be shown to
give the two vector generalizations of the mKdV equation known from symmetry-integrability
classifications of vector evolution equations in [27]. A recent classification analysis [5] found
there are vector hyperbolic equations for which the respective vector mKdV equations are higher
symmetries. These two vector hyperbolic equations will be shown to describe a −1 flow in the
respective hierarchies for SO(N + 1)/SO(N) and SU(N)/SO(N).

As further results, the Hamiltonian operators will yield explicit O(N − 1)-invariant recursion
operators for higher symmetries and higher conservation laws of the vector mKdV equations
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and the vector hyperbolic equations. The associated curve flows produced from these equations
will describe geometric nonlinear PDEs, in particular given by wave maps and mKdV analogs
of Schrödinger maps.

Previous fundamental work on vector generalizations of KdV and mKdV equations as well
as their Hamiltonian structures and geometric origin appeared in [6, 7, 21, 22]. In addition, the
bi-Hamiltonian structure of both vector mKdV equations was first written down in [30] from
a more algebraic point of view, in a multi-component (non-invariant) notation. Special cases of
two component KdV–mKdV integrable systems related to vector mKdV equations have been
discussed recently in [15, 28, 25].

2 Curve flows, parallel frames,
and Riemannian symmetric spaces

Let γ(t, x) be a flow of a non-stretching curve in some n-dimensional Riemannian manifold
(M, g). Write Y = γt for the evolution vector of the curve and write X = γx for the tangent
vector along the curve normalized by g(X, X) = 1, which is the condition that γ is non-stretching,
so thus x represents arclength. In the tangent space TγM of the two-dimensional surface swept
out by γ(t, x) we introduce orthonormal frame vectors ea and connection 1-forms ωab = ω [ab]

related through the Riemannian covariant derivative operator g∇ in the standard way [17]:

g∇xea = (Xyωa
b)eb,

g∇tea = (Y yωa
b)eb.

(Throughout, a, b = 1, . . . , n denote frame indices which get raised and lowered by the Euclidean
metric δab = diag(+1, . . . ,+1)). Now choose the frame along the curve to be parallel [9], so it
is adapted to γ via

ea := X (a = 1), (ea)⊥ (a = 2, . . . , n)

where g(X, (ea)⊥) = 0, such that the covariant derivative of each of the n−1 normal vectors (ea)⊥
in the frame is tangent to γ,

g∇x(ea)⊥ = −vaX (1)

holding for some functions va, while the covariant derivative of the tangent vector X in the
frame is normal to γ,

g∇xX = va(ea)⊥. (2)

Equivalently, along γ the connection 1-forms of the parallel frame are given by the skew matrix
ωx

ab := Xyωab = 2ex
[avb] where ex

a = g(X, ea) is the row matrix of the frame in the tangent
direction. In matrix notation we have

ex
a = (1,~0), ωxa

b =
(

0 vb

−va 0

)
, (3)

with ~0, 0 respectively denoting the 1 × (n − 1) zero row-matrix and (n − 1) × (n − 1) zero
skew-matrix. (Hereafter, upper/lower frame indices will represent row/column matrices.) This
matrix description (3) of a parallel frame has a purely algebraic characterization: ex

a is a fixed
unit vector in Rn preserved by a SO(n − 1) rotation subgroup of the local frame structure
group SO(n), while ωxa

b belongs to the orthogonal complement of the corresponding rotation
subalgebra so(n− 1) in the Lie algebra so(n) of SO(n).
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The curve flow has associated to it the pullback of the Cartan structure equations [17]
expressing that the covariant derivatives g∇x := Xyg∇ along the curve and g∇t := Y yg∇ along
the flow have vanishing torsion

g∇xγt − g∇tγx = [X, Y ] = 0 (4)

and carry curvature determined from the metric g,

[g∇x, g∇t] = R(X, Y ) (5)

given by the Riemann tensor R(X, Y ) which is a linear map on TxM depending bilinearly
on X, Y . In frame components the torsion and curvature equations look like [17]

0 = Dxet
a −Dtex

a + et
bωxb

a − ex
bωtb

a, (6)

Ra
b(X, Y ) = Dtωxa

b −Dxωta
b + ωta

cωxc
b − ωxa

cωtc
b. (7)

Here et
a := g(Y, ea) and ωta

b := Y yωa
b = g(eb, g∇tea) are respectively the frame row-matrix

and connection skew-matrix in the flow direction, and Ra
b(X, Y ) := g(eb, [g∇x, g∇t]ea) is the

curvature matrix.
As outlined in [2, 21], these frame equations (6) and (7) directly encode a bi-Hamiltonian

structure based on geometrical variables when the geometry of M is characterized by having its
frame curvature matrix Ra

b(ec, ed) be constant on M . In this situation the Hamiltonian variable
is given by the principal normal v := g∇xX = va(ea)⊥ in the tangent direction of γ, while the
principal normal in the flow direction $ := g∇tX = $a(ea)⊥ represents a Hamiltonian covector
field, and the normal part of the flow vector h⊥ := Y⊥ = ha(ea)⊥ represents a Hamiltonian
vector field1. In a parallel frame these variables va, $a, ha are encoded respectively in the top
row of the connection matrices ωxa

b, ωta
b, and in the row matrix (et

a)⊥ = et
a − h‖ex

a where
h‖ := g(Y, X) is the tangential part of the flow vector.

A wide class of Riemannian manifolds (M, g) in which the frame curvature matrix Ra
b(ec, ed)

is constant on M consists of the symmetric spaces M = G/H for compact semisimple Lie groups
G ⊃ H (such that H is invariant under an involutive automorphism of G). In such spaces the
Riemannian curvature tensor and the metric tensor are covariantly constant and G-invariant
[17], which implies constancy of the curvature matrix Ra

b(ec, ed). The metric tensor g on M
is given by the Cartan–Killing inner product 〈·, ·〉 on TxG ' g restricted to the Lie algebra
quotient space p = g/h with TxH ' h, where g = h ⊕ p decomposes such that [h, p] ⊆ p and
[p, p] ⊆ h (corresponding to the eigenspaces of the adjoint action of the involutive automorphism
of G that leaves H invariant). A complete classification of symmetric spaces is given in [16];
their geometric properties are summarized in [17]. In these spaces H acts as a gauge group
so consequently the bi-Hamiltonian structure encoded in the frame equations will be invariant
under the subgroup of H that leaves X fixed2.

