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Abstract. We consider systems of diffusion equations that have considerable interest in
Soil Science and Mathematical Biology and focus upon the problem of finding those forms
of this class that can be linearized. In particular we use the equivalence transformations of
the second generation potential system to derive forms of this system that can be linearized.
In turn, these transformations lead to nonlocal mappings that linearize the original system.
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1 Introduction

Whilst systems of pure diffusion equations, in both their linear and nonlinear forms are well
known and have many physical and biological applications, the research described here focusses
on less familiar cases where diffusion coefficients or other ‘shape’ functions are defined either in
general or poor analytic terms. Of particular interest here is the case of the extension of Richard’s
equation, which describes the movement of water in a homogeneous unsaturated soil, to cases
describing the combined transport of water vapour and heat under a combination of gradients
of soil temperature and volumetric water content. Such coupled transport is of considerable
significance in semi-arid environments where moisture transport often occurs essentially in the
water vapour phase [8]. Under these conditions the transport equations, valid in a vertical
column of soil, may be written in the form [6]

∂u

∂t
=
∂

∂x

[
f(u, v)

∂u

∂x
+ g(u, v)

∂v

∂x

]
,

∂v

∂t
=
∂

∂x

[
h(u, v)

∂u

∂x
+ k(u, v)

∂v

∂x

]
, (1)

where u(x, t) and v(x, t) are respectively the soil temperature and volumetric water content at
depth x and time t. It is important to realize that extensions which include the coupled diffusion
of solute follow in an obvious way.

If we introduce the potential variable w, we can generate the auxiliary system of (1),

wx = u,

wt = f(u, v)ux + g(u, v)vx,
vt = [h(u, v)ux + k(u, v)vx]x . (2)
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Introduce potential variables w and z we generate the second generation auxiliary system of (1),

wx = u,

wt = f(u, v)ux + g(u, v)vx,
zx = v,

zt = h(u, v)ux + k(u, v)vx. (3)

The study of Lie symmetries of system (1) has been considered in [2, 10]. It is known that
Lie symmetries of the auxiliary systems, in some cases, lead to non-local symmetries known as
potential symmetries, for the original system. Lie symmetries for the systems (2) and (3) that
induce potential symmetries for the original system (1) have been considered in [9].

Here we calculate the equivalence transformations for the systems (1)–(3). We use the equi-
valence transformations of (3) to derive those forms of (3) that can be linearized. Consequently
these point transformations lead to contact transformations that linearize the corresponding
forms of (1). Furthermore for one case of (2), which admits infinite-dimensional Lie symmetries,
we construct a linearizing mapping.

2 Equivalence transformations

An equivalence transformation is a nondegenerate change of the independent and dependent
variables taking a PDE into another PDE of the same form. For example, an equivalence
transformation of the system (1) will transform it into a system of the same form, but in
general, with different functions f(u, v), g(u, v), h(u, v) and k(u, v). The set of all equivalence
transformations forms an equivalence group. We use the infinitesimal method [7] to determine
the equivalence transformations of the systems (1)–(3).

2.1 Equivalence transformations for system (1)

We seek for equivalence group generators of the form

XE = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η1

∂

∂u
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∂

∂v
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∂

∂f
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∂

∂g
+ φ3

∂

∂h
+ φ4

∂

∂k
.

We will present the results, without giving any detailed calculations. The method for determining
equivalence transformations is presented in [7]. (See also in [5]). We find that the system (1) has
a continuous group of equivalence transformations generated by the following 10 infinitesimal
operators:

XE
1 =
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∂
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∂
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+ g

∂

∂k
.

Using Lie’s theorem we show that the above equivalence transformations in finite form read

x′ = c1x+ c2, t′ = c3t+ c4, u′ = c5u+ c6v + c7, v′ = c8u+ c9v + c10,
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where

f ′ =
c21 [c5(c9f − c8g) + c6(c9h− c8k)]

c3(c5c9 − c6c8)
, g′ =

c21 [−c5(c6f − c5g)− c6(c6h− c5k)]
c3(c5c9 − c6c8)

,

h′ =
c21 [c8(c9f − c8g) + c9(c9h− c8k)]

c3(c5c9 − c6c8)
, k′ =

c21 [−c8(c6f − c5g)− c9(c6h− c5k)]
c3(c5c9 − c6c8)

.

