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In this article, we suggest an algorithm, which is simpler than that in [i, 2], for the 
reduction of a matrix to canonical form by transformations of unitary similarity and describe 
matricesof canonical form. 

This problem is equivalent, in thesense of [3], to the following more general problem, 
which isalso solved by the suggested algorithm. In analogy with the definition of the Kol- 
chan representation [4], we will say that a unitary representation Of an oriented graph 
(loops and multiple arcs are admitted) is given if a finite-dimensional unitary spaceUvis asso- 

ciated with each vertexv of it and a linear mapping ~: U v ÷ U w is associated with each arc 

from v into w. It is required to classify all unitary representations. 

Selecting orthonormal bases in all the spaces Uv, Uw, ..., we get a system of the matrices 

A~ of mappings ~: Uv ÷ Uw. Under reselection of orthonormal bases, the matrix A~ transforms 

into B% =S~IA%Sv, where S and S are unitary matrices of transition to new bases. Therefore, 
v w 

the classification of the unitary representations of an oriented graph reduces to the classi- 
fication of the systems of the matrices A% up to these transformations. It will be convenient 

for us to give the system of the matrices A% in the form of the blocks of a block matrix. In 

this article, certain square blocks of the considered block matrices may be distinguished by 
shading. 

Definition i. The following matrix problem is called a unitary problem. A block matrix 

A = (Aij) is equivalent to the matrix B = (S[IAijRj) with the same arrangement of shaded 
blocks, where S i and Rj are unitary matrices such that S i = Rj whenever the block Aij is 

shaded. It is required to select one "canonical" matrix in each class of equivalent block 
matrices. 

The passage to an equivalent matrix will be called an admissible transformation. In par- 
ticular, a matrix that consists of a single block is reduced by transformations of unitary 
equivalence if the block is not shaded, and by transformations of unitary similarity if the 
block is shaded. 

The matrices of unitary representation of an oriented graph can be accommodated in a 
block matrix such that the admissible transformations from it correspond to a reselection of 
the bases in a unitary representation; e.g., Fig. i. 
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Fig. 1 
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i. AN ALGORITHM FOR THE SOLUTION OF A UNITARY PROBLEM 

A @ B= (~)the direct sum of the matrices A and B. In particular, We will call the matrix 

@ 0m0 =(~), and A @ 00n = (A0), where 0too and 0on are "empty" null matrices of order m A X 0 

and 0 x n, respectively; they give linear mappings of spaces, one of which is zero-dimensional. 

We need two lemmas. The first lemma is well known and the second one strengthens the 
Schur lemma and is contained in [2]. 

LEMMA i. a) Each matrix A is unitarily equivalent to the matrix 

D = alE1 • • • • @ a~-lEk-1 @ 0, (1 )  

w h e r e  a l ~ . . . > a ~ _ l > O  a r e  r e a l  n u m b e r s ;  E l ,  . . . .  E k ,  1 a r e  u n i t  m a t r i c e s ;  and  0 i s  t h e  n u l l  

m a t r i x  o f  o r d e r  p × q ,  p ,  q ~ 0 .  

b )  I f  S-1DR = D, w h e r e  R and  S a r e  u n i t a r y  m a t r i c e s  a n d  D i s  a m a t r i x  o f  t h e  f o r m  ( 1 ) ,  

t h e n  S = $ 1 0 . . .  • S ~ - I @  S ' ,  a n d  B = $1 @ . .  • @ S ~ - I @ R ' ,  w h e r e  S .  h a s  t h e  same o r d e r  a s  E . .  
1 1 

~ i  ) , Proof. a) Let A = (aij) , A* = ( where a ÷ a is the complex conjugation. The matrix 

A*A is Hermitian. Therefore, there exists a unitary matrix U such that U*A*AU = diag (b~,..., 

b~,0 .... , 0) , where bl~...~br~0 are real numbers. The first r columns of the 

matrix AU are pairwise orthogonal and the remaining columns are null. Let V denote an arbi- 

trary unitary matrix, the first r columns of which are the same as those of the matrix 

A U  diag  (b; 1 . . . . .  b71,0 . . . . .  O) Then  V*AU h a s  t h e  f o r m  ( 1 ) .  

b) Since S-IDH =D, S* = S -I, B* = R -I , and D* = D, it follows that R*D*S *-I = D* and 

RT~DS = D. Hence DaS = SD 2 and DaR = R2D. Therefore, R and S have the block-diagonal form. 