Thus in order to obtain O(N−1)-invariant bi-Hamiltonian operators, as sought here, we need
the group O(N−1) to be the isotropy subgroup in H leaving X fixed. Hence we restrict attention
to the symmetric spaces M = G/SO(N) with H = SO(N) ⊃ O(N−1). ¿From the classification
in [16] all examples of these spaces are exhausted by G = SO(N +1), SU(N). The example M =
SO(N + 1)/SO(N) ' SN is isometric to the N -sphere, which has constant curvature. In this
symmetric space, the encoding of bi-Hamiltonian operators in terms of geometric variables has
been worked out in [2] using the just intrinsic Riemannian geometry of the N -sphere, following
closely the ideas in [20, 21]. An extrinsic approach based on Klein geometry [26, 5] will be used
here, as it applicable to both symmetric spaces SO(N + 1)/SO(N) and SU(N)/SO(N).

1See [14, 18] and the appendix of [2] for a summary of Hamiltonian theory relevant to PDE systems.
2More details will be given elsewhere [3].
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In a Klein geometry the left-invariant g-valued Maurer–Cartan form on the Lie group G is
identified with a zero-curvature connection 1-form ωG called the Cartan connection [26]. Thus

0 = dωG +
1
2
[ωG, ωG],

where d is the total exterior derivative on the group manifold G. Through the Lie algebra
decomposition g = so(N)⊕ p with [p, p] ⊂ so(N) and [so(N), p] ⊂ p, the Cartan connection de-
termines a Riemannian structure on the quotient space M = G/SO(N) where G is regarded [26]
as a principal SO(N) bundle over M . Fix any local section of this bundle and pull-back ωG

to give a g-valued 1-form gω at x in M . The effect of changing the local section is to induce
a SO(N) gauge transformation on gω. Let σ denote an involutive automorphism of g such that
so(N) is the eigenspace σ = +1, p is the eigenspace σ = −1. We consider the corresponding
decomposition of gω: it can be shown that [26] the symmetric part

ω :=
1
2
(gω + σ(gω)) (8)

defines a so(N)-valued connection 1-form for the group action of SO(N) on the tangent space
TxM ' p, while the antisymmetric part

e :=
1
2
(gω − σ(gω)) (9)

defines a p-valued coframe for the Cartan–Killing inner product 〈·, ·〉p on TxG ' g restricted to
TxM ' p. This inner product 〈·, ·〉p provides a Riemannian metric

g = 〈e ⊗ e〉p

on M = G/SO(N), such that the squared norm of any vector X ∈ TxM is |X|2g = g(X, X) =
〈Xye, Xye〉p.

Moreover there is a G-invariant covariant derivative ∇ associated to this structure whose
restriction to the tangent space TγM for any curve flow γ(t, x) in M = G/SO(N) is defined via

∇xe = [e, γxyω ] and ∇te = [e, γtyω ]. (10)

These derivatives ∇x, ∇t obey the Cartan structure equations (4) and (5), namely they have
zero torsion

0 = (∇xγt −∇tγx)ye = Dxet −Dtex + [ωx , et ]− [ωt , ex ] (11)

and carry G-invariant curvature

R(γx, γt)e = [∇x,∇t]e = Dxωt −Dtωx + [ωx , ωt ] = −[ex , et ], (12)

where

ex := γxye, et := γtye, ωx := γxyω, ωt := γtyω.

The G-invariant covariant derivative and curvature on TγM are thus seen to coincide with
the Riemannian ones determined from the metric g. More generally, in this manner [26] the
relations (8) and (9) canonically solder a Klein geometry onto a Riemannian symmetric-space
geometry.

Geometrically, ex and ωx represent the tangential part of the coframe and the connection
1-form along γ. For a non-stretching curve γ, where x is the arclength, note ex has unit norm in
the inner product, 〈ex , ex〉p = 1. This implies p has a decomposition into tangential and normal
subspaces p‖ and p⊥ with respect to ex such that 〈ex , p⊥〉p = 0, with p = p⊥ ⊕ p‖ and p‖ ' R.
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Remark 1. A main insight now, generalizing the results in [21, 2], is that the Cartan structure
equations on the surface swept out by the curve flow γ(t, x) in M = G/SO(N) will geometrically
encode O(N − 1)-invariant bi-Hamiltonian operators if the gauge (rotation) freedom of the
group action SO(N) on e and ω is used to fix them to be a parallel coframe and its associated
connection 1-form related by the Riemannian covariant derivative. The groups G = SO(N + 1)
and G = SU(N) will produce a different encoding except when N = 2, since in that case
TxM ' so(3)/so(2) ' su(2)/so(2) is the same tangent space for M = SO(3)/SO(2) and M =
SU(2)/SO(2) due to the Lie-algebra isomorphism so(3) ' su(2). This will be seen to account
for the existence of the two different vector generalizations of the scalar mKdV hierarchy.

