TAME AND WILD SUBSPACE PROBLEMS
P. Gabriel,! L. A. Nazarova, A. V. Roiter,? V. V. Sergeichuk,? and D. Vossieck3 UDC 512.553

Assume that B isa finite-dimensional algebra over an algebraically closed field &, B,= Spec & [B 1 s
the affine aigebraic scheme whose R-points are the B ®, k[8,]-module structures on R % and M , isa
canonical B ®, k[B,]-module supported by k[B d]". Further, say that an affine subscheme ¥ of B y
is class true if the functor F,: X > M, ®,, X induces an injection between the sets of isomorph-
ism classes of indecomposable finite-dimensional modules over k[ and B. If B , contains a class-
true plane for some d, then the schemes B, contain class-true subschemes of arbitrary dimensions.
Otherwise, each ‘B; contains a finite number of classtrue puncture straight lines £(d, {) such that for
each z, almost each indecomposable B-module of dimension # is isomorphic to some F ., ,(X);

furthermore, F g4, 5 (X) is not isomorphic to Frup(¥) if (d,i) = (1, ) and X #0. The proof uses a
reduction to subspace problems, for which an inductive algorithm permits us to prove corresponding
statements.

1. Notation, Terminology, Objective.

Throughout the paper, & denotes an algebraically closed field.

By A we denote a k-category, i.e., a category whose morphism sets A(X, Y) are endowed with vector space
structures over k such that the composition maps are bilinear. Furthermore, we suppose that A4 is an-aggregate
(over k), i.e., that the spaced A(X,Y) have finite dimensions over %, that 4 has finite direct sums, and that each
idempotent e € A(X, X) has akernel. As a consequence, each X € 4 is a finite direct sum of indecomposables,
and the algebra of endomorphisms of each indecomposable is local. We shall denote by R a spectroid of 4, i.e.,
the full subcategory formed by chosen representatives of the isoclasses of indecomposables, and by Rq and Ry
the radicals of 4 and 4. _

Typical examples of aggregates are provided by the category projA of finitely generated projective right
modules over a finite-dimensional algebra A, or by the category mod A of all finite-dimensional righ: A-modules.
The aggregate proj A has a finite spectroid; mod A, in general, does not.

A pointwise finite(left) module M over A is, by definition, a k-linear functor from 2 to modk. For
instance, in the examples considered above, each N € mod A °P yields a module P+> P®, N over projA and
each L emodA yields a series of modules X +> Ext (L, X) over mod A.

With each module M over A we associate a new aggregate M* whose objects are the M-spaces, i.e., the
triples (V. f, X) formed by a space V € modk, an object X € A, and a linear map f:V — M (X). A morphism
from (V,£,X) to (V',f’,X’) is determined by morphisms ¢: V-V’ and &: X — X’ such that '@ =M ).

Let L=(K,J,...) beabond on M, i.e., a finite set of submodules. We say that (V, f, X) € M* avoids L
if f~4(L(X))= {0} foreach L € L. The triples which avoid £ form a full subaggregate of M ¥, which we denote
by Mf=Mg ;, .

When V and X are fixed, the triples (V,f, X) € M* may be identified with points of the space Hom,(V,
M (X)). The triples avoiding L then correspond to the points of a (Zariski-)open subset Hom,f(V, M (X)), which
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inherits from Homy(V, M (X)) the structure of an algebraic variety. Our objective is to examine the “number of

parameters™ occurring in an algebraic family of maps fe Hom,f(V, M (X)) such that the triples (V, f, X) are
indecomposable and pairwise nonisomorphic. '

2. Formulation of the Main Theorems

2.1. With the notation introduced above, let e = (e, ..., €,) be a coordinate system of an affine subspace §
of Hom,(V, M (X)), i.e., a sequence of vectors ¢; € Hom,(V, M (X)) such that the map

k' —->Hom,(V,M (X)), x—ey+xe;+..+xg,

induces a bijection k’=S. Then e provides a functor F, rep 0’ — M, where rep Q' is the aggregate formed by
the finite-dimensional representations of the quiver Q' with 1 vertex and ¢ arrows: F, maps a sequence a & rep Q'

of ¢ endomorphisms a;;: W — — W onto the triple (W ®V, f.(a), W ® X), where W ® X € A represents the
functor Homy (W, A(X, ? )(hence, k"®X = X") and |

f(@) = 1,@ e+a; ®e +...+a,Q e, WO VoW MX) =MW ® X).

The functor F, behaves well toward affine subspaces S’ C S. Let e’ be a coordinate system of S’, where
ey = €y + 2:=1T0iei and e} = 2:=1Tﬁei’ 1<j<s. We then have F, = F, o®, where ®: rep Q' —rep 0 is
the functor a” — a defined by a,=T, 6iﬂw + Zj.:]Tj,-a}, 1<i<t Inthecase S’'= S, @ is an automorphism.

2.2. Letnow R be an affine subspace of Hom, (W, W) with coordinate system d = dp, 4y, ..., d;), where dj
=(djy, ..., d;). Then d provides a functor P, reprQs —>rep Q‘ which maps ¢ € Hom(U, U Y onto b e Hom (U
® W, U ® W), where b;=1y®dy +c,®d; +... + ¢, ® d;. A simple calculation shows that F,c®,;=Fj,
where f is a coordinate system of a subspace of Hom, (W®V, M(W®X)) and is defined by

f0= lw® €0+d01 ®e1+...+d0,®e,
and

fj.'=djl ®e1+...+dj,®e,, ISJSS.
All compositions @, o P4 have the form @,. Inthecase W=k and d;;=T;; € k =Hom, (%, k), P4 coincides
with the functor @ of 2.1.

Example 1. Consider the affine subspace R of Homy (ks*), ks+1)2 formed by the pairs of matrices

01 0!0 0] [0 x 0!0 0]
00 110 0/ [0 0 !0 0
0.0.010 0,10 0 0140 0
100 010 1 0 0 00 x
0 0 0i0 0] [0 0 0i0 O

Let d be the coordinate system of R. for which x; is the i-th coordinate of the above pair. The associated

functor @, repQ° — repQ? maps ¢ € Homy(X, X)° onto the pair b € Hom, (X**!, X**1y* represented by the
matrices
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on,o:ool‘o‘clo:oo
00 1,100 00 ¢! 00
00 01001 100 0:00
00 0 10 1, 00 010 ¢
00 0 100 | |00 0!0 0]

It follows that ®, factors through the full subaggregate repy Q% of repQ? formed by the pairs of nilpotent
simultaneously trigonalizable endomorphisms. A simple calculation shows that @, preserves indecomposability
and heteromorphism (c, ¢’ € rep Q° are isomorphic if so are the images ®,(c), @4 (c)).

Example 2 [1]. Consider the affine subspace U of Homy (k*, k*)2 formed by the pairs of matrices

0 1 0 0][0 0 1 O
0 0 0 x{|0 0 0 1
0 0 0 1{[0 0 0 x
0 0 0 0J]lo 0 0 O

If g is the coordinate system of U for which x; is the i-th coordinate, the associated functor ®g: rep 0? —
rep Q2 factors through the full subaggregate repg Q2 of repyQ? formed by the pairs of commuting nilpotent
matrices. The functor ®g preserves indecomposability and heteromorphism.

2.3. We now come back to the module M restrained by a bond L.

Definition. Let S be an affine subspace of dimension t of HomgV, M (X)), and e a coordinate

system of S. We say that S is L-reliable if the functor F,: rep Q' > Mk factors through M Lk and
preserves indecomposability and heteromorphism.

Lemma. Suppose that t+ = 2, (V,eop, X ) avoids L, and the restriction F, Ifep(c)Q2 preserves

indecomposability and heteromorphism. Then, for each s € N, there existsa Ue mod k,a Y € 4, and an
Lrreliable subspace of Homy(U, M (Y )) of dimension s.

Proof. Letus set W= ks+ and choose d asin Example 1 and g as in Example 2. Then we have F, o ®; o

V4(s+ l)’ M X4(x+1)))-

Since F,|rep Q® and the functor rep Q° — 1ep; 0? induced by @, o d, preserve indecomposability and
heteromorphism, so does Fy.

D, =Fy, where f is a coordinate system of an affine subspace T of dimension s of Homy, (

It suffices now to show that F, maps repyQ? into M L" For this purpose, we call a sequence
0->W, g, Y)W, 8, Y)>(W,g",Y")>0
of M , short exact if the induced sequences

0o WoWoW ->50and 0-5Y 2Y>SY" 50

. . . . .. 2 k
are exact in mod £ and split exactin A, respectively. Now itis clear that F:repQ — M = preserves short exact

. . k . .
sequences and that M Lk isclosedin M = under extensions (in the sequence above, (W', ¢",Y) e M L" and (W”,
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g\ YYeM f imply (W,g,Y)e M f). It follows that Fe'l(M f ) is closed under extensions; therefore it contains

repg QZ, which is the smallest full subaggregate of rep Q2, closed under extensions and containing ({0], [0]) e
SYIVL:
i (mf).