We will assume the complex numbers to be lexicographically ordered: a ~- hi. ~c -i- diif 

a > c, or a = c and b~d. 

LEMM 2. a) Each square matrix A is unitarily similar to the block-triangular matrix 

F =  ( f i : ) ,  F i j  = 0 ~r i < ] ,  F i t  = XiEi, (2)  

w h e r e  i ,  j = l ,  . . . ,  k ;  E. i s  t h e  u n i t  m a t r i x ,  a n d  ~ . ~ . . . . ~  ~ ; i n  a d d i t i o n ,  F i + l , i  i s  
1 

nonsingular with respect to rows for X i = ~i+*" 

b) Let S-IFS = F', where S is a unitary matrix and F = (Fij) and F' = (FIj) have the form 

(2), and, in addition, F.. = F~. for i~ j. Then S = $I~... ~ S~, where S. has the same or- 
i 3 13 1 

der as F... Ii 

Proof. a) Let ~ be the operator in the unitary space V given in a certain orthonormal 

basis by the matrix A, (x -- l~)...(x -- %k) be its minimal polynomial, and %1" ~.-. :~%~ • We 

choose an orthonormal basis e~, ..., e n in V such that esi+,, ..., en is a basis of the space 

(~--%iI).. • (~--%iI) V , where I is the identity operator, l~i<k. The matrix of the operator 

in this basis has the form (2), divisions into blocks pass between the s.-thl and the (s i + l)- 

.-th and the (s i + l)-thcolumns, I ~ i<k th rows and between the s I 

b) Let S = (Sij) be partitioned into blocks of the same size as F = (Fij). Successively 

considering the blocks with the indices (1, k), (1, k -- i) .... , (1, i); (2, k), (2, k -- i), 

..., (2, 2); (3, k), (3, k -- i), ..., (3, 3); ... in the matrix FS = SF' and using non- 

singularity with respect to rows of the blocks F!1+1,i for %i+ I = Xi, we get $13.. = 0 for all 

i < j. Since S is unitary, it follows that S.. = 0 for i # j. The lemma is proved. 
13 
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A block that remains invariant under admissible transformations is said to be reduced. 
We assume that the blocks are lexicographically ordered with respect to indices: AI~, A12, 
A13, .... The unitary problembelongs to the class of the matrix problems which A. V. 
Roiter proposed to call self-reproducing. If in a block matrix the first nonreduced block 
is reduced to the form (i) or (2) and, further, we restrict ourselves to those admissible 
transformations that "do not spoil" the form of this block, then the obtained problem will 
again be unitary. It is defined in the following manner. 

Definition 2. Let Apq be the first nonreduced block of the matrix A = (Aij). Depending 

on the arrangement of the shaded blocks, it is reduced by the transformations of unitary 
equivalence or similarity. Reduce A = (Aij) to the matrix A = ( j), where,, in the first 

case, Apq = ale I 0... O ae-iE~-10 0 is of the form (i) and the subblocks alE1,..., a~-i~-I 

are shaded and, in the second case, Apq = (F=~), ~, ~ = i ..... k, is of the form (2), and if A 
Pq 

was shaded• then the subblocks F11, F22, ... Fkk are also shaded. The block A is parti- • pq 

tioned into k horizontal and k vertical strips; we extend this partition to the whole p-th 
horizontal and the whole ~-th vertical strips of the matrix A. If the new divisions pass 
through the shaded block A.., then we carry out more divisions perpendicular to them such Ij 

that it is partitioned into subblocks Aij = (B ~) with the square subblocks B~I, B22, ..., 

Bkk , and we remove the shading from the subblocks B B, ~ # B. We do this with all the shaded 

blocks through which new divisions pass. We call the obtained new block matrix the derived 
matrix of the block matrix A = (Aij) and denote it by A'. 