The algebraic characterization of a parallel frame for curves in Riemannian geometry extends
naturally to the setting of Klein geometry, via the property that ex is preserved by a SO(N −
1) rotation subgroup of the local frame structure group SO(N) acting on p ⊂ g, while ωx

belongs to the orthogonal complement of the SO(N − 1) rotation Lie subalgebra so(N − 1)
contained in the Lie algebra so(N) of SO(N). Their geometrical meaning, however, generalizes
the Riemannian properties (1) and (2), as follows. Let ea be a frame whose dual coframe is
identified with the p-valued coframe e in a fixed orthonormal basis for p ⊂ g. Decompose the
coframe into parallel/perpendicular parts with respect to ex in an algebraic sense as defined by
the kernel/cokernel of Lie algebra multiplication [ex , · ]g = ad(ex). Thus we have e = (eC , eC⊥)
where the p-valued covectors eC , eC⊥ satisfy [ex , eC ]g = 0, and eC⊥ is orthogonal to eC , so
[ex , eC⊥ ]g 6= 0. Note there is a corresponding algebraic decomposition of the tangent space
TxM ' p = g/so(N) given by p = pC⊕pC⊥ , with p‖ ⊆ pC and pC⊥ ⊆ p⊥, where [p‖, pC ] = 0 and
〈pC⊥ , pC〉p = 0, so [p‖, pC⊥ ] 6= 0 (namely, pC is the centralizer of ex in p ⊂ g). This decomposition
is preserved by ad(ωx ) which acts as an infinitesimal rotation, ad(ωx )pC ⊆ pC⊥ , ad(ωx )pC⊥ ⊆
pC . Hence, from equation (10), the derivative ∇x of a covector perpendicular (respectively
parallel) to ex lies parallel (respectively perpendicular) to ex , namely ∇xeC belongs to pC⊥ ,
∇xeC⊥ belongs to pC . In the Riemannian setting, these properties correspond to g∇x(ea)C =
va

b(e
b)C⊥ , g∇x(ea)C⊥ = −v a

b (eb)C for some functions vab = −vba. Such a frame will be called
SO(N)-parallel and defines a strict generalization of a Riemannian parallel frame whenever pC

is larger than p‖.

3 Bi-Hamiltonian operators and vector soliton equations
for SO(N + 1)/SO(N) ' SN

Recall so(k) is a real vector space isomorphic to the Lie algebra of k×k skew-symmetric matrices.
So the tangent space TxM = so(N + 1)/so(N) of the Riemannian manifold M = SO(N +
1)/SO(N) is isomorphic to p ' RN , as described by the following canonical decomposition(

0 p
−pT 0

)
∈ p ⊂ so(N + 1) = g, 0 ∈ so(N) = h, p ∈ RN

parameterized by the N component vector p. The Cartan–Killing inner product on g is given
by the trace of the product of an so(N +1) matrix and a transpose so(N +1) matrix, multiplied
by a normalization factor 1

2 . The norm-squared on the quotient space p thereby reduces to the
ordinary dot product of vectors p:〈(

0 p
−pT 0

)
,

(
0 p
−pT 0

)〉
=

1
2
tr
((

0 p
−pT 0

)
T

(
0 p
−pT 0

))
= p · p.

Note the Cartan–Killing inner product provides a canonical identification between p ' RN and
its dual p∗ ' RN .
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Let γ(t, x) be a flow of a non-stretching curve in M = SO(N+1)/SO(N) ' SN . We introduce
a SO(N)-parallel coframe e ∈ T ∗γ M ⊗ p and its associated connection 1-form ω ∈ T ∗γ M ⊗ so(N)
along γ by putting3

ex = γxye =
(

0 (1,~0)
−(1,~0)T 0

)
∈ p, (1,~0) ∈ RN , ~0 ∈ RN−1 (13)

and

ωx = γxyω =
(

0 (0,~0)
(0,~0)T ωx

)
∈ so(N + 1),

where

ωx =
(

0 ~v
−~vT 0

)
∈ so(N), ~v ∈ RN−1, 0 ∈ so(N − 1).

Note the form of ex indicates the coframe e is adapted to γ, with (1,~0) representing a choice
of a constant unit-norm vector in p ' RN , so 〈ex , ex〉p = (1,~0) · (1,~0) = 1. All such choices are
equivalent through the SO(N) rotation gauge freedom on the coframe and connection 1-form.
Consequently, there is a decomposition of SO(N + 1)/SO(N) matrices(

0 p
−pT 0

)
=
(

0 (p‖,~0)
−(p‖,~0)T 0

)
+
(

0 (0, ~p⊥)
−(0, ~p⊥)T 0

)
∈ p

into tangential and normal parts relative to ex via a corresponding decomposition of vectors
given by

p = (p‖, ~p⊥) ∈ RN

relative to (1,~0). Thus p‖ is identified with p‖ = pC , and ~p⊥ with p⊥ = pC⊥ .
In the flow direction we put

et = γtye =

(
0 (h‖,~h⊥)

−(h‖,~h⊥)T 0

)
∈ p, (h‖,~h⊥) ∈ RN , ~h⊥ ∈ RN−1

and

ωt = γtyω =
(

0 (0,~0)
(0,~0)T ωt

)
∈ so(N + 1), (14)

where

ωt =
(

0 ~$
−~$T Θ

)
∈ so(N), ~$ ∈ RN−1, Θ ∈ so(N − 1). (15)

The components h‖, ~h⊥ correspond to decomposing et = g(γt, γx)ex + (γt)⊥ye⊥ into tangential
and normal parts relative to ex . We now have

[ex , et ] = −
(

0 0
0 h⊥

)
∈ so(N + 1), h⊥ =

(
0 ~h⊥

−~h⊥
T 0

)
∈ so(N),

3Note ω is related to e by the Riemannian covariant derivative (10) on the surface swept out by the curve
flow γ(t, x).



Hamiltonian Flows and Vector Soliton Equations 7

[ωt , et ] = −
(

0 (0, ~$)
−(0, ~$)T 0

)
∈ p⊥,

[ωx , et ] = −

(
0 (−~v · ~h⊥, h‖~v)

−(−~v · ~h⊥, h‖~v)T 0

)
∈ p.