Clearly, if the functions f , g, h, k are linearly dependent, then one of the functions of the
transformed equation can be taken equal to zero, provided that the constants involved satisfy
certain relations. That is, system (1) can be mapped into a system of the same form but with
one of the functions to be zero. For example, if f = g − h+ k then the mapping x 7→ x, t 7→ t,
u 7→ u + v, v 7→ u + cv, c 6= 1 transforms the system (1) into a system of the same form, but
with g = 0.

2.2 Equivalence transformations for system (2)

We find that the system (2) has a continuous group of equivalence transformations generated
by the following 9 infinitesimal operators:
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∂
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∂
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∂
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∂
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∂
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∂
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.

The equivalence transformations, in finite form, read

x′ = c1x+ c2, t′ = c3t+ c4, u′ = c5u+ c6, v′ = c7v + c8,

w′ = c1c5w + c1c6x+ c9,

where

f ′ =
c21f

c3
, g′ =

c5c
2
1g

c7c3
, h′ =

c7c
2
1h

c5c3
, k′ =

c21k

c3
.

2.3 Equivalence transformations for system (3)

We find that the system (3) has a continuous group of equivalence transformations generated
by the following 14 infinitesimal operators:

ZE1 =
∂

∂x
, ZE2 =

∂

∂t
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∂

∂w
, ZE4 =

∂
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,
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∂
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∂
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∂
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∂
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∂
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∂

∂k
,
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∂

∂x
− u2 ∂

∂u
− uv

∂

∂v
+ (vg + 2uf)

∂

∂f

+ ug
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ZE8 = t
∂
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− f
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∂
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− k

∂

∂k
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ZE9 = v
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∂u
+ z

∂

∂w
+ h

∂

∂f
+ (k − f)

∂

∂g
− h

∂

∂k
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ZE10 = u
∂

∂v
+ w

∂

∂z
− g

∂

∂f
+ (f − k)

∂

∂h
+ g

∂

∂k
, ZE11 = v

∂

∂v
+ z

∂

∂z
− g

∂

∂g
+ h

∂

∂h
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ZE12 = u
∂

∂u
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∂

∂w
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∂h
, ZE13 =

∂

∂v
+ x
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∂z
, ZE14 =

∂

∂u
+ x

∂

∂w
.

Naturally using Lie’s theorem we can find the equivalence transformations in finite form. We
find that

x′ = ax+ p1w + p2z + c1, t′ =
1
γ
t+ δ, w′ = q1x+ a1w + a2z + c2,

z′ = q2x+ a3w + a4z + c3.

However the forms of u′ and v′ cannot be found easily from Lie’s theorem. In the next section
we show that they take the form

u′ =
q1 + a1u+ a2v

a+ p1u+ p2v
, v′ =

q2 + a3u+ a4v

a+ p1u+ p2v
.

Furthermore we state that the forms of f ′, g′, h′ and k′, which are all linear in f , g, h and k,
are very lengthy.

In the following section we use the finite form of the equivalence transformations to derive
special cases of the system (3) that can be linearized. In turn these transformations lead to
nonlocal mappings that linearize the corresponding forms (1).

3 On linearization

Here we consider the problem of finding forms of the nonlinear system (3) that can be linearized.
We adopt the idea of the transformation

x′ = v, t′ = t, u′ =
1
u
, v′ = x (4)

that maps the auxiliary system of the nonlinear diffusion equation ut = [u−2ux]x [4],

vx = u, vt = u−2ux

into the auxiliary system of the linear diffusion equation u′t′ = u′x′x′ ,

v′x′ = u′, v′t′ = u′x′ .

The above transformation is a member of the equivalence transformations of

vx = u, vt = f(u)ux.

Motivated by the above results we find the forms of f(u, v), g(u, v), h(u, v) and k(u, v) such that
system (3) can be mapped into a linear system by the equivalence transformations admitted
by (3). These local mappings will lead to nonlocal mappings that linearize the corresponding
forms of the system (1).