Let us observe that A' is defined up to equivalence. 

LEM~iA 3. If two block matrices A and B are equivalent• then their derived matrices A' 
and B' are also equivalent. 

Proof. To construct A' at first we pass to the equivalent matrix A = (Ai)• reducing , j 

the block A to the form (i) or (2). Obviously, in the construction of B' the block B 
Pq Pq 

with the same p and q is reduced. Since A and B are equivalent• A and B are also equivalent• 

i.e., B = (S$~AijRj) , _  and B = S-~A R . By virtue of Lemmas i, b) and 2 b), S and R 
Pq P Pq q ' p q 

have block-diagonal form, consistent with the additional division of A' and B' into blocks. 
The lemma is proved. 

Let us consider the sequence of derived matrices A, A', A", ..., A (t), ... . Since the 
derived matrix contains more shaded blocks, this sequence ends with a certain matrix A(S)• 
s ~0, for which the derived matrix is not defined. This means that the admissible trans- 
formations with the matrix A(s) do not change any of its blocks, i.e., A(s) is equivalent only 
to itself. If in addition A is equivalent to B, then, by Lemma 3, A (s) is equivalent to B(s) 
and consequently A(s) = B(s). 

Definition 3. Let A be a block matrix, A (s) be its s-th derived matrix• and the (s + l)- 

th derived matrix be not defined. Enlarge the blocks in A (s) to the sizes of the blocks of 
the.matrix A and shade the blocks that are arranged in the same manner as the shaded b~ocks 
of A. The obtained block matrix will be called a canonical matrix and is denoted by A. 

The following theorem follows from what we have said above. 

THEOREM i. Each block matrix A is equivalent to the canonical matrix A ~. If A and B are 

equivalent• then A ~ = B ~. 

2. SCHEME OF A CANONICAL MATRIX WITH RESPECT TO THE TRANSFORMATIONS 
OF UNITARY SIMILARITY 

We will study the structure of the canonical matrix A ~. For simplicity, we restrict our- 
selves to the case where the initial matrix A consists of a single shaded block, i.e., is 
reduced by transformations of unitary similarity. 

A rectangle of size m × n, partitioned into unit cells, is called an (m × n)-rectangle 
(an n-square for m = n). W e giveto thecell, situated in the i-th horizontal line and the j-th 
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vertical line, counting downwards from above and from left to right, the pair (i, j), 
i•i•m, and i•]<n. 

We will represent the canonical matrix A ~ of order n x n schematically by an n-square, 
partitioned into zones, in which some of the cells are marked. To this end, we associate 
the cell (i, j) with each element ao. of the matrix. The matrix A ~ is constructed with res- 

z3 
pect to A by successive reduction of blocks. Let A be one of the blocks to be reduced. 

Pq 
If the new block A has the form (i), then the cells associated with its elements form a 

Pq 
zone; each cell, associated with a nonzero element, is marked with a circle situated at its 
center; in addition, the circles corresponding to equal elements of A are joined by a line. 

Pq 
But if A = (F 6) is of the form (2), then the union of the cells associated with the elements 

Pq 
of all the blocks F 6, e ~6, form a zone and the cells, situated on the principal diagonal 

of the zone, are marked with stars. 

An example of a canonical matrix and its schematic representation are given in Fig. 2. 

We suggest the following description of the set of the canonical matrices A . At first, 
we give an explicit definition of the set of all schemes of the form of Fig. 2. Then for 
each scheme we describe all the canonical matrices with this scheme. 

We call an (m x n)-rectangle, which either has no marked cells or has cells (I, i), (2, 2), 
.... (t, t) marked by circles for a certain t~min(m, n), an equivalence zone of size 
m x n. Two adjacent circles can be joined by a line. The number of circles below the one 
with which a circle is joined is called the height of this circle. 