Hence the curvature equation (12) reduces to

Dt~v −Dx ~$ − ~vyΘ = −~h⊥, (16)
−DxΘ + ~v ⊗ ~$ − ~$ ⊗ ~v = 0, (17)

while the torsion equation (11) yields

0 = Dxh‖ + ~v · ~h⊥, (18)

0 = ~$ − h‖~v + Dx
~h⊥. (19)

Here ⊗ denotes the outer product of pairs of vectors (1 × N row matrices), producing N × N
matrices ~A⊗ ~B = ~AT ~B, and y denotes multiplication of N ×N matrices on vectors (1×N row
matrices), ~Ay( ~B ⊗ ~C) = ( ~A · ~B)~C which is the transpose of the standard matrix product on
column vectors, ( ~B ⊗ ~C) ~A = (~C · ~A) ~B. To proceed we use equations (17) and (18) to eliminate

Θ = −D−1
x (~$ ⊗ ~v − ~v ⊗ ~$), h‖ = −D−1

x (~v · ~h⊥) (20)

in terms of the variables ~v, ~h⊥, ~$. Then equation (16) gives a flow on ~v,

~vt = Dx ~$ − ~vyD−1
x (~$ ⊗ ~v − ~v ⊗ ~$)− χ~h⊥

with

~$ = −D−1
x (~v · ~h⊥)~v −Dx

~h⊥

obtained from equation (19). Here χ = 1 represents the Riemannian scalar curvature of SO(N +
1)/SO(N) ' SN (see [2]). In these equations we read off the operators

H = Dx + ~vyD−1
x (~v∧ ), J = Dx + D−1

x (~v· )~v,

where ~A ∧ ~B = ~A⊗ ~B − ~B ⊗ ~A. The results in [21] prove the following properties of H, J .

Theorem 1. H, J are compatible O(N−1)-invariant Hamiltonian cosymplectic and symplectic
operators with respect to the Hamiltonian variable ~v. Consequently, the flow equation takes the
Hamiltonian form

~vt = H(~$)− χ~h⊥ = R(~h⊥)− χ~h⊥, ~$ = J (~h⊥)

where R = H ◦ J is a hereditary recursion operator.

On the x-jet space of ~v(t, x), the variables ~h⊥ and ~$ have the respective meaning of a
Hamiltonian vector field ~h⊥y∂/∂~v and covector field ~$yd~v (see the Appendix of [2]). Thus the
recursion operator4

R = Dx(Dx + D−1
x (~v· )~v) + ~vyD−1

x (~v ∧Dx )

= D2
x + |~v|2 + D−1

x (~v· )~vx − ~vyD−1
x (~vx∧ ) (21)

4This O(N − 1)-invariant form of the recursion operator appeared already in [1].
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generates a hierarchy of commuting Hamiltonian vector fields ~h
(k)
⊥ starting from ~h

(0)
⊥ = ~vx given

by the infinitesimal generator of x-translations in terms of arclength x along the curve.
The adjoint operator R∗ generates a related hierarchy of involutive Hamiltonian covector

fields ~$(k) = δH(k)/δ~v in terms of Hamiltonians H = H(k)(~v,~vx, ~v2x, . . .) starting from ~$(0) = ~v,
H(0) = 1

2 |~v|
2. These hierarchies are related by ~h

(k)
⊥ = H(~$(k)), ~$(k+1) = J (~h(k)

⊥ ), k = 0, 1, 2, . . ..
Both hierarchies share the mKdV scaling symmetry x → λx, ~v → λ−1~v, under which we see ~h

(k)
⊥

and H(k) have scaling weight 2 + 2k, while ~$(k) has scaling weight 1 + 2k.

Corollary 1. Associated to the recursion operator R there is a corresponding hierarchy of
commuting bi-Hamiltonian flows on ~v given by O(N − 1)-invariant vector evolution equations

~vt = ~h
(k+1)
⊥ − χ~h

(k)
⊥ = H(δH(k,χ)/δ~v) = J −1(δH(k+1,χ)/δ~v), k = 0, 1, 2, . . . (22)

with Hamiltonians H(k+1,χ) = H(k+1)−χH(k), where H,J −1 are compatible Hamiltonian opera-
tors. An alternative (explicit) Hamiltonian operator for these flows is E := H ◦ J ◦H = R ◦H.

Remark 2. Using the terminology of [5], ~h
(k)
⊥ will be said to produce a +(k + 1) flow on ~v.

This differs from the terminology in [2] which refers to equation (22) as the +k flow.

The +1 flow given by ~h⊥ = ~vx yields

~vt = ~v3x +
3
2
|~v|2~vx − χ~vx (23)

which is a vector mKdV equation up to a convective term that can be absorbed by a Galilean
transformation x → x− χt, t → t. The +(k + 1) flow gives a vector mKdV equation of higher
order 3 + 2k on ~v.

There is also a 0 flow ~vt = ~vx arising from ~h⊥ = 0, h‖ = 1, which falls outside the hierarchy
generated by R.

All these flows correspond to geometrical motions of the curve γ(t, x), given by

γt = f(γx,∇xγx,∇2
xγx, . . .)

subject to the non-stretching condition

|γx|g = 1.

The equation of motion is obtained from the identifications γt ↔ et , ∇xγx ↔ Dxex = [ωx , ex ],
and so on, using ∇x ↔ Dx + [ωx , ·] = Dx. These identifications correspond to TxM ↔ p as
defined via the parallel coframe. Note we have

[ωx , ex ] = −
(

0 (0, ~v)
−(0, ~v)T 0

)
,

[ωx , [ωx , ex ]] = −
(

0 (|~v|2,~0)
−(|~v|2,~0)T 0

)
= −|~v|2ex ,

and so on. In particular, for the +1 flow,

~h⊥ = ~vx, h‖ = −D−1
x (~v · ~vx) = −1

2
|~v|2,

thus

et =

(
0 (h‖,~h⊥)

−(h‖,~h⊥)T 0

)
= −1

2
|~v|2

(
0 (1,~0)

−(1,~0)T 0

)
+
(

0 (0, ~vx)
−(0, ~vx)T 0

)
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= −Dx[ωx , ex ] +
1
2
[ωx , [ωx , ex ]] = −Dx[ωx , ex ]− 3

2
|~v|2ex .