We consider system (1) with the four functions equal to constants. That is, it takes the linear
form

u′t′ = µ1u
′
x′x′ + µ2v

′
x′x′ , v′t′ = µ3u

′
x′x′ + µ4v

′
x′x′ . (5)
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We introduce the potential variables w′ and z′ to obtain the auxiliary system of (5)

w′
x′ = u′, w′

t′ = µ1u
′
x′ + µ2v

′
x′ , z′x′ = v′, z′t′ = µ3u

′
x′ + µ4v

′
x′ . (6)

From the equivalence transformations of the system (3) we deduce the finite transformations

x′ = ax+ p1w + p2z, w′ = q1x+ a1w + a2z, z′ = q2x+ a3w + a4z (7)

where we have taken, without loss of generality, the translation constants equal to zero. Clearly,
the inverse transformations is of the form

x = bx′ + r1w
′ + r2z

′, w = s1x
′ + b1w

′ + b2z
′, z = s2x

′ + b3w
′ + b4z

′. (8)

Also from the equivalence transformations we deduce that

t = γt′,

with the translation constant taken to be zero.
Introducing vector notation, we can write systems (3) and (6) in the form

wx = u, wt = F (u)ux (9)

and

w′
x′ = u′, w′

t′ = Λu′
x′ (10)

respectively, where

w =
[
w
z

]
, u =

[
u
v

]
, F (u) =

[
f(u, v) g(u, v)
h(u, v) k(u, v)

]
, Λ =

[
µ1 µ2

µ3 µ4

]
.

Furthermore transformation (7) can be written in the form[
x′

w′

]
=

[
a pT

q A

] [
x
w

]
, (11)

where

p =
[
p1

p2

]
, q =

[
q1
q2

]
, A =

[
a1 a2

a3 a4

]
and the inverse transformation (8) takes the form[

x
w

]
=

[
b rT

s B

] [
x′

w′

]
, (12)

where

r =
[
r1
r2

]
, s =

[
s1
s2

]
, B =

[
b1 b2
b3 b4

]
.

Therefore from the transformations (11) and (12) we deduce that[
a pT

q A

] [
b rT

s B

]
=

[
ab+ p · s arT + pTB
qb+As qrT +AB

]
=

[
1 0
0 I2

]
, (13)
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where I2 is the 2× 2 identity matrix. In addition:[
b rT

s B

] [
a pT

q A

]
=

[
ab+ r · q bpT + rTA
sa+Bq spT +BA

]
=

[
1 0
0 I2

]
. (14)

Using normal transformation rules:

wx = wx′
∂x′

∂x
+ wt′

∂t′

∂x

and from the transformations (11) and (12) becomes

wx =
(
s +Bw′

x′
)
(a+ p · wx) .

Thus from the two potential systems (9) and (10)

u =
(
s +Bu′) (a+ p · u) .

Finally, from the relations (13) and (14) we obtain

u′ =
Au + q

a+ p · u
.

Hence,

u′ =
q1 + a1u+ a2v

a+ p1u+ p2v
, v′ =

q2 + a3u+ a4v

a+ p1u+ p2v
.

These forms of u′ and v′ can also be obtained from the equivalence transformations, however,
in a more complicated manner.

Consider now

w′
t′ = w′

x

∂x

∂t′
+ w′

t

∂t

∂t′

and from the transformations (11) and (12) and the two potential systems (9) and (10) we find

Λu′
x′ = (q +Au)(rTΛu′

x′) + γAFux. (15)

Multiply by rT and using the relations (13) and (14) it follows that

rTΛu′
x′ = −γp

TFux
a+ p · u

and also consider

u′
x′ = u′

x

∂x

∂x′
+ u′

t

∂t

∂x′

which gives

u′
x′ = (b+ rTu′)u′

x

and using the above form of u′ and the relations (14) reduces to

u′
x′ =

u′
x

a+ p · u
.
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These expressions simplify (15) to

Λu′
x = −γ(q +Au)(pTFux) + γ(a+ p · u)AFux.

Using the relations (13) and (14) and differentiate the expression of u′ with respect to x the
above equation takes the form

Λ
[
(a+ pTu)Aux − (p · ux)Au− puxq

]
= −γ(q +Au)(pTFux) + γ(a+ p · u)AFux

and simplifying to get

Λ
[
(a+ pTu)A− (Au + q)pT

]
= γ(a+ pTu)2

[
(a+ pTu)A− (Au + q)pT

]
F.

Solving for F (u) to obtain

F (u) =
[H(u)]−1ΛH(u)
γ(a+ pTu)2

, (16)

where

H(u) = (a+ pTu)A− (Au + q)pT .

Summarizing we have:

Theorem 1. The nonlinear system of diffusion equations (9) can be mapped into the linear
system (10) by the equivalence transformation admitted by (9) if and only if the functions F (u)
is of the form (16).