We call an n-square, in which all the cells of the principal diagonal are marked by 
stars and, possibly, all the cells (i, j), i > t ~j, are removed for certain natural numbers 
t < n, a similarity zone of size n × n. we call the number of cells of the zone situated 
under a star the height of this star. 

We give an example of an equivalence zone and a similarity zone (Fig. 3). The heights 
of their markings form the sequence O, 2, i, 0, i, 0. 

Definition 4. An n-square, partitioned into equivalence and similarity zones such that 
the similarity zone is of size n x n and the following condition is fulfilled for every other 
zone Z, is called a scheme of order n x n: 

(A) Let (~, 6) be the upper left cell of the zone Z. Let us take away markings from 
the zone Z and the zones, all the cells (i, j) of which follow (e, B) lexicographically: 

I 
5+i, 0 0 O O 0 O \  "~ 
0 3+~ 0 0 0 0 O l  
4 0 2 0  0 o o o~ se 

o # o 2 o o o ~ xo 
0 0 0 0 2 0 0 
5 o ~ o o 2 o _ ~ _ ~ , ~ _ 1 o  
0 5 8  ~ 2 0 2  

F i g .  2 

o~ 

~o 

> 
Fig. 3 
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i > a, or i = a and j > 3. We call the union of the cells (i, I), (i, 2), ..., (i, i), (i + 

i, i), ..., (n, i) the i-th angle (l~i~n). We call two angles cohesive if they can be 
included in a sequence of angles in which any two adjacent angles have a co~on circle. Let 
h. be the least of the heights of the markings of the i-th angle and of the angles cohesive 

! 

with it. Then (h a + i) x (h~ + i) is the size of the zone Z and Z is an equivalence zone if 

the a-th and the B-th angles are not cohesive and is a similarity zone if these angles are 
cohesive. 

We call the set of the stars (a, ~), (a + I, B + i), ..., (a + k, B + k) of a zone such 

that the height of the star (a, B) is equal to k and either (a, B) is the upper star of the 
zone or the star (a -- i, ~ -- I) is of height 0 a constellation of the scheme. 

Definition 5. A matrix A = (aij) of the order of a scheme S which satisfies the follow- 

ing conditions is called a matrix with the scheme S: 

i. If cell (i, j) is not marked, then a .... 0. 
13 

2. If (i, j) is a circle, then ~.. is a positive real number. If (i + i, j + i) is a 
x3 

circle from the same zone, then a~j~ai+1, j+l, and, in addition, aij = ai+1,j+1 if and only if 

the circles are joined by a line. 

3. If (a, B), ..., (a + k, ~ + k) is a constellation, then aa~ = .... a=+~.~+~. If 

(a + k + i, ~ + k + i), ..., (~ + s, B + s) is a constellation from the same zone, then the 

complex numbers a~ ~ a -]- bi and a~+~+1.~+~+~ = c -}- di are lexicographically ordered: a > c, or a = 

c and b ~ d.  For  a ~  = a~+k+l,~+~+l b l o c k  ( a i j ) ,  ~ + k  + i ~ i ~  + s ,  and ~ ] ~  ~ + k ,  i s  

nonsingular with respect to rows. 

An example of a matrix with a scheme is given in Fig. 2. 

THEOREM 2. The set of the canonical matrices ~ coincides with the set of the matrices 

with schemes. 

Proof. By the scheme of a canonical matrix we have defined its schematic repressntation 
at the beginning of the section. Conversely, if A is a matrix with a scheme, then A = A. 

Definition 6. For a scheme of order n x n the graph with the vertices i, 2, ..., n, in 
which i and j are joined by an edge if and only if the cell (i, j) contains a circle, is 
called its graph. 

For example, the scheme in Fig. 2 has the graph 

5 
J 

4--2--7--3--I--6 

LEMMA 4. The graph of each scheme is a union of trees. 

Proof. The absence of cycles is explained by the condition (A), defining the type of a 

zone in a scheme. 

We will write A - B if the matrix A can be obtained from the matrix B by a permutation of 
rows and the same permutation of columns (a transformation of unitary similarity). 