We identify the first term as −∇x(∇xγx) = −∇2
xγx. For the second term we observe |~v|2 =

〈[ωx , ex ], ωx , ex ]〉p ↔ g(∇xγx,∇xγx) = |∇xγx|2g since the Cartan–Killing inner product corre-
sponds to the Riemannian metric g. Hence we have et ↔ −(∇2

xγx + 3
2 |∇xγx|2gγx). This describes

a geometric nonlinear PDE for γ(t, x),

−γt = ∇2
xγx +

3
2
|∇xγx|2gγx (24)

which is referred to as the non-stretching mKdV map equation on the symmetric space M =
SO(N + 1)/SO(N) ' SN . A different derivation using just the Riemannian geometry of SN

was given in [2]. Since in the tangent space TxSN ' so(N + 1)/so(N) the kernel of [ex , · ] is
spanned by ex , a parallel frame in the setting of the Klein geometry of SO(N + 1)/SO(N) is
precisely the same as in the Riemannian geometry of SN .

The convective term |∇xγx|2gγx can be written in an alternative form using the Klein geometry
of SO(N + 1)/SO(N) ' SN . Let ad(·) denote the standard adjoint representation acting in the
Lie algebra g = p⊕ so(N). We first observe

ad([ωx , ex ])ex =
(

0 (0,~0)
(0,~0)T v

)
∈ so(N + 1),

where

v = −
(

0 ~v
−~vT 0

)
∈ so(N).

Applying ad([ωx , ex ]) again, we obtain

ad([ωx , ex ])2ex = −|~v|2
(

0 (1,~0)
−(1,~0)T 0

)
= −|~v|2ex .

Hence, |~v|2ex ↔ −χ−1ad(∇xγx)2γx = |∇xγx|2gγx, and thus the mKdV map equation is equivalent
to

−γt = ∇2
xγx −

3
2
χ−1ad(∇xγx)2γx. (25)

Note here that ad(∇xγx) = [∇xγx, · ] maps p ' TxM into so(N) and maps so(N) into p ' TxM ,
so ad(∇xγx)2 is well-defined on the tangent space TxM ' p of M = SO(N + 1)/SO(N).

Higher flows on ~v yield higher-order geometric PDEs. The 0 flow on ~v directly corresponds
to

γt = γx (26)

which is just a convective (linear traveling wave) map equation.
There is a −1 flow contained in the hierarchy, with the property that ~h⊥ is annihilated by

the symplectic operator J and hence gets mapped into R(~h⊥) = 0 under the recursion operator.
Geometrically this flow means simply J (~h⊥) = ~$ = 0 which implies ωt = 0 from equations (14),
(15), (20), and hence 0 = [ωt , ex ] = Dtex where Dt = Dt +[ωt , ·]. The correspondence ∇t ↔ Dt,
γx ↔ ex immediately leads to the equation of motion

0 = ∇tγx (27)
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for the curve γ(t, x). This nonlinear geometric PDE is precisely a wave map equation on the
symmetric space SO(N + 1)/SO(N) ' SN . The resulting flow equation on ~v is

~vt = −χ~h⊥, χ = 1, (28)

where

0 = ~$ = −Dx
~h⊥ + h‖~v, Dxh‖ = ~h⊥ · ~v.

Note this flow equation possesses the conservation law 0 = Dx(h‖2 + |~h⊥|2) with

h‖
2 + |~h⊥|2 = 〈et , et〉p = |γt|2g

corresponding to

0 = ∇x|γt|2g. (29)

Thus a conformal scaling of t can be used to put |γt|g = 1, and so

1 = h‖
2 + |~h⊥|2.

This relation enables h‖, ~h⊥ to be expressed entirely in terms of ~v and its derivatives through
equation (28). Consequently, the wave map equation describing the−1 flow reduces to a nonlocal
evolution equation

~vt = −D−1
x

(√
χ2 − |~vt|2~v

)
, χ = 1

which is equivalent to a hyperbolic vector equation

~vtx = −
√

1− |~vt|2~v. (30)

It follows that ~h⊥ obeys the vector SG equation(√
(1− |~h⊥|2)−1~h⊥x

)
t = −~h⊥ (31)

which has been derived previously in [8, 19, 30] from a different point of view. These equa-
tions (30) and (31) possess the mKdV scaling symmetry x → λx, ~v → λ−1~v, where ~h⊥ has
scaling weight 0.

The hyperbolic vector equation (30) admits the vector mKdV equation (23) as a higher
symmetry, which is shown by the symmetry-integrability classification results in [5]. As a con-
sequence of Corollary 1, we see that the recursion operator R = H ◦ J generates a hierarchy of
vector mKdV higher symmetries

~v
(0)
t = ~vx, (32)

~v
(1)
t = R(~vx) = ~v3x +

3
2
|~v|2~vx, (33)

~v
(2)
t = R2(~vx) = ~v5x +

5
2
(|~v|2~v2x)x +

5
2

(
(|~v|2)xx + |~vx|2 +

3
4
|~v|4
)

~vx −
1
2
|~vx|2~v, (34)

and so on, all of which commute with the −1 flow

~v
(−1)
t = ~h⊥ (35)
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associated to the vector SG equation (31). Moreover the adjoint operator R∗ = J ◦H generates
a hierarchy of Hamiltonians

H(0) =
1
2
|~v|2,

H(1) = −1
2
|~vx|2 +

1
8
|~v|4,

H(2) =
1
2
|~v2x|2 −

3
4
|~v|2|~vx|2 −

1
2
(~v · ~vx)2 +

1
16
|~v|6,

and so on, all of which are conserved densities for the −1 flow and thereby determine higher
conservation laws for the hyperbolic vector equations (30) and (31). Viewed as flows, the entire
hierarchy of vector PDEs (35), (32) to (34), etc. possesses the mKdV scaling symmetry x → λx,
~v → λ−1~v, with t → λ1+2kt for k = −1, 0, 1, 2, etc. Moreover for k ≥ 0, all these expressions will
be local polynomials in the variables ~v,~vx, ~vxx, . . . as established by general results in [29, 24]
concerning nonlocal recursion operators.

Theorem 2. In the symmetric space SO(N +1)/SO(N) there is a hierarchy of bi-Hamiltonian
flows of curves γ(t, x) described by geometric map equations. The 0 flow is a convective (traveling
wave) map (26), while the +1 flow is a non-stretching mKdV map (24) and the +2, . . . flows
are higher order analogs. The kernel of the recursion operator (21) in the hierarchy yields the
−1 flow which is a non-stretching wave map (27).