Remark 1. Point transformations that linearize system (3) lead to contact transformations
that linearize system (1).

Remark 2. In the case where Λ = I2, that is, system (5) becomes two separate linear diffusion
equations with diffusivity constants equal to 1, the linearizing form of (1) is

ut =
[

ux
(p1u+ p2v + a)2

]
x

, vt =
[

vx
(p1u+ p2v + a)2

]
x

. (17)

It is known that the part of transformation (4), namely x′ = v, t′ = t, v′ = x, which is known
as pure hodograph transformation maps the potential equation vt = v−2

x vxx into the linear heat
equation v′t′ = v′x′x′ . In the spirit of the work in [1], where such transformations were classified
for the potential equation vt = f(vx)vxx, we consider the potential system of (1),

wt = f(wx, zx)wxx + g(wx, zx)zxx,
zt = h(wx, zx)wxx + k(wx, zx)zxx. (18)

Transformations that presented in this section which linearize systems of the form (3), can also
be employed to linearize systems of the form (18). We present the results in the following
theorem:

Theorem 2. The nonlinear system of potential diffusion equations (18) can be mapped into the
linear system

w′
t′ = µ1w

′
x′x′ + µ2z

′
x′x′ , z′t′ = µ3w

′
x′x′ + µ4z

′
x′x′

by the transformation (7) if and only if the functions f(wx, zx), g(wx, zx), h(wx, zx), k(wx, zx)
are of the form[

f(wx, zx) g(wx, zx)
h(wx, zx) k(wx, zx)

]
=

[H(wx)]−1ΛH(wx)
γ(a+ pTwx)2

,

where

H(wx) = (a+ pTwx)A− (Awx + q)pT .
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Using the above theorem the corresponding form of Remark 2 reads:

Remark 3. The nonlinear potential system

wt =
wxx

(p1wx + p2zx + a)2
, zt =

zxx
(p1wx + p2zx + a)2

can be transformed into two separable linear heat equations.

4 Examples of linearizing mappings

In this section we use the results of the previous section to present two examples.

Example 1. We consider the system (17) with its corresponding second generating potential
system

wx = u, wt =
ux

(p1u+ p2v + a)2
,

zx = v, zt =
vx

(p1u+ p2v + a)2
. (19)

We have shown that system (19) can be linearized using the equivalence transformations of (5).
That is, the transformation

x′ = ax+ p1w + p2z, t′ = t, w′ = q1x+ a1w + a2z, z′ = q2x+ a3w + a4z,

u′ =
q1 + a1u+ a2v

a+ p1u+ p2v
, v′ =

q2 + a3u+ a4v

a+ p1u+ p2v

maps the linear system

w′
x′ = u′, w′

t′ = u′x′ , z′x′ = v′, z′t′ = v′x′

into the nonlinear system (19).
This transformation leads to the contact transformation

dx′ = adx+ (u+ v)dx+
[
(p1u+ p2v + a)−2(ux + vx)

]
dt, dt′ = dt,

u′ =
q1 + a1u+ a2v

a+ p1u+ p2v
, v′ =

q2 + a3u+ a4v

a+ p1u+ p2v

that maps the two separate linear diffusion equations

u′t′ = u′x′x′ , v′t′ = v′x′x′

into the nonlinear system (17). Using Theorem 2 we deduce that the potential form of (17),

wt =
wxx

(p1wx + p2zx + a)2
, zt =

zxx
(p1wx + p2zx + a)2

can be linearized by the transformation

x′ = ax+ p1w + p2z, t′ = t, w′ = q1x+ a1w + a2z, z′ = q2x+ a3w + a4z.

Example 2. We consider the special case of the equivalence transformation of (3)

x′ = w + z, t′ = 2t, u′ =
v + 1
u+ v

, v′ =
u+ 1
u+ v

, w′ = x+ z, z′ = x+ w
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which maps the linear system

w′
x′ = u′, w′

t′ = µ1u
′
x′ + µ2v

′
x′ , z′x′ = v′, z′t′ = µ3u

′
x′ + µ4v

′
x′

into the nonlinear system

wx = u, wt =
ν1uv + ν2u+ ν3v + ν4

(u+ v)3
ux +

−ν1u
2 + (ν2 − ν3)u+ ν4

(u+ v)3
vx,

zx = v, zt =
ν1v

2 + (ν2 − ν3)v − ν4

(u+ v)3
ux +

−ν1uv + ν3u+ ν2v − ν4

(u+ v)3
vx,

where

ν1 = µ1 − µ2 + µ3 − µ4, ν2 = µ1 + µ2 + µ3 + µ4, ν3 = µ1 − µ2 − µ3 + µ4,

ν1 = µ1 + µ2 − µ3 − µ4.