2.4. Definition. The module M over 4 is called L-wild if, for some V and X, there exists an L-
reliable affine subspace S C Hom, (V, M (X)) of dimension 2. It is called absolutely wild if it is L-wild for

all proper L, ie., forall L suchthat M ¢ L.

Our objective is to examine the pairs (M, L) such that M isnot L-wild. For this, we need the following
notion. Assume that the submodules L € £ contain the radical RM of M, consider M = M/RM as a module
over 4 =A4/RKy anddenoteby L the set of submodules L = L/RM of M(L € L£). We say that M is L-
semisimple if the obvious functor M f —>M- Zk is an epivalence (i.e., induces surjections on the morphism spaces,
detects isomorphisms, and hits each isoclass of M ).

First main theorem. Let M be a poimtwise finite module over an aggregate A with finite spectroid. Then
M is absolutely wild or L-semisimple for some proper L.

2.5. For each subset C C k, we denote by repc Q1 the full subaggregate of rep Ql formed by the
endomorphisms with eigenvalues in C. Itis clear that rep. Q1 is closed in rep Ql under extensions. The converse
is valid: Each full subaggregate of rep Ql which is closed under extensions coincides with some rep. Ql.

We apply these considerations to punched lines of M, i.e., to subsets of some Homy (V,M(X)) of the form
S\ E, where § is a line(affine subspace of dimension 1) of Homy(V, M (X)) and E is a finite subset of S. If e =

(g, €1) is a coordinate system of S, the scalars A € k such that ey + Ae; € S\E form a cofinite subset C of &.
With this notation, the considerations developed above show that F, maps repCQl into M L" Accordingly, we
say that the punched line S\E C Homﬁ(V,M(X )) is L-reliable if the functor repCQ] > M f induced by F,
preserves indecomposability and heteromorphism.

In the second main theorem below, we say that an M-space (W, g, Y) is produced by the punched line S\E
C Hom,(V,M(X)) if it is isomorphic to some image F,(k*, Al,+J,), where J, is a nilpotent Jordan block, n > 1
and A € C. This means that there are isomorphisms w: W = V" and y:Y-> X" such that M (y)gw ! is the linear
map V" —M(X") described by the matrix with n diagonal blocks eq + Ae;:

ey + Ae ) 0 0 |
0 €o + Ml (4] 0 :
0 0 €+ kel €] E

o 0 . 0____&the ]

We also say that a set P of punched lines is locally finite if, for each X € 4, P contains only finitely many
punched lines of the form $\E C Hom, (V,M (Y )), where ¥ 5 X.

Second main theorem. If M is not L-wild, there is a locally finite set P of L-reliable punched lines
such that:

a) For each X € A, the set of isoclasses of indecomposable M -spaces (V, f, X) which avoid L and
are not produced by a punched line of P is finite,

b) Distinct punched lines of P produce nonisomorphic M -spaces.
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The perspicuous description of the indecomposable M -spaces given by the second main theorem confirms us
in calling M L-tame (or simply rame in case L= )ifitisnot L-wild.

The second main theorem also shows that M is L-wild whenever it admits a “two-parametric family” of
pairwise nonisomorphic indecomposable M-spaces avoiding L. Thus, to prove wildness, L-reliability is not
needed even in the weak form of Lemma 2.3. We owe the following example to Th. Briistle: Suppose that the

spectroid % of 4 has only one point w, that M (w) = k4, and that ‘3(w, w) is the subalgebra of k4 generated
by the matrices

00 00 0000
21000 0000
=00 0 Of ““|[1 000

00 -10 0100

T
which act on k4 by matrix multiplication. Then the M-spaces (k2, Jrgr W), Where fxp = [(1) (1) g 3} and A,

iL € k, are indecomposable and pairwise nonisomorphic. Hence, M is wild. But the action of the functor F: rep Q2
->M ¢ associated with the plane {3, A, e k} is already erratic on the two-dimensional representations of Q.

2.6. Finally, we consider a finite-dimensional k-algebra B and the tensor algebra ®B =k ® B ® B ® B @
.... We identify mod B with a full subcategory of mod ® B by the aid of the surjective canonical homomorphism
®B — B. Accordingly, if the right ® B -module structures on a finite-dimensional vector space V are interpreted
as points of Hom, (V ®,B, V), the B -module structures on V are identified with the points of an algebraic
subvariety Mp(V) of Hom(V ®,B,V). .

As in 2. 1, each coordinate system e = (e, ..., ¢,) of an affine subspace S € Hom,(V ®,B, V) givesrise to a
functor F: rep Q' —mod ®B which maps a sequence a = (a,, ..., q,) of ¢ endomorphisms a; W — W onto the
space W ®, V equipped with the ® B -module structure

1y®ey+a, ®e;+...+a,B e, WO VR BoWR V.

We say that S is B -reliable if F, factors through mod B and preserves indecomposability and heteromorphism.
In the case ¢ = 1, we also consider punched lines S\ E, where E is a finite subset of S. Setting C = {A € k: €

+Ae € S\E } asin 2.5, we say that S\ E is B reliable if FelrepCQl: repCQ1 — mod ® B factors through
mod B and preserves indecomposability and heteromorphism. Under these conditions, the indecomposable B -
modules isomorphic to F (k" All,+J,), where n2>1 and X € C, are called produced by S\E.

Third main theorem. If B is a finite-dimensional k -algebra, one and only one of the following two
statements holds:
a) B iswild, i.e., there exists a B-reliable plane;

b) There exists a family of B-reliable punched lines S;\E, € Hom(V; ® B V), i € I, with the following
properties: For each d € N, the number of i € I satisfying d = dimV, is finite, and almost all isoclasses of
indecomposable B-modules of dimension d consist of modules produced by the S\E furthermore if i # j, no
indecomposable produced by S;\ E; can be produced by S\E;. '

In case b), the algebra B is called tame.
A typical example is given by the quotient B = k[x, y]1/x3, x%y, xy2, > of the polynomial algebra & [x, y]
and by the space V =k X4 (formed by rows with four entries in k). A B -reliable plane {e, ,:a,b e k } of



340 P. GABRIEL, L. A. NAZAROVA, A. V. ROITER, V. V. SERGEICHUK, AND D. VOSSIECK

Hom,(V ®,B, V) is then described by the matrices

1000
0100
0010
0001

(The endomorphisms v > e, v ® z), where z runs through the residue classes of 1,x,y, x2, xy, y2, are obtained
by multiplication with the given matrices; compare with 2. 2, example 2.)

2.7. Our third main theorem raises the question of the factorization of the functor F,:repQ’ — mod ® B of 2.6
through mod B. The answer is surprisingly simple. Let by = 1g, by, ..., b, be a basis of the vector space B and let

bib; = Z,"=0 c,!j by, 1 <i,j<n, be the multiplication law. Let us further set €,(V)=¢e,w®@b;) forall ve V,p and
i20 (2.6). Then F(W, q) liesin modB if andonly if 3, 13,8 ey0 =y ® Iy and

t 1 n t
[Z a, ® eqj] [Z a, ®ep,~] = ZC,{j(Zas ®eslj
q=0 p=0 =0 s=0

for all i,j 21, where ay = 1. This condition is satisfied for all (W, a) € rep® Q', ie., for all W, a) with
commuting endomorphisms ay, ..., a,, if and only if ego= 1y, €10= ... =€ =0, and

n n
! i
€oj€0i = 2%‘6’01» €0j€pi T €pjoi = Zcijepl’
1=0 1=0

epepi=0, egep+epe,=0

forall i,j21 and all p, ¢ suchthat 1<p <gq. These equations simply mean that the affine subspace S of
Homy(V ® B, V) is contained in the algebraic variery Mp(V) (2.6). Accordingly, if S is a line, we have
repc Q' =rep O, and F, factors through mod B if and only if S © Mp(V).