4 Bi-Hamiltonian operators and vector soliton equations
for SU(N)/SO(N)

Recall su(k) is a complex vector space isomorphic to the Lie algebra of k × k skew-hermitian
matrices. The real and imaginary parts of these matrices respectively belong to the real vector
space so(k) of skew-symmetric matrices and the real vector space s(k) ' su(k)/so(k) defined
by k × k symmetric trace-free matrices. Hence g = su(N) has the decomposition g = h + ip
where h = so(N) and p = s(N). The Cartan–Killing inner product is given by the trace of the
product of an su(N) matrix and a hermitian-transpose su(N) matrix, multiplied by 1/2. Note
any matrix in s(N) can be diagonalized under the action of the group SO(N).

Let γ(t, x) be a flow of a non-stretching curve in M = SU(N)/SO(N) where we identify
TxM ' p (dropping a factor i for simplicity5). We suppose there is a SO(N)-parallel coframe
e ∈ T ∗γ M ⊗ p and its associated connection 1-form ω ∈ T ∗γ M ⊗ so(N) along γ given by6

ex = γxye = κ

((
−1 ~0
~0 0

)
+

1
N

I
)

=
κ

N

(
1−N ~0

~0 1

)
∈ p, (36)

0,1 ∈ u(N − 1), ~0 ∈ RN−1

up to a normalization factor κ which we will fix shortly, and

ωx =
(

0 ~v
−~vT 0

)
∈ so(N), ~v ∈ RN−1. (37)

5Retaining the i in this identification will change only the sign of the scalar curvature factor χ in the flow
equation.

6As before, ω is related to e by the Riemannian covariant derivative (10) on the surface swept out by the curve
flow γ(t, x).
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Since the form of ex is a constant matrix, it indicates that the coframe is adapted to γ provided ex

has unit norm in the Cartan–Killing inner product. We have

〈ex , ex〉p =
κ2

2N2
tr
(

(1−N)2 0
0 1

)
= κ2(N − 1)/(2N) = 1 (38)

after fixing κ2 = 2N(N −1)−1. As a consequence, all matrices in p = s(N) will have a canonical
decomposition into tangential and normal parts relative to ex ,(

(N−1 − 1)p‖ ~p⊥
~p⊥

T p⊥ −N−1p‖1

)
=

1
N

(
(1−N)p‖ ~0

~0T p‖1

)
+
(

0 ~p⊥
~p⊥

T p⊥

)
parameterized by the (N − 1) × (N − 1) matrix p⊥ ∈ s(N − 1) and the N component vec-
tor (p‖, ~p⊥) ∈ RN , corresponding to the decomposition s(N) = s(N)‖ ⊕ s(N)⊥ given by
〈s(N)⊥, ex〉p = 0 and 〈s(N)‖, ex〉p = κp‖ under the previous normalization of ex . Here (p‖,p⊥)
is identified with pC ⊃ p‖, and ~p⊥ with pC⊥ ⊂ p⊥. Note p⊥ is empty only if N = 2, so
consequently for N > 2 the SO(N)-parallel frame (36) and (37) is a strict generalization of
a Riemannian parallel frame.

In the flow direction we put

et = γtye = κ

(
h‖

(
N−1 − 1 ~0

~0 N−11

)
+

(
0 ~h⊥

~h⊥
T h⊥

))
,

= κ

(
(N−1 − 1)h‖ ~h⊥

~h⊥
T h⊥ + N−1h‖1

)
∈ p = s(N),

(h‖,~h⊥) ∈ RN , h⊥ ∈ s(N − 1)

and

ωt = γtyω =
(

0 ~$
−~$T Θ

)
∈ so(N), ~$ ∈ RN−1, Θ ∈ so(N − 1). (39)

Note the components h‖, (~h⊥,h⊥) correspond to decomposing et = g(γt, γx)ex + (γt)⊥ye⊥ into
tangential and normal parts relative to ex . We thus have

[ex , et ] = −κ2

(
0 ~h⊥

−~h⊥
T 0

)
∈ so(N),

[ωx , et ] = κ

(
2~h⊥ · ~v ~vyh⊥ + h‖~v

(~vyh⊥ + h‖~v)T −(~v ⊗ ~h⊥ + ~h⊥ ⊗ ~v)

)
∈ s(N),

[ωt , ex ] = κ

(
0 ~$

~$T 0

)
∈ s(N)⊥.

Now the curvature equation (12) yields

Dt~v −Dx ~$ − ~vyΘ = κ2~h⊥, (40)
−DxΘ + ~v ⊗ ~$ − ~$ ⊗ ~v = 0, (41)

which are unchanged from the case G = SO(N + 1) up to the factor in front of ~h⊥. The torsion
equation (11) reduces to

0 = 2κ−2Dxh‖ − 2~v · ~h⊥, (42)
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0 = ~$ − h‖~v −Dx
~h⊥ − ~vyh⊥, (43)

which are similar to those in the case G = SO(N + 1), plus

0 = −Dx(h⊥ + N−1h‖1) + ~v ⊗ ~h⊥ + ~h⊥ ⊗ ~v. (44)

Proceeding as before, we use equations (41), (42), (44) to eliminate

Θ = D−1
x (~v ⊗ ~$ − ~$ ⊗ ~v), (45)

h‖ = κ2D−1
x (~v · ~h⊥),

h⊥ = D−1
x (2(1−N)−1~v · ~h⊥1 + ~v ⊗ ~h⊥ + ~h⊥ ⊗ ~v)

in terms of the variables ~v, ~h⊥, ~$. Then equation (40) gives a flow on ~v,

~vt = Dx ~$ + ~vyD−1
x (~v ⊗ ~$ − ~$ ⊗ ~v) + κ2~h⊥

with

~$ = Dx
~h⊥ + 2D−1

x (~v · ~h⊥)~v + ~vyD−1
x (~v ⊗ ~h⊥ + ~h⊥ ⊗ ~v)

obtained from equation (43) after we combine h‖~v terms. We thus read off the operators