LEMMA 5. If a matrix A = A I G A= , then A = ------ A~ @ A~, and the relative arrangement of 

the rows and columns in the matrix A ~ (a = i, 2) is the same as in A ~. 
a 

Proof. It is sufficient to show that for the matrix A the sequence of derived matrices 
A, A', A", ..., A (t) = (Ai(~)), ..., satisfying the following conditions, exists: 

• # t )  X(O. X(9 i. -~ = 1,3 @ 2,j , the empty terms Oon and Omo being admitted. 

2. ~(t) form a block matrix for fixed a and t Let us denote it by X$ ) IX (t)..l and shade _- .. • ~ \ ~?.31 

the block X(t) if the block A (t) is shaded. 
~ ij 
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3. X (t) is the derived matrix of A (l~) for some l= ~ t , possibly augmented by empty 

strips. 

This lemma can be proved by induction over t Let A (t) have the desired form, N (0 • pq ----- 

~(t) be its first nonreduced block (see Definition 2). We can obviously reduce ~xlpq 

X1pq and X2pq separately. Then we permute the strip to obtain the reduction for . As a 

result, we get the desired form for A (t+~). 

A square matrix is said to be indeeomposable if it cannot be reduced to a direct sum of 

matrices of lesser order by unitary transformations of similarity. 

THEOREM 3. Each square matrix A is unitarily similar to a unique, up to permutation of 
summands, direct sum of indecomposable canonical matrices. This sum can be obtained in the 
following manner. Let the graph G of the scheme of the canonical matrix A ~ be the union of 

the trees G. with the vertices vil< v~2 <... < vih (I-~ i ~ m) • Rearrange the columns of the 
1 

matrix A ~ such that their old numbers form the sequence 

~ 2 1 1 ~  " " " ~ U l r l ;  / 2 2 1 ,  • • • ~ U g r 2 ;  • • • ; U m l ~  • • • ~ Umrml 

then rearrange the rows in the same manner. The obtained matrix will be a direct sum of in- 

decomposable canonical matrices A. of order r~ × ri (i ~ i ~ m). 
1 

Proof. Let the matrix A be unitarily similar to BI Q... OBs, where B. = B. is an in- 
1 1 

decomposable canonical matrix. By Theorem 1 and Lemma 5, A m = (B I • . . . • Bs) = ~BI ~ • • • Q B~ 

where the arrangement of rows and columns in B. is the same as in A . Let wil, ..., wil i be 
l 

the numbers of the rows of matrix A ~ that form the matrix B.. It is sufficient to prove that 
l 

this set of vertices is a connected component of the graph G. If the vertices wi~ and wjB , 

wi~ > wj~, are joined by an edge, then the cell (wi~ , wjB) of the scheme is marked by a 

circle and a nonzero element of the matrix A ~ corresponds to it, which, by virtue of A~-- -- - 

BIO... O Bs , is possible only when i = j. On theother hand, any two vertices wi~ and wiB 

are connected in the graph G, since otherwise we would have Bi-~XOY, which contradicts 

the indecomposability of B i. 

COROLLARY. The number of circles in the scheme of a canonical matrix of order n x n 
does not exceed n -- i. This number is equal to n -- 1 if and only if the matrix is indecom- 
posable. 

Proof. The number of vertices of the graph G of the scheme of a canonical matrix of 
order n x n is equal to n, and the number of edges is equal to the number of circles in its 
scheme. The graph G is a union of trees. Therefore, the number of its edges is less than n, 
and is equal to n -- 1 only when G is a tree, which, by virtue of Theorem 3, is equivalent to 
the indecomposability of the matrix. 

Definition 7. A scheme of order n x n is said to be simple if the number of its circles 
is equal to n -- 1 and all the stars, situated on the principle diagonal, have height 0. 

The scheme of a canonical matrix is simple if and only if the matrix is indecomposable 
and each of its characteristic roots has only one, up to a scalar factor, characteristic vec- 
tor (e.g., it has no multiple characteristic roots). 