If we require that F (W, a) € modB forall (W,a) € rep 0, we must further impose the conditions €4pi = 0
forall i,j=1 and all p, ¢ suchthat 1 <p <gq. Thus, F,:rep 0' - mod ® B factors through mod B if and
onlyif SC Mp(V) and F.(k}<2, a(p, q)) € mod B for all p, q such that 1< p <gq; here we set a@, q), =0

if s#p,q, whereas a(p, g), and a(p, g), are the multiplications by the matrices [8 (I)J and [8 (l)]

Of course, we can also interpret the equations displayed above by saying that F, factors through mod B if and
only if F,(W,a) € modB holds for one single (W, a) such that the endomorphisms 1, a;, and aa;, 1<4,j<y,

are linearly independent. In the case =2, for instance, we can choose W= k13 and

010 000
a =00 1|, a=]|10 0].
000 010

2.8. The functor F,: rep Q' > modB admits the following more traditional interpretation. Let
C,=k{x;, ..., x;) denote the free associative algebra generated by xi, ..., x,. The freeleft C,-module M,=C,®,
V is then equipped with a right ®B-module structure defined by the map
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C,OV®B 5C, ®V,

1®e¢q +i1 ®€1+...+i‘ Re,

where, foreach ¢ € C,, ¢ denotes themap C, = C;, y = yc. The C,— ® B-bimodule thus obtained gives rise to
a functor

repQ' >mod ®B, W,a)l> W®c M,

which is isomorphic to F,. (We define aright C-module structure on W by setting wx; = a,w), Vw € W.) The

argument produced in 2.8 shows that this functor factors through modB if and only if the right & B-module
structure on M, factors through B.

Thus, our third main theorem improves results conjectured by Donovan and Freislich [2] and proved by Drozd
[3] and Grawley-Boevey {4, 5] with the sophisticated technique of Roiter’s boxes [6].

3. Preparative Lemmas

3.1. Lemma. The module M:X > X> over the aggregate A=mod k is absolutely wild.

Proof. We must show that M is L-wild for all proper L. For this, we may assume that L= {L,, ..., L,}
consists of maximal submodules of M, and hence, that there exist scalars A;, W, v; such that

LX) = {veX?: Lv, +pv,+V,v;=0}.

Transforming £ by an automorphism of M (i.e., by an invertible 3 x 3 matrix) if necessary, we may assume
furthermore that A; # 0 for all i. Under these assumptions, we consider the plane S C Hom,(k, M (k)) = K3
formed by the columns [I a b]T. If ey e,, e, are the natural basis columns, the functor F: rep 0> — M * maps
(A,B) € (k"*7)2 onto the linear map k" ~M (k") = k3" represented by the matrix [ 1 AT BT ]T. We infer
that F, is fully faithful. Moreover, since nilpotent simultaneously trigonalizable matrices A, B give rise to

invertible matrices A1, +WA +v;B, F, maps rep, 0? into M%. ByLemma2.3, M is L-wild.

3.2. Lemma. The module M: (X, Y) > X> ®Y? over the aggregate A = modk x modk is absolutely
wild.

Proof. The group of automorphisms of M is now identified with GL,(k) x GL(k). This group acts on the
finite sets of proper submodules. We may therefore suppose that, for each L € £, one of the columns {1 0 0 0]
and [0 01 0]T does not belong to L(k) C M (k)=k2 ® k2= k4. The plane S © Homyk, M (k)) attached to
the matrices (I a 1 b)T withcoordinates a, b then provides a fully faithful functor F,: rep Q2—> M * which
maps rep, 0% into MZ.

3.3. For each natural number ¢ > 1, we define a module M, over a spectroid ‘R, with two points x and y as
follows . Denoting by kle, f] the algebra of polynomials in 2 indeterminates e¢ and f, we set {,(x, x) = k1., R,

t—1 .. t ..
Y=kl, R y)= ® k' 1L Ry, 0)=0 and Mx)=ke ® kf, My) = © ke'~/f*. The structural map from
4 i=0 j=0

2,(x, ¥) ® M(x) to M,y) is induced by the multiplication of polynomials.
_)
For instance, if r=4, %, is identified with the k-category of paths of the quiver x :)) y, and the linear maps
._)
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M, (x) = M, (y) associated with the four arrows are represented in the natural bases by the matrices

10000 (0100000100 [0001 0]
01000/’[00100/°|00010]/’|0000O0T1]"

Of course, we can interpret ‘%, as the spectroid of an aggregate 4, whose objects are the formal direct sums
x? @ y?, and M, canbe extended to 4, by setting M, (x? & y?) =M, (xf ® M, (y)’.

Lemma. The module M, over the aggregate A, is absolutely wild.

Proof. We may suppose that L consists of maximal submodules Ly, ..., L, of M, where L{y)=My) and
Lix) = {ue +vf: Au+pp =0} forsome (A; 1) € k2\(0, 0). Because of the obvious equivariant action of GL,(k)
on %, and M, we may suppose that A; # 0 for all i. Under these assumptions, we consider the plane § C
Homy (k2, M(x2 @ y)) formed by the maps k2 — M/(x) ® M,(x) ® M/y) represented by the matrices

1 o o 1 o0 oo of
0 1 a b 0 00 1]

e f et eHlf oft1 gt

Choosing a and b as coordinates of these matrices, we obtain a functor F,: rep Q2 — M* whose restriction
F,|repy Q2 factors through M," , preserves indecomposability, and detects isomorphisms.

3.4. The examples produced in 3.3 admit the following variations. We denote by E, the spectroid with one
point x, endomorphism algebra _‘g,(x, X)=kll, ® ke! © ke2f@... @ kf*-1, radical kel ®... ® kf+! and
radical square zero. The formal direct sums x? give rise to an aggregate 4,. '

We further denote by M, the 4,-module with stalk M,(x)=ke @© kf @ ke’ ® ke™1f ® .. @ kf' and radical
ke! ® .. @ kft whose structural map :g,(x, X)® (ke @ k) > H,(x) is induced by the multiplication of % [e, f].

Lemma. The module M, over the aggregate A, is absolutely wild.

Proof. Use the affine plane of Hom,(k, A_/f,(x)) formed by the maps represented by the matrices

M a 0 0 .. 0 bf.
e f el e"'lf eft—l f’

Remark. Let L denote the submodule (X,Y) — X2 of the module M:(X,Y) — X2 ® Y over modk x
mod k. Then M is @-wild butnot {L}-wild.

3.5. We now turn to the general case of a pointwise finite 4-module M. Our objective is to compare the
representation types of M and of its factor modules M /N. For this, we first suppose in 3.5 and 3.6 that N is a
simple module located at some s € & (dAmN@E)=1,N@x)=0 if xe § and x#s).

Let (V,Z,X) beaspaceover M:=M /N andlet e: V — M (X) be a factorization of &: V — M(X). We
call rransporter T, of V into N(s) the set of all maps V — N(s) induced by morphisms [ € K4(X, s) such that

Im M(1)e < N(s). We choose some basis g, ..., g, of asupplement U of T, in Homy(V, N(s)), set

V' = HomyV,N(s)) =T, ® U,
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and denote by g the induced composition

Peee n]T i
1% Lsi -8 > N(s)" —

nel s M(s)* ——> M(s").

Setting d = [eg]T, we thus obtain an M-space (V, d, X @ s”) which, up to isomorphism, does not depend on the
basis g;,...,8, of U.

Lemmal. (V,d, X ® s*) avoids each submodule L of M suchthar LNN=0.

Proof. Clearly, e /(LX) CK:= ﬂKer‘c. Since T, and g, ..., g, generate V' = Hom,(V, N (s)), we infer

teT,

that {7 (K NKerg;) = 0, and hence, that d = e g™ avoids L.
i

Lemma2. If V,é,X)e M ks indecomposable, thensois (V,d,X ® s"ye M k.

Proof. We may, of course, suppose that V # 0. Let us further assume that (V, d, X ® s") e M g is
decomposable. Since (V,d ,X @ s") e M is the direct sum of (V,Z,X) and (0, 0, s”), (V, d, X ® s") admits a
direct summand of the form (0, 0, s) and a retraction (0, p): (V,d, X ® s") = (0, 0, s), where pe AX @ s",s).
Since (V,2,X)e M k¥ has no direct summand of the form 0,0, 5), p| X cannot be a retraction. It follows that
pls” is aretraction, i.e., that p|s”=a,%, + ... + a,%, + K where =, denote the canonical projections s" — s, the
scalars @; are not all zero, and K is radical. This yields

0=M@P) = MP|X)e+MP|s"g=MP|X)e+ Y ag;
i=n
where M (p|X)e e T,. This provides the desired contradiction, since g, ..., g, is a basis of a supplement of T,.

3.6. Lemma. Consider fixed maps e, e, e, € Homy(V, M (X)) and variable spaces W € mod k

equipped with commuting endomorphisms a, b. Let further e(a, b) WQ® VoW R MX)->MW ® X)
denote the map 1y ® eg+a® e, +b® e; and T, y denote the associated transporter of W ® V ‘into

N(s). Then there is a nonzero polynomial p in two indeterminates and a fixed subspace U of V' =Hom, (V,
N (s)) suchthat

Hom(W® V,NG) SW ® V'=T,, , & W ® U

whenever p (a, b) is invertible .
By W' we denote the dual of the vector space W.