H = Dx + ~vyD−1
x (~v∧ ), J = Dx + 2D−1

x (~v· )~v + ~vyD−1
x (~v� ), (46)

where ~A ∧ ~B = ~A⊗ ~B − ~B ⊗ ~A and ~A� ~B = ~A⊗ ~B + ~B ⊗ ~A.
The results in Theorem 1 and Corollary 1 carry over verbatim (with the same method of

proof used in [21]) for the operators H and J here, up to a change in the scalar curvature factor

χ = −κ2 = 2N/(1−N)

connected with the Riemannian geometry of SU(N)/SO(N). In particular, R = H ◦ J yields
a hereditary recursion operator

R = Dx(Dx + 2D−1
x (~v· )~v + ~vyD−1

x (~v� )) + ~vyD−1
x (~v ∧ (Dx + ~vyD−1

x (~v� )))

= D2
x + 2(|~v|2 + (~v· )~v) + 2D−1

x (~v· )~v + ~vxyD−1
x (~v� )

+ ~vyD−1
x (~v ∧ (~vyD−1

x (~v� ))− ~vx∧ ) (47)

generating a hierarchy of O(N − 1)-invariant commuting bi-Hamiltonian flows on ~v, correspon-
ding to commuting Hamiltonian vector fields ~h

(k)
⊥ y∂/∂~v and involutive covector fields ~$(k)yd~v,

k = 0, 1, 2, . . . starting from ~h
(0)
⊥ = ~vx, ~$(0) = ~v. In the terminology of [5], ~h(k)

⊥ is said to produce
the +(k + 1) flow equation (22) on ~v (cf. Remark 2). Note these flows admit the same mKdV
scaling symmetry x → λx, ~v → λ−1~v as in the case SO(N + 1)/SO(N). They also have similar
recursion relations ~h

(k)
⊥ = H(~$(k)), ~$(k+1) = J (~h(k)

⊥ ) = δH(k+1)/δ~v, k = 0, 1, 2, . . ., in terms of
Hamiltonians H = H(k)(~v,~vx, ~v2x, . . .).

The +1 flow is given by ~h⊥ = ~vx, yielding

~vt = ~v3x + 3|~v|2~vx + 3(~v · ~vx)~v − χ~vx. (48)

Up to the convective term, which can be absorbed by a Galilean transformation, this is a different
vector mKdV equation compared to the one arising in the case SO(N + 1)/SO(N) for N > 2.
The +(k + 1) flow yields a higher order version of this equation (48).
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The hierarchy of flows corresponds to geometrical motions of the curve γ(t, x) obtained in
a similar fashion to the ones in the case SO(N + 1)/SO(N) via identifying γt ↔ et , γx ↔ ex ,
∇xγx ↔ [ωx , ex ] = Dxex , and so on as before, where ∇x ↔ Dx = Dx + [ωx , ex ]. Note here we
have

[ωx , ex ] = κ

(
0 ~v

~vT 0

)
, [ωx , [ωx , ex ]] = 2κ

(
|~v|2 ~0
~0 −~v ⊗ ~v

)
,

and so on. In addition,

ad([ωx , ex ])ex = κ2

(
0 ~v
−~vT 0

)
,

ad([ωx , ex ])2ex = −2κ3

(
|~v|2 ~0
~0 −~v ⊗ ~v

)
= χ[ωx , [ωx , ex ]].

Thus, for the +1 flow,

~h⊥ = ~vx, h‖ =
1
2
κ2|~v|2, h⊥ = ~v ⊗ ~v + (1−N)−1|~v|21,

we obtain (through equation (38))

et = κ

(
(N−1 − 1)h‖ ~h⊥

~h⊥
T h⊥ + N−1h‖1

)
= κ

(
−|~v|2 ~vx

~vx
T ~v ⊗ ~v

)
= Dx[ωx , ex ]− 1

2
[ωx , [ωx , ex ]].

Then writing these expressions in terms of Dx and ad([ωx , ex ]), we get

et = Dx[ωx , ex ]− 3
2
χ−1ad([ωx , ex ])2ex ↔ ∇2

xγx −
3
2
χ−1ad(∇xγx)2γx.

Thus, up to a sign, γ(t, x) satisfies a geometric nonlinear PDE given by the non-stretching mKdV
map equation (25) on the symmetric space SU(N)/SO(N). The higher flows on ~v determine
higher order map equations for γ.

The 0 flow as before is ~vt = ~vx arising from ~h⊥ = 0, h‖ = 1, which corresponds to the
convective (traveling wave) map (26).

There is also a −1 flow contained in the hierarchy, with the property that ~h⊥ is annihilated by
the symplectic operator J and hence lies in the kernel R(~h⊥) = 0 of the recursion operator. The
geometric meaning of this flow is simply J (~h⊥) = ~$ = 0 implying ωt = 0 from equations (39)
and (45) so 0 = [ωt , ex ] = Dtex where Dt = Dt +[ωt , ·]. Thus, as in the case SO(N +1)/SO(N),
we see from the correspondence ∇t ↔ Dt, γx ↔ ex that γ(t, x) satisfies a nonlinear geometric
PDE given by the wave map equation (27) on the symmetric space SU(N)/SO(N).

The −1 flow equation produced on ~v is again a nonlocal evolution equation

~vt = −χ~h⊥, χ = −κ2 (49)

with ~h⊥ satisfying

0 = ~$ = Dx
~h⊥ + h~v + ~vyh (50)

where it is convenient to introduce the variables h = h⊥ + N−1h‖1, h = 2κ−2h‖ = trh which
satisfy

Dxh = 2~v · ~h⊥, (51)
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Dxh = ~v ⊗ ~h⊥ + ~h⊥ ⊗ ~v. (52)

Note equations (50) to (52) combined with equation (49) together constitute a nonhomogeneous
linear system on ~h⊥, h, h, from which these variables will be uniquely determined in terms of ~v
(and its derivatives). Compared to the case SO(N + 1)/SO(N), however, the presence of the
additional variable h produces a quite different form here for the flow on ~v. To proceed, the
form of equations (50) to (52) suggests

h = α~h⊥ ⊗ ~h⊥ + β1 (53)

for some expressions α(h), β(h). Substitution of h into equation (52) followed by the use of
equations (50) and (51) leads to Dxβ = 0 = β + α−1 + h and hence we get

α = −(h + β)−1, β = const. (54)

Next, by taking the trace of h and using equation (54), we obtain

|~h⊥|2 = Nβ(h + β)− (h + β)2 (55)

which enables h to be expressed in terms of ~h⊥ and β. To determine β we use the wave map
conservation law (29) where, now,

|γt|2g = 〈et , et〉p = κ2(|~h⊥|2 +
1
2
(h2 + |h|2)).