Clearly if we set µ1 = µ4 = 1, µ2 = µ3 = 0, we obtain a special case of the previous example.
Now the above transformation lead to the contact transformation

dx′ = (u+ v)dx+ [ν1(vux − uvx) + ν2(ux + vx)] (u+ v)−2dt, dt′ = 2dt,

u′ =
1 + v

u+ v
, v′ =

1 + u

u+ v

that maps the linear system

u′t′ = µ1u
′
x′x′ + µ2v

′
x′x′ , v′t′ = µ3u

′
x′x′ + µ4v

′
x′x′

into the nonlinear system

ut =
[
ν1uv + ν2u+ ν3v + ν4

(u+ v)3
ux +

−ν1u
2 + (ν2 − ν3)u+ ν4

(u+ v)3
vx

]
x

,

vt =
[
ν1v

2 + (ν2 − ν3)v − ν4

(u+ v)3
ux +

−ν1uv + ν3u+ ν2v − ν4

(u+ v)3
vx

]
x

.

5 A linearizing case of the system (2)

In Section 3 we used the equivalence transformations of (3) to derive linearizing mappings. We
point out that employment of the equivalence transformations of (2) does not lead to linea-
rizing mappings. However such linearizing mapping, which is not member of the equivalence
transformations, exists for a special case of (2).

We consider the special case of (2)

wx = u, wt = −u−2ux, vt =
[
u−2vx

]
x

(20)

which is the first generation potential system of

ut = −
[
u−2ux

]
x
, vt =

[
u−2vx

]
x
. (21)

System (20) admits the infinite-dimensional Lie symmetries

Γφ = φ(t, w)
∂

∂x
− u2φw

∂

∂u
, Γψ = ψ(t, w)

∂

∂v
,
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where the function φ(t, w) satisfies the backward linear heat equation φt + φww = 0 and ψ(t, w)
satisfies the linear heat equation ψt − ψww = 0. These symmetries induce potential symmetries
for the system (21).

If a nonlinear PDE (or a system of PDEs) admits infinite-parameter groups, then it can be
transformed into a linear PDE (or into a linear system of PDEs) if these groups satisfy certain
criteria. These criteria and the method for finding the linearizing mapping using the infinite-
dimensional symmetries can be found in [3]. Hence, using the method described in [3], the above
infinite-dimensional Lie symmetries of (20) lead to the transformation

x′ = w, t′ = t, u′ =
1
u
, v′ = v, w′ = x

which maps the linear system

w′
x′ = u′, w′

t′ = −u′x′ , v′t′ = v′x′x′

into the nonlinear system (20). Consequently this mapping lead to the contact transformation

dx′ = udx+ u−2uxdt, dt′ = dt, u′ =
1
u
, v′ = v

which maps the linear separable system

u′t′ = −u′x′x′ , v′t′ = v′x′x′

into the nonlinear system (21).
We point out that the above result cannot be achieved using the equivalence transformations

of (3). However it is straight forward to derive the above contact transformation as a special case
of the one derived in the Example 1, Section 4, which maps the two linear separable diffusion
equations u′t′ = u′x′x′ and v′t′ = v′x′x′ into the nonlinear system ut =

[
u−2ux

]
x

and vt =
[
u−2vx

]
x
.

6 Conclusion

In this paper we have considered the problem of finding forms of the general class of systems of
diffusion equations (1) that can be linearized. We have employed the second generation potential
system (3) and derived the equivalence transformations admitted by this system. Using these
transformations we classified special cases of (3) that can be linearized. In turn these transfor-
mations lead to nonlocal mappings that linearize the corresponding forms of (1). Furthermore
we determined a special case of (1) that can be linearized, by considering the Lie symmetries of
the first generation potential system (2), which induce potential symmetries for the system (1).

The question that arises here is: Are these the only cases of the system (1) that can be linea-
rized? Furthermore: Can the results obtained here be generalized for systems of n equations?
These are two of the problems of our investigation in the near future.
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