Proof. Let us denote by u and v the compositions

RaW ® X, 5) —== Homy M (W ® X), M (s )) —22" , Hom(W ® V, M (s))
and

Hom,(W ® V,N(s)) —22 Homy(W ® V, M (s )) —==—> Coker u,
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where we set f* = Homy(f, M (s )). The transporter T, ; then equals Kerv. On the other hand, u and v are
identified with the compositions

¢ To,* 1Te, *
w'e® Ra&X, s)-_n_gf-an_-) W e Hom,(M (X), M (s )) 1®ef +a’ ®ef+b’ Qe S

. 18c+a'®ef+bT®e3 |
(4

W' ® Homy(V, M (s ))

and

W' ® Hom(V,N () —22% 5 wT ® Homy(V, M (s ) —=2—5 Coker u.

Interpreting aT and bT as multiplication by x and y in ' equipped with a module structure over A = k[x, y],
we obtain a description of # and v as tensor products W ® Aldg and w'® AVo» Where uy and vy are A-linear
compositions

A® Ra, 5) —2% 5 A ® Homyu(M (X), M (s )) — 2828 +8e}

1®¢} +x®e} -+-y®e§,‘> A® Homy(V, M(s))

and

A ® Homy(V, N (s)) —22%_, A ® Homy(V, M (s ) —=2— Coker uy.

Now, there is a nonzero polynomial ¢ € k [x, y] such that the kemels, images, and cokernels of Alg11® 1, and
Alg-11® v, are free. This implies that
To, = Kerv = w' e Alg'] Ker(Alg~'1® \vp) = W' ® AKervg,

whenever g(a, b) is invertible.

To conclude, we choose arbitrary scalars €, € k satisfying g(§, 1) = 0 and an arbitrary supplement U of
Toem in Homy(V, N (s }). The canonical map

wo: Kerv, © A® U—— A® Homy(V, N (s))

then becomes bijective if we “specialize” x,y to &, n. Hence, there is a nonzero polynomial r such that AlrY
® ,w, is bijective. So we may finally set p =gr.

3.7. We now return to the case of an arbitrary submodule N of M and denoteby £ = {L/N:Le £ and
LD N} thebondon M =M /N induced by abond £ on M.

Proposition. M is L-wildif M /N is L -wild.

Proof. Foreach L € L not containing N, let 5, € % be such that L(s;) does not contain N (s; ). Assume
further that = (&, &, &;) is a coordinate system of an L -reliable plane in Homy(V, M(X)) and e= (g €15 €7)
is a system of factorizations of the Z; through M (X). Restricting ‘& to the finite full subspectroid formed by the
support of X and all points s;, and proceeding by induction on the length of N, we are reduced to the case where
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N is simple and located at some s. Letthen p € k[x,y] and U C Hom,(V, N(s)) be chosen according to Lemma
3.6. Assume finally that g,, ..., g, denotes abasisof U, g:V - N(s)" © M(s") the induced map and repf, Q_2

denotes the full subcategory of repQ2 formed by the (W, q, b) suchthat a, b commute and p (a, b) is invertible.
Setting

dy=[e; g] e HomV, M X & sm)
and d,=[e; 0]',d,=[e, O], we prove that he restriction
Fy|rep$, 0% : rep, 02— M*

preserves indecomposability and heteromorphism and factors through M f Our proposition will then follow from

Lemma 2.3 applied to a coordinate system (d,, + &d, + Nd,, d,, d,), where (§,n) € k* satisfies p (€, n)#0.
The composition

. k —
repQ° —f4 s M = > M*

maps (W, a, b) into Fz(W,a, b) @ (0, 0, W ® s"). Since F; preserves heteromorphism, so do F 4 and
Fy|rep5, Q2.
In order to prove the remaining two statements, we consider some (W, a, b) € rep; 0? and set

F@,b)=1®7+a®g+b®z WOV— WO MX)S MW X),
e@b)=10¢+a® e, +b@ e, WO V——o WRMX)>MWS X).

On account of Lemma 3.6, W' ® U is a supplement of the transporter Ty vy Of W® V into N(s). The M-
space (W ® V, [e(a, b) (p]T, W® X®W® s») provided by a basis @,, ..., ¢,, of W' and the associated map

PWOV—s NE)™, w® vk [pw)g0)]

avoids L by Lemmal of 3.5. By Lemma 2, it is indecomposable if sois (W, a, b). It is isomorphic to F/W, a, b),
as shown in the next diagram

wev —1%8 5 we NGE)”

\ v ®a) = (e

N(s)™"

4. Proof of the First Main Theorem

4.1. Lemma. Suppose that 4 is an ideal of an aggregate A with spectroid X, M is a pointwise finite
left module over A, N is the annihilator of  in M,and M is the module M | 9M over A = A/ 9. We
further assume that the induced maps $(x, y) — Homy(M /N)x), (IM)(y)) are surjective for all x,y € X.
Then: ’

a) either 92M = 0, the induced functor P:M ,’f; ->M ﬁ,,gM is quasisurjective, and the indecomposables
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annihilated by P are isomorphic to some (0,0, s), where se %, M(s)=0, and 1. € 9;

b) or 9 contains the identity 1, of one point t € X such that dimM (¢) = 1, the induced functor Q:
M,'f, - M is quasisurjective, and the indecomposables annihilated by Q are isomorphic to (0,0,1) or o
some (0,0, s), where se€ %, M(s)=0, and ;€ 9.

The proof of the first main theorem uses Statement a) only. Statement b) will be used in Section 9.

Proof. We first show that Q induces surjections of the morphism spaces. Let (V,f, X) and (V',f, X’) be
two objects of Mf,, and ¢ € Homy(V, V"), £ € A(X, X’) two morphisms which induce a morphism (¢, E): v, f,
X)), F.X) of M ﬁ,gM. By definition, we then have M (x)f - f'@ = ig for some g € Homy(V, (IM)X"),
where i: (IM)(X") = M (X’) denotes the inclusion. Since (V,f, X) avoids N, the obvious maps

(X, X’) —— Homy((M /N )X), (M )(X')) —— Homy(V, (IM }X'))

are both surjective and g is the image of some M € d(X, X’). This means that ig = M (M)f and implies M (& - n)f
= f'¢. We infer that (¢,&): (V, f, X)— (V', f/, X’) is the image of (@, &—n): (V.£.X) - (V'.f". X)).

Now, in the case 9°M=0, O maps MY into M}y, ,and P is surjective on the objects. This implies a).

In the case 9°M# 0, % admits a point ¢ such that (9M)) is not contained in N (). The image of
Hom, (M/N)), ( IM)H()) in End, M (z) then contains an idempotent of rank 1. A preimage of this idempotent in
9(:, ¢ ) must be invertible in ‘R(z, 1), because ‘Y(r, 1) is local. We infer that 1, € 9 and that dimM (r) = 1. The
last statement of b) now follows from the fact that % contains no point r # ¢ suchthat 1, e 9 and M(r)#0.
Otherwise, there would be morphisms ¢ € 9¢,r) and p e 9¢,r) such that M (pG) = Ly, and the simple 2,

t)-module M () would not be annihilated by the radical. So it remains to prove that Q hits each isoclass of M*.
Indeed, for each M -space (V, f.X), we can choose a factorization f: V —>M (X) of f and an isomorphism g:V
S5 M@y, where d=dimV; then , [f d]T,X® ¢") avoids N, and its image in M s isomorphic to (V, f , X).

4.2. Remarks. a) The assumptions of our lemma remain valid if we factor the annihilator of M out of 4.
Hence, we might restrict ourselves to the case where M is faithful. In this case, the maps

9(x,y) — Hom, (M/N)x), (IM)())

are bijective. In subcase b), it follows that 9(x, y) is identified with 3¢, y) ® ,*&(x, ¢). In both subcases, 9 can

be completely “described” in terms of the vector spaces I(x)=(IM)(x) € N(x) € M (x) (where x#¢ in case b).
Accordingly, formal examples are constructed with ease.

b) Our concrete examples are the following. We start with a morphism [ € (s, #) such that M (u): M (s) -
M(z) has rank 1. Setting S = ImM (u), we denote by Cg the submodule of A(7, t) which consists of the
morphisms & X —¢ of 4 mapping M(X) into S. Then we claim that rhe assumptions of our lemma are
satisfied by the ideal 9 generated by any submodule C of Cg which contains J. Indeed, for all x,y € 3, the -
composition of 8 maps 3¢, y) ®,C(x) onto 9(x,y), and N (x) is the annihilator of C(x) in M (x). Hence, the
obvious map (M/N )x) — Hom, (C(x), S) is injective, and the transposed map C(x) = Hom, ((M /N )x), S) is

surjective. Taking into account that (9M )(y) is the image of §(r,y) ®,S, we infer that the double-headed arrows
of the diagram
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M Y- M
2@, Y)®C(x)>»(t, y)®Hom, ({-&-}x),s ‘J—aHomk [(-N—}x), 2 9)® C(x))

! !