This corresponds to a conservation law admitted by equations (50) to (52),

0 = Dx

(
|~h⊥|2 +

1
2
(
h2 + |h|2

))
,

and as before, a conformal scaling of t can now be used to put |γt|g equal to a constant. A con-
venient value which simplifies subsequent expressions is |γt|g = 2, so then

(2/κ)2 = |~h⊥|2 +
1
2
(
|h|2 + h2

)
.

Substitution of equations (53) to (55) into this expression yields

β2 = (2/N)2

from which we obtain via equation (55)

h = 2N−1 − 1±
√

1− |~h⊥|2, α = |~h⊥|−2
(
1∓

√
1− |~h⊥|2

)
.

These variables then can be expressed in terms of ~v through the flow equation (49). Finally, we
note equations (50), (53), (54) yield the additional relation

Dx(
√

α~h⊥) =
√

1/α~v. (56)

Hence the flow equation on ~v becomes

~vt =
√

A±D−1
x

(√
A±~v

)
(57)

where

A± = 1±
√

1− |~vt|2 = |~vt|2A∓,
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with a factor 2κ−2 having been absorbed into a scaling of t.
This nonlocal evolution equation (57) for the −1 flow is equivalent to the vector SG equation(√

A∓~vt

)
x

=
√

A±~v

or in hyperbolic form

~vtx = A±~v −A∓|~vt|−2(~v · ~vt)~vt. (58)

Alternatively, through relation (56), ~h⊥ obeys a vector SG equation

(
√

α(
√

α~h⊥)x)t = ~h⊥. (59)

These equations (58) and (59) possess the mKdV scaling symmetry x → λx, ~v → λ−1~v, where ~h⊥
in equation (59) has scaling weight 0.

In [5] the symmetry-integrability classification results show that the hyperbolic vector equa-
tion (58) admits the vector mKdV equation (48) as a higher symmetry. ¿From the properties
of the mKdV Hamiltonian operators (46) stated in Corollary 1, we see that the recursion oper-
ator (47) generates a hierarchy of vector mKdV higher symmetries

~v
(0)
t = ~vx, (60)

~v
(1)
t = R(~vx) = ~v3x + 3(|~v|2~vx + (~v · ~vx)~v), (61)

~v
(2)
t = R2(~vx) = ~v5x + 5(|~v|2~v3x + 3(~v · ~vx)~v2x + (2|~vx|2 + 3~v · ~v2x + 2|~v|4)~vx

+ (3~v · ~v3x + 2~vx · ~v2x + 4|~v|2~v · ~vx)~v), (62)

and so on, while the adjoint of this operator (47) generates a hierarchy of Hamiltonians

H(0) =
1
2
|~v|2,

H(1) = −1
2
|~vx|2 +

1
2
|~v|4,

H(2) = −1
2
|~v2x|2 − 2|~v|2|~vx|2 − 3(~v · ~vx)2 + |~v|6,

and so on, all of which are conserved densities for the −1 flow and thereby determine higher
conservation laws for the hyperbolic vector equation (58). Viewed as flows, the entire hierarchy
of vector PDEs (60) to (62), etc., including the −1 flow

~v
(−1)
t = ~h⊥

associated to the vector SG equation (59), is seen to possess the mKdV scaling symmetry x → λx,
~v → λ−1~v, with t → λ1+2kt for k = −1, 0, 1, 2, etc.. Moreover for k ≥ 0, all these expressions
will be local polynomials in the variables ~v,~vx, ~vxx, . . . as established by results in [23] applied
to the separate Hamiltonian (cosymplectic and symplectic) operators (46)7.

Theorem 3. In the symmetric space SU(N)/SO(N) there is a hierarchy of bi-Hamiltonian
flows of curves γ(t, x) described by geometric map equations. The 0 flow is a convective (traveling
wave) map (26), while the +1 flow is a non-stretching mKdV map (25) and the +2, . . . flows
are higher order analogs. The kernel of the recursion operator (47) in the hierarchy yields the
−1 flow which is a non-stretching wave map (27).

7Due the doubly nonlocal form of the last term in the recursion operator (47), the general results in [29, 24]
are not directly applicable.
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5 Concluding remarks

In the Riemannian symmetric spaces G/SO(N), as exhausted by the Lie groups G = SO(N +1)
and G = SU(N), there is a hierarchy of integrable bi-Hamiltonian flows of non-stretching curves
γ(t, x), where the +1 flow is described by the mKdV map equation (25) and the +2, . . . flows are
higher-order analogs, while the wave map equation (27) describes a −1 flow that is annihilated
by the recursion operator of the hierarchy. In a parallel frame the principal normal components
along γ for these flows respectively satisfy a vector mKdV equation and a vector hyperbolic
equation, which are O(N−1)-invariant. The hierarchies for SO(N +1)/SO(N), SU(N)/SO(N)
coincide in the scalar case N = 2. Moreover the scalar hyperbolic equation in this case is
equivalent to the SG equation. These results account for the existence of the two known versions
of vector generalizations of the mKdV and SG equations [5].

Similar results hold for hermitian symmetric spaces G/U(N). In particular, there is a hierar-
chy of flows of curves in such spaces yielding scalar-vector generalizations of the mKdV equation
and the SG equation. A further generalization of such results for all symmetric spaces G/H will
be given elsewhere [3].
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