THEOREM 4. A simple scheme is completely determined by its graph. An arbitrary tree 
with numbered vertices can be the graph of a simple scheme. 

Proof. Let G be a tree with the vertices i, ..., n. In the n-square we mark the cell 
(i, j) by a circle for each pair of vertices i and j, i > j, joined by an edge• We mark with 
a star each cell of the principal diagonal and also the cells (ii, i m) for each sequence of 

the vertices ii, i2, .... , i m (m ~3), in which the vertices i s and i +~(l~a < m) are 

joined by an edge and i2 < min (ii, im), i3 < ii .... , im < iI. We call the union of the 

cells (i, j), i < j, and also each cell (i, j), i > j, a zone. As a result, we obtain a 
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simple scheme with the graph G. It is obvious that the tree G cannot be the graph of any 
simple scheme. 

Since the number of trees with the vertices i, ..., n is equal to n n-2 (see [5]), the 
number of simple schemes of order n x n is equal to n n-~. 

LITERATURE CITED 

i. J. Brenner, "The problem of unitary equivalence," Acta Math., 86, No. 2, 297-308 (1951). 
2. H. Radjavi, "On unitary equivalence of arbitrary matrices," Trans. Am. Math. Soc., 104, 

No. 2, 363-373 (1962). 
3. S. A. Kruglyak and Yu. S. Samoilenko, "On the unitary equivalence of sets of self- 

adjoint operators," Funkts. Anal. Prilozhen., 14, No. i, 60-62 (1980). 
4. P. Gabriel, "Unzerlegbare Darstellungen I," Manuscripta Math., ~, No. i, 71-103 (1972). 
5. F. Harary, Graph Theory, Addison-Wesley, Reading (1969). 

INVERSE SPECTRAL PROBLEM FOR LIMIT-PERIODIC 

SCHR~DINGER OPERATORS 

V. A. Chulaevskii UDC 517.43 + 517.9 

The intensive development of the theory of nonlinear systems which are integrable by the 
method of the inverse problem of scattering theory, which began about 15 years ago, has 
served as a powerful new stimulus for the study of inverse spectral problems of the most di- 
verse kinds. The work of recent years shows that the language of the inverse problem of 
scattering theory is adequate to describe important classes of operators both qualitatively 
and quantitatively. In this article, such an approach is applied to the study of one-dimen- 
sional SchrDdinger operators with limit-periodic potential. 

Examples have been given in recent articles [2-4] of limit-periodic Schr~dinger operators 
whose spectra, from a set-theoretic point of view, are nowhere dense perfect sets of nonzero 
measure. It is not difficult, however, to show by the methods in the above articles that 
there exists an everywhere dense set of "gaps" in the spectrum of an operator only for a cer- 
tain topologically massive (but implicitly describable) set of potentials, or even for poten- 
tials of a very special type. This difficulty is probably objective, and an approach using 
the inverse problem of scattering theory seems more natural. We obtain a result below which 
is, in a well-known sense, a converse of the results in [2-4]. Namely, it is established that 
any family of intervals on the real axis (bounded below, of course) whose endpoints satisfy 
certain analytical conditions and whose lengths decrease sufficiently rapidly (with respect to 
a natural indexing of the intervals) can be taken as the set of "gaps" in the spectrum of a 
limit-periodic Schr~dinger operator. The Dubrovin equations and the trace formulas [5]-[6] 
lie at the foundation of the proof. 

We recall the basic steps in the solution of the inverse problem of scattering theory 
for a periodic potential. Suppose that we are given 

a) a sequence of nonnegative numbers h = {hs}indexed by the points of some one-dimensional 

lattice {s: Ns~Z} ,  N ~ N ,  where h0-----O, h-8-----h~, H - - s u p h ~  ; 

b) a r e g i o n  ®(h) in  the  complex p lane  of  the  form 

0 ( ~  = C + \  ~ {Rez ~ s ,  Imz~.[O,h~]}; 
8 

c) a conformal mapping O: C+--~ @ (A) of the form 
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