9(x, y) sHomy (M /N Xx), (9M )(y))

are surjective. Hence, so is the lower arrow.

4.3. Let us now consider pairs (4, M ) formed by an aggregate 4 and a pointwise finite 4-module M. We
say that two such pairs (A4, M ) and (A, M ") are equivalent if there exist a k-linear equivalence E: 4 —— 4’
and an isomorphism M 5 M'E. And we say that the A-module M is climacteric if the pair (A/ N3y, M ), where

Ny denotes the annihilator of M in 4, is equivalent to one of the absolutely wild pairs examined in 3.1, 3.2; 3.3,
and 3.4.

Lemma. Let M be a pointwise finite module over an aggregate A with finite spectroid %. If M is not
semisimple and has no climacteric quotient, ‘3 admits a morphism | € Rg(x, y) such that M (W): M (x) —
M) hasrank 1 and M@AQP)=0=MWv) forall A € Rg(y,2),ve Rk, x),and z € 3.

Proof. a) Reduction to the case of height 2. Let us assume that M has height 4 > 2, and that the proposition
is true for modules of height 2. We then denote by S;M the annihilator of ®j5 in M. Thus M =M / SyoM has

height 2. If it admits a climacteric quotient, then so does M. Otberwise, thereisa p € Kg(x, y) such that M P

has rank 1 and vanishes on (RM )(x). Since pM (x) # 0, we have 6pM (x) #0 for some © € K,f’q'z (y,2). On the
other hand, cp € ﬂ(,f’q'l (x,z) annihilates (KM )(x), and M (op) admits a factorization

M@ —Bs M)/ (SM)6) —2— M),

where p, isinducedby p and G, by 6. We infer that M (Gp) has rank 1.

b) Finally, we suppose that M has height 2. Factoring out the annihilator of M in A if necessary, we may
suppose that the module M is faithful. We then consider four cases. :

If M /S5M has an isotypic component of dimension 1 supported, say, by x € ‘3, then each nonzero radical
morphism [:x—y of 3 suits.

If M /SM has an isotypic component of dimension > 3, then M has a climacteric quotient of type 3.1.

If M /S5M has at least 2 isotypic components of dimension 2, then M has a climacteric quotient of type 3.2.

If M /SM is isotypic of dimension 2 and supported by x € %, then we choose any y € *§ such that R g(x,
y)# 0 and consider two subclasses. If M (i) has rank 1 for some U € R 4(x,y), then W suits. If M (p) has rank 2
-for all nonzero p € X g(x,y), we denote by M’ the sum of the isotypic components of 5;M not supported by y.
Then N =M /M’ has a quotient of type 3.3 or 3.4 accordingly as x#y or x=y:

To prove this, we choose two vectors e, f € N (x) whose classes modulo S$;¥N form a basis of (N /SN ).

-—
The module structure of N then provides two maps €, @: R gk, y) — (5N }y) defined by £(p) = pe and @(p) =

pf. Since M (p) has rank 2 for each p#0, ae + b is injective for all (g, b) € k2\(0, 0). By Kronecker’s classifi-
cation of pairs of linear maps, we can therefore choose bases n = (ng, ..., n,) of (5;N)(y) and r=(r),; o ; of R g,

y), where 1 C {0,1,...,1—1},suchthat re=£@;)=n; and r;f= gp(r,-) =n,;,; forall i € I. A typical example is
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o n T3
7N N /N
nop ny ny nia ng ns
where t=5 and /= {0, 2, 3}.
Now we choose natural numbers a<b suchthat {xe N:a<x<b} C 7 and a-1 & I, b ¢ I (for instance,
a=2,b=4 inthe case of our diagram). Factoring out the basis vectors »; for i < a and for b < i, we obtain 2
quotient N’ of N suchthat (N"/SN")x) > ke @ kf and (S\N’)(¥) —") €9 kn-. If A/ denotes the annihilator

of N’ the pair (A/N,N’) is eqmvalent to one of the palrs (Apas M,,_a) or (ﬂ,,_,,, M,H,) examined in 3.3
and 34.

4.4. Proof of the first main theorem (2.4). We proceed by induction on the length of M. If M is not
semisimple and has no climacteric quotient, we choose a morphism u € Ks(x, y) according to Lemma 4.3 and
denote by 9 the ideal of 2 generated by p. Then the annihilator ¥ of ¢ in M is a maximal submodule of M,
and M /N is supported by x. By 4.2b), the assumptions of 4.1 a) are satisfied. If M = M / 9M is considered as a’
module over 4 = 4 / 9, the canonical functor M j N MY N/eM s an epivalence. By the induction hypothesis, M

admits a bond Kformed by submodules L;/ IM D KM / dM, 1 <i<r, such that M;( - Mf is an epivalence

w1ththenotat10nof2.4(M =M/RM=M/RM...). ¥weset L={L,,.......L,N} and L = XU (N}, Lemma

4.1 implies that the composition M} — M[lf - 17% is an epivalence.

5. Pencils.

As in Sec. 4, 4 here denotes an aggregate with finite spectroid ). If M is a pointwise finite module on
A, we denote by M: = {xe %: (RM)(x) # M (x)} the generation indicator of M. For each p € M, we write Mp
for the submodule of M such that Mp(p Y=(RM X¥p) and Mp(x) =M(x) if xe J\p.

5.1. Definition. A pencil over A is a pointwise finite A-module P restrained by a proper bond X
such that:

a) P is not K-wild,

b) there is no proper bond B on P for which Péf has a finite spectroid.

Condition b) obviously implies that P admits infinitely many maximal submodules or, equivalently, that
dim P/P;>2 for some d € P. Proposition 4.3 implies that sucha 4 is unique and satisfies dim P/ P,=2. We
therefore call dp: =d the double point of P; any other point s € P satisfies dimP/P, =1 and will be called
ordinary.

Proposition. Let (P, K) be a pencil with double point d, and (u) a family of elements u

s/se P\d
P(S)\(RP)(s). Let us further suppose that X is not empty and that P is K-semisimple. Then

u+ Yy uSeP(de @s)
seP\d ' s

generates a maximal submodule of P for each ue P(d )\KUX K(d).
. €

We recall that, according to our terminology, each K € X contains RP (2.4).

Proof. If Q is the module generated by “*Z,"s =: v, it suffices to show that @ © RP if ue
P(d)\U K(d). For this purpose, we set z =d® ®s and consider any r € (RP)(x), x € }. The P-spaces
K s
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(kv 0", Y @) and (k' '), Y, ©x), where ¥(M)=4v and r'(A) = Ar, then avoid X and give rise to

the same P -space. They are, therefore, connected by a morphism ( 1, [? g} ) which is congruent to the identity

modulo R4 (2.4). This means that | % B[] = [?] and implies that yv=r with ye R4Z, %).
vy 810 r

5.2. Proposition 5. 1 only concerned the module structure of a pencil. We now examine its bond.
Proposition. For each ordinary point s€ P of a pencil (P, X), P_ belongsto X.

Proof. Suppose that P, ¢ X and set N=PdﬂPs,F =P/N, and K= {K/N:N C K e X}, where d=dp.

Then P is a semisimple pencil supported by d and s. The functor F:repQ®> — P associates (2.1) with the two-
parametric affine family of

177

x

y

preserves indecomposability and heteromorphism. The P -spaces represented by the displayed matrices avoid all
proper submodules of P except P, = P,/N ¢ K. We infer that P is X -wild, and P is ZCwild (3.7).

1 000:0100
01000010
0 01 0:0001

5.3. From now on and throughout Section 5, M denotes a pointwise finite A-module restrained by a bond L
for which M is not L-wild. All submodules P of M are implicitly supposed to be restrained by the trace £ N
P:={L N P.Le L} of L. Our objective is to investigate the pencils of M, i.e., the submodules P of M such
that (P, LN P) is a pencil. Our first result is easily derived from 5.2.

Corollary. If P is a pencil of M with double point d,P [P, is the socle of M |P,. As a consequence,
P/ RP is the socle of M | RP.

Proof. Replacing M D P by M /P;O P /P, and applying 3.7, we are reduced to thecase where P is
semisimple and P = {d}. Thenlet Q denote the socle of M. Since Q isnot £ N Q-wild, Q is a pencil of M
which satisfies dQ=d. Inthecase Q#P, Q has a simple point ¢ outside P and L contains an L such that L
N Q= Q, D P: acontradiction to the assumption that £ N P a proper bond on P.

5.4. Our next result rests on the classical submodule algorithm [7]. Starting from a submodule P ofM we
consider a new aggregate A4 = Pzn p and modules R on 4 associated with submodules R of M and defined
by

RW.g,X) = (gW)+RX))/g(W)C MX)/ gW) = MW, g, X).
By L, we denote the bond on M formed by P and the submodules L, L e L. Thus, we obtain a functor
E:ME > ML (V. £, X)) (VIV, 7.V, £, X)),

where V'’ equals f~1(P (X)) and f" V' > PX), f":V/V' > MX)/fV") are induced by f. This functor is an
epivalence, and even an equivalence if L+ @.

Proposition. If P is a pencil of M, P(X)=M(X) holds for all x € P. Accordingly, M contains only
finitely many pencils.
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Proof. Restricting M, P, andall Le L to P, we may suppose that P = L. Arguing by contradiction and
replacing M by a submodule if necessary, we may further suppose that M /P is simple, i.e., that dimM (x) = 1+
dim P (x) forsome x e § and M(y)=P(y) forall y e §/x. Setting N=Pdﬂ P, and replacing M by M/N,
we are reduced to the case where P is semisimple and where % consists of two points d # x or of one point d = x.

a) Case d+ x. For each submodule R of M, we then denote by R’ the restriction of R to the full
subaggregate & of 4= PLkn p Whose spectroid consists of the indecomposables (0, 0, x) € 4 and p =,
D, o ), where

1000:0100]1 0 0]

p=[01000010/01 0.
0010:0001[00°1
d X

The module M’ admits a submodule Q such that Q(0, 0, x) = P/(0, 0, x) = P(x) and Q(p)=M'(p)=M@@* &
)/Imp D P’(p). To prove this, it suffices to show that each morphism (0, ): (&, 5, d* ® x*) = (0, 0, x) maps
M@ @ x3) into P(x). For this, it is enough to show that k: d* @ x® — x is radical. This is due to the fact that a
section ¢ of u would provide a section (0, 6) of (0, i).

The restriction £’ ={L’:Le L} U {P’} of L toM induces a properbond £ N Q on Q, because P’'=
P'NQO#Q and L’N P’# P’ foreach L € L. Therefore, it suffices to show that dim O(p )/ (RO)Yp) =3 (3.1).
This follows from dim (M/P)@ @ x3)=dim@ /P)¢3) =3 and from (RQOXp) € P(d* @ x3)/Imp. The
inclusion is due to the fact that each morphism (0, 0, x) — k3, p,d* @ x3) of 2 maps Q(0, 0, x) = P(x) into
P (d* ® x3), and that each radical endomorphism of p is induced by a radical endomorphism of d* @ x* which
annihilates (M/P )@ @ x°).

b) Case d=x. Then the argument is simpler. We focus on the sole indecomposable g = (k2, 7, d°) of fl,

: T - -
where § = [(1) (1) 8 8 (1) (1):] . Each element of L induces a proper subspace of M(g) = M (d*)/Img, and

each radical endomorphism of ¢ maps M (g) into f’(q). Replacing M by its restriction M’ to the full

subaggregate 4 of 4 defined by g, we infer that dimM (¢)/ (RM)(q) =2 dim M @)/ Pd) = 3, and we
conclude with 3.1. :

5.5. Proposition. Let K be maximal in L and not contained in the pencil P of M. Then
> dim M(x)/ K(x) = 1.
xeP

Proof. Suppose that the statement is wrong. Then we can find submodules R, < Q, of M| P which
contain K| P and are of colength 2 and 1. We denote by Q, the maximal submodule of P such that Q| P= 0,
by R the maximal submodule of Q= Q,+K such that R|P = R,. (Of course, R contains X.)

Weset d=dp and X = @s, where s € P\d. Up to isomorphism there is a unique indecomposable P-space of

the form p = (&, p,d* ® 33), which avoids all maximal submodules of P. Applying the submodule algorithm to
P C M, we denote by M’ and L’ the restrictions of M and L to the full subaggregate 4’ of 4 = Plzn p
whose spectroid consists of p and of the (0, 0, y), where y € R. The desired contradiction will follow from the
fact that M’ is L'-wild.

To prove this, we consider the submodule N of M’ such that N(p ) = Q@ @ Y3 modIm p and N(0,0,y) =
R@) if y € R. Such a submodule exists because each morphism (0, p): (k°, 7, d* ® 33) — (0,0,y) maps Q(d* @
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¥3) into R(y). Otherwise, | would induce an isomorphism of a summand y‘ of d* ® X3 onto y, and (0, p)
would admit a section.

Let X’ denote the submodule of M’ induced by a submodule X of M. Then N is not contained in X',
because p avoids each proper submodule of P; hence, R(d* @ X3) and Q(d* @ 33) are identified with their images
in M@ @ Y3)/Imp, and we have K'(p) C R(d* @ T3)# Q(d* ® ¥3) 5 N(p). On the other hand, each L e (£\
K)U {P} intersects R properly; it follows that L’(0, 0, y) = L(y) # R(y) = N(0, 0, y) forsome y € R and that L’
is a proper bond on N. Hence, it suffices to prove that dim (N / N)(p) = 3, which implies that N is absolutely
wildand M’ is L-wild. '

The announced inequality is due to the fact that each radical endomorphism of p is induced by a radical
endomorphism of d* ® 33 and maps N(p) 5 Q(d* ® X3) into R (@ @ X3). We conclude that (RN )@p) C R (&*
® ¥3) and that '

dim(N / RN )p) 2 dim(Q /R)d* & 23)=4 or 3.

5.6. If L denotes the set of all maximal elements of L, it is clear that M f,_ =M i Therefore we may always
restrict ourselves to the case where L is irredundant, i.e., where L= L.

Corollary. Suppose that L is an irredundant bond on M and that s € P is an ordinary point of a pencil
P of M. The conditions L € L and L(s)# M(s) thenimply LN P=P,

5.7. Corollary. Let K be a submodule of M which is neither contained in the pencil P of M nor in
any Le L.Then Y, dim M(x)/K(x)< 1.

xep
Proof. The corollary follows from Proposition 5.5 applied to anew bond £ U {K]}.

5.8. Corollary. Suppose that the L-pencils P and Q of M are not comparable. Then dp & Q and
dQ ¢ P.

Proof. Suppose that dQ ¢ P andthat u e Q(dQ);tM(dQ) lies outside L(dQ) whenever L € L satisfies
L(dQ);tM(dQ). Let further K denote a maximal submodule of Q such that u e K(dQ) ¢M(dQ). Then X is not

containedin P and LN K is a proper bond on K. On the other hand, we have K(dQ) ¢M(dQ) and K(s) = Q(s) #
# M(s) for some s € P, hence

Y, dim M) /K@) 2 2,

xeP
in contradiction to 5.7.

5.9. Corollary. Ifthe L-pencils P and Q of M are not comparable, then (RP)(s) = (RQ)s) for all
se PN Q.

Proof. Indeed, s is ordinary by 5.8. If L is maximalin £ and suchthat LNP =P  (5.2), wehave LN Q =
Q, by 5.6; hence, (RP)(s) = L(s) = (RQ)(s).

A\ .
5.10. For each submodule N of M, weset N ={xe L N(x) = M(x)}. Thus we have P C ;’ if P isa
pencil of M.
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Corollary. If P,Q,and R are 3 pairwise incomparable pencils of M, the equality P \;z =0\ }/e implies
. v . v
R\P = R\Q.
Proof. Let s € P N Q besuchthat R(s)# M(s), and L a maximal element of L suchthat L N P = P; and
LNQ@=Q, (5.6) If t e R issuch that M) = R(t) # L(z), we have P(?) = P,) CL(t) and Q@) = O, () C L(2);

. Vv . \%
hence, R\P = {t} = R\Q.
6. Proof of the Second Main Theorem (Reduction).

Our objective is to propose a general “construction” of locally finite sets D= DM, L) of L-reliable punched
lines which satisfy the conditions a) and b) of the second main theorem. Our sets D are the unions of subsets D, =
D,M, L) formed by punched lines D\ E € Hom, (V, M(X)) whose points have space dimension dim V = n. We
construct the slices D, (M, L) by induction on n and simultaneously for “all” nonwild pairs (M, L). The
construction is rather precise and rather involved, as nature seems to be.

In order to classify the indecomposable M-spaces, we can examine the finite full subspectroids ‘¥’ of ¥
separately and focus on the M-spaces with “support” ‘%’. We are thus reduced to the case examined in the present
section where the spectroid R of A is assumed to be finite. From 6.2 until the end of the section, we assume
that M isnot L-wild.

6.1. Since our construction proceeds by induction on the space dimension, we first examine indecomposable
M-spaces with space dimension 1. For this purpose, no restriction is needed on the representation type of (M, L).

Proposition. The map (V, f, X) > Af(V), which assigns to (V, f, X) the submodule of M generated by
fV), induces a bijection between the set of isoclasses of indecomposables in M’}_ with space dimension 1 and the
set of submodules N of M for which LN N is a proper bond.

Proof. The inverse bijection is obtained as follows. For each N, we choose a projective cover n: A(X,?) > N
and set n’ = n(X)(1,) € N(X). To N we then assign the isoclass of (k, ?n’,X) e M ’2

6.2. Let us now return to the case where M isnot £L-wild. Each pencil P of (M, L) with double point d
gives rise to a one-parametric family of maximal submodules Q of P such that P; C @ C P. The other maximal
submodules of P have the form P,, where s is an ordinary point of P; their number is finite, and the induced
bond LN P, is not proper (5.2).

Proposition. Besides maximal submodules of pencils, M contains only finitely many submodules N for
which L QN is a proper bond.

Proof. We proceed by induction on the number of pencils of (M, L), which is finite by S.4. If M contains no
pencil, we denote by A the set of all N C M suchthat LN N is proper. Each element of A has finitely many
(direct) predecessors. Since A has finite height and (at most) one maximal element, A( is finite.

If M contains pencils, we consider a minimal pencil P (with double point d) and maximal submodules

Q.- @, (s21) of P containing P, and such that each u € P(d) \ U;;lQi (d) satisfies the statement of

Proposition 5.1. Then each nonmaximal submodule of P is contained in some Q; or some P, with se€ P\d. And
each nonmaximal submodule N C P for which LN N is proper is contained in some ;. Together with Q,,...,
Q.. these N form a poset A which has finite height and a finite number of maximal elements. Since each element

of A has a finite number of (direct) predecessors, 9\ is finite.
On the other hand, since (M, L U {P}) admits fewer pencils than (31, £), we know by induction that there are
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only finitely many submodules N’ which are not contained in P, which are not maximal in a pencil of (M, £) and
for which £ NN’ is proper.

6.3. The construction of D,. For each pencil P of M, we pick vectors u_ € PS)\(RP)s), s € P\d p» and a
basis (u, v) of a supplement of (RP)(dp) in P(dp). Thus, we obtain a straight line

Dp = {u+hv+ Yu: hek)
s

of M(dp © ©s) > Hom,(k, M(dp ® ©s)) whose associated functor F:rep Q' — M* preserves indecomposability
and heteromorphism. Erasing from D, the points lying in the various subspaces L(dp ® @s), Le L, we getan

L-reliable punched line, which seems to be a good applicant for a position in D, . Unfortunately, if the lines D, are
to be retained, the present state of our technology urges us to overpunch them, as will be explained below.

First we consider the minimal pencils of M, which we stack up in a finite set P equipped with an arbitrary
linear order. If P+ @, we construct an ideal 7 of 4 and abond X on M which satisfy the statements of
1Lemma 6.4 below. Finally, for each P e P, we construct a proper bond 7(,', on P, formed by maximal submodules

N suchthat P is K;-semisimple and v € N(dp) for some N. The submodules N give birth to a bond

L, = (LNPUEKNPIUK, U (X:P>Xe P
on P and to a finite subset

Ep = |JDp NLWdp ® ©s5)
LeL;,

of the straight line Dp. The associated punched lines D,\E, are the first selected constituents of D,.

The restraint imposed by X will permit us to prove Lemma 6.4 below. As a result of the insertion of K;, into
Ly, all maximal elements of L;, and all proper submodules K of P for which L;, N K s proper are
maximal in P (5.1). Accordingly, each u+ Av + zs u; € Dp\Pp generates a maximal submodule of P. ‘

In order to puncture the lines D, when P is not minimal, we now set P;: =P and X, = X. We denote by
P, the set of minimal pencils of (M, LU P,) or, equivalently, of (M, LU X, U P,), by P; the set of minimal
pencilsof (M, LU #, U P,).... Replacing L by £, = LU X, U P,, we construct a bond X, which satisfies
the statements of Lemma 6.4 for (M, L,). Adapting the technique above to the new data, we obtain a proper bond
L,', on each P e P, and the associated finite subset E, C Dp. Thenreplacing £, = LU X, U P, by L, = L, U
X, U ®P,, we construct bonds X on M and L;, oneach P e %, thus obtaining finite sets E, C D, forall P €
P,.... If P, is the last nonempty set of pencils constructed in this way, we finally set

DM, L) = {Dp\Ep:Pe B, 1<i<h).

If M contains no pencil, D,(M, L) is empty.

6.4. Lemma. Suppose that M is a pointwise finite module over an aggregate A with finite spectroid X},
L isabondon M suchthat M is not L-wild, P is a nonempty set of pairwise incomparable pencils (5.1)
of M, and R = npe QKP is the intersection of their radicals. Then there is an ideal 7 C R.q and a bond K
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on M such that:

a) MCRCBNP#P and (IM)%) = (RP)(x) forall Be K,all Pe P, andall x € P;

b) If M/ IM is considered as a module over A/ J and K[ IM denotes the set of all B | IM, B € X
then the canonical functor M;‘( M/ ]M):’,‘C /M IS an epivalence.

The proof of the lemma is given in 7.1 below.

6.5. The construction of D,, r = 2. The construction is based on a sequence of submodules of M which we
must present beforehand. First supposing #,; # @, we consider the submodules X such that: a) L N X is a proper
bondon X; b) X is contained in a module belonging to X= X or to some _‘l(,ﬁ, where P e P = P, (6.3). These
submodules form a finize set (6.2), which we denote by O = Oy(M, £) and equip with some linear order < such

that X C Y implies X <Y. By construction, O, contains all the nonmaximal submodules N of P, P € P, for
which LN N is a proper bond.

Replacing L by £;=LU K U P, thendby L,=L; U KU B..... £,= L, ;U K, U P,, we may repeat
the construction of O, and obtain further linearly ordered sets O, = Oy\(M, L,), O, = Oy(M, Ly),..., O,_; = O)M,
£, ;). To these sets we add a set Oy, formed by the submodules N of M for which £, N N is proper, and also
equipped with a linear order < such that X C Y implies X <Y. Together with the linear orders imposed onto P,,
®,, ..., P, we finally obtain a finite linearly ordered ser Q which has M as maximum and is formed by the
disjoint intervals

Op<P,<0,<P<0,<..<P, <0,

If M contains no pencil, O, denotes the set of all submodules X of M for which LN X is proper. We then
set Q= 0.

Our construction of D, (M, L) now results from an application of our main algorithm to each submodule N e
Q and to the associated bond BN = L) {X € Q; X <N} on. M. For this sake, we introduce the aggregate aN =
Nkmn v » its spectroid 3¥, the module M on A" defined by MN(W, g, X) = M(X)/g(W), and a bond BN on
MV, which consists of the submodules of M" induced by N and the modules X € BN. The resulting epivalence
M’%N M g}’; will allow us to lift various slices of the desired D,(M, £) from MV, éN) to (M, BN). We

distinguish two cases:
1) Case N € O, Then BN NN contains all maximal submodules of N. The spectroid ‘%¥ is finite and con-
tains one point (%, g, @N, 5) with space dimension 1. The remaining points of ¥V have the form (0.0.7), r € S.
S€

Obviously, MY is not G?N-wild, because two-parametric families of indecomposables could be lifted from
MV, BN) 10 (M, L). Proceeding by induction on r, we may therefore suppose that the sets DMV, BN) are at our

disposal for all s < r. Here we are concerned with BN-reliable punched lines formed by M"-spaces (U, 4, Z)
whose bases Z= (W, g,X) € Nk@Nn y have a space dimension dim W =: 72> 1. These lines form a subset D (M,

BN) of DMV, BN). Lifting the lines of D_, (MY, BN) from (MV, BN) to (M, BN), we finally obtain a set
Dt_(MN, BN) of L-reliable punched lines and the requested contribution of N to DM, L):

r-1 »
U Di_.oe¥, Bw.
t=1

2) Case N € B. We then proceed as in case 1, the difference being that 4V is infinite. According to Lemma
6.6 below, RV contains a finite full subspectroid ‘55’ which supports the bases Z = (W, g, X) of all
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indecomposables (U, h, Z) € M% such that 1 <dim U and dim W <r. (More precisely, ‘ﬁiv is formed by‘ the
points (0,0, £), £ € %, and by at most 5(r - 1) points of the form (W', g’,X’) with 1 <dim W’ <r.) Since *&f’

is finite, our induction provides us with finite sets D (M | *&fl, BN | *&ﬁv) for s < r. As in case 1, these sets are
partitioned into subsets D} (M| *&I,V , BN | | ﬁv ). Lifted from (MY, QA?N) to (M, L), these subsets give rise to

finite sets of BN-reliable punched lines denoted by D!(MY, BN).
Putting together the various pieces obtained above, we finally set

r=1 _ R
DM, L= |J |J DM, BN). (*)
NeQ =1

The fact that D(M, L) = Uer DM, L) satisfies the statements of the second main theorem is easy and will be
checked in 6.7.

6.6. Let us provisionally consider an arbitrary pointwise finite module M’ over an aggregate 4’ and a bond
L on M’. We then say that an indecomposable s € A" is (M’, L))-relevant if s is a direct summand of the base X
of some indecomposable (V,f, X) e MZ‘,.

Lemma. With the notation of 6.5, let N be a pencil of M and r = 2. Then there are at most 5(r—1)
isoclasses of indecomposable N-spaces (W, g, X) which avoid BN N N, satisfy 1 <dim W < r, and are
(MY, BN )-relevant.

6.7. Checking the statements of the second main theorem. The statements result almost immediately from
the construction.

Since ‘X is assumed to be finite, the finiteness of the cardinality of D, (M, L) follows from 6.5 (*).

In order to prove statement a), we denote by v, (M, L) the number of isoclasses of indecomposable M-spaces
V., X)eM f: which have space dimension r and are not produced by punched lines of XM, £). We shall prove
that v, (M, £) is finite by induction on r. Clearly, vo(M, L) is equal to the number of points of . So let us
assume that r = 1. By 6.1, the isoclasses of the indecomposables (,f, X)e M 2 with space dimension 1 correspond
bijectively to the submodules X = 4f(k) for which LN X is proper. Inthe case Af (k) ¢ Q, (k,f, X) is produced
by DM, L) and Af(k) is a maximal submodule of a pencil. We infer that v\(M, L) =] QJ.

Inthecase r=2, let (V,f,X)e M f’i be an indecomposable with space dimension r which is not produced by
(M, L), andlet N be the smallest element of Q such that ¢ = dim f~1 (N(X)) > 1. If N is not a pencil, our
induction hypothesis and the finiteness of ¥ imply that Mg: has a finite number, say, v,_ (M", BN), of iso-
classes of indecomposables (U, 4, Z) not produced by D(M", BV ) and such that dim U = r —¢ and that Z has
space dimension ¢ > 1. The contributionof N to v, (M, L) is therefore equal to Z;l v, MV, Q}N). (We recall
that vg MY, BN)=0 in the considered case r = 2.)

If N is a pencil, the numbers v!_ (MV, BN)e N U {w} can still be defined. Now vo (Y, BN) = 1. In the
case 1<t <r, the finiteness of v; _,(MN , éN ) follows from the fact that the bases Z of the indecomposables (U,
h,Z) considered above are supported by a finite subspectroid ‘&fl of %V (6.5, case 2, and 6.6). It follows that N
still has a finite contribution 2;1 vi_ v, BN) and that

v, 0= Y SV M, BN),

NeQ =1
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Finally, in order to check statement b), we prove by induction on r that indecomposable M-spaces (V,f,X) e
Mi and (V',f.X)e M f cannot be isomorphic if they are produced by different punched lines D and D’ of
D, M, L). =Uc, D, (M, £). This is clear by construction if D € DM, L) or D’ e Dy(M, L). Otherwise, r is
>2. Then we consider the smallest elements N and N’ of Q which are not avoided by (V,f,X) and (V' f’, X’),
respectively. Our claim is clear if N #N’. Inthe case N #N',D and D’ are obtained by lifting punched lines
defined on finite spectroids %V or ‘Sﬁv. These punched lines consist of M"-spaces with space dimension less than
r. They produce the MN-spaces associated with (V, £, X) and (V,f, X’). Since these M"-spaces are not isomorphic
by induction hypothesis, (V,f,X) and (V',f’, X’) are not isomorphic either.

7. Simultaneous Eradication of Incomparable Pencils

7.1. Theorem. Let M be a pointwise finite module over an aggregate A with finite spectroid X, L a
bond on M suchthat M isnot L-wild, P a nonempty set of pairwise incomparable pencils of M, and R =
Npep RP  the intersection of their radicals. We suppose that R(q) #0, where g € % satisfies R(q) = M(q) or

belongs to the generation indicator P ={xe 4 Pk # (RP)X)} of some P € P. Then R contains a simple
submodule S such that the transporter Transp (M, S), i.e., the ideal of A formed by the radical morphisms‘ H: X
— Y satisfying WM(X) < S(Y), annihilates no P € P.

Before presenting the proof of the theorem, we show that it implies Lemma 6.4 given above.

In the notation of 6.4, we proceed by induction on d = Zx dim R(x), where x € Upeyp P. In the case d=0,
we set 7= {0} and K= . In the case d > 0, we apply our theorem, setting 9 = Transp (M, S) and B =N + R, where
N is the annihilator of 9 in M. Considering M =M /S =M/ 9IM as amodule over 4 = 4/ 9, we then obtain an
epivalence M% — My ;s (4.2.b). Applying the induction hypothesis to M and P ={P/S:P e P}, we getan
ideal 7 of 4 andabond X on M which satisfy the statements of the lemma mutatis mutandis. For 7, it then
suffices to choose the inverse image of 7 in A for X, the set formed by B and by the inverse images of the
submodules in f_I('__

7.2. Beginning of the proof of Theorem 7.1. The proof occupies the whole Section 7. We are really interested
in the case g € P; the alternative R(g) = M(q) only serves our inductive argument.

If P has cardinality | P| =1, we apply Lemma 4.3 to P and use the fact that P(x) = M(x) forall xe P (5.4).
Hence, we may suppose that | P| =2 and proceed by induction on |P|. We set ? =Up., P and call a point
s e P doubleif s=dp for some P € P;otherwise, s is called ordinary.

Lemma. For each pe P and each x € P, we have R(x) = (RP)x). Accordingly, R(x) has codimension
1 in M(x) if x is ordinary and codimension 2 if x=dp.

Proof. Considerany Q € P\P. If xe 0, x is ordinary (5.8), and we have (RQO)x) = (RP)(x) by 59. If x
¢ 0, we have (RQ)(x) = O(x); on the other hand, the restriction QP is a maximal submodule of P|P (5.7); it
follows that Q| P O R(P|P)= R(P)| P, hence O(x) D (RP)(x). Accordingly, (RQ)(x) contains (RP)(x) in all
cases.

7.3. First reduction. Let T denote the full subspectroid of % formed by 2 and by the points x € % such
that R(x) = M(x). Let further n € N be such that ‘.7@1 annihilates all R(x), x € 7, whereas ‘R,ﬁi(t, SR@) =0 for
some ¢ € 7 and some s € ‘. Denoting by R’ the annihilator of R§ in R, wereplace M by M/R’, L by L/R’
={L/R:RCLe L}, and Pby P/R={P/R":Pe P}

We claim that our theorem is true if it holds for M/ R’, L/R’, and P?/R’. Indeed, let N /R’ be a simple
submodule of R /R’ such that the transporter 7 of M /R’ into N /R’ annihilatesno P/R’, P e P.If N/R’ is
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located at x € ‘3, there is a morphism U € &g (x,y) and a simple submodule S of M such that S(y) = uN(x) # 0.
Our claim then follows from the observation that the ideal 9 such that 9(z,y) = u%z,x) and Xz, ?) =0 in the case
t#y iscontained in Transp (M, S) and annihilatesno P € 2.

Thus, we are reduced to the case where R annihilates all R(r), r € 7, and R(g) # O for some ¢ e T.
Restricting M to the full subspectroid of 2 formed by P and g, we are further reduced to the case where R is
semisimple. Factoring out the submodule R” of R such that R(g) =0 and R’(?) = R(t) if ¢ # g, we are finally
reduced to the following situation, to which we restrict ourselves in the sequel: R is a semisimple module vanishing
outside some point q € *%; the set of points of X is PV {q}; and, finally, M(g¢) = (RM)(@)=R(q) if q ¢ P,

7.4. Second reduction and dichotomy of the proof. Suppose that there is an ordinary point s € P such that
P(s)=M(s) forall P e P and Ry(s, ¢)M(s)# 0. Then we have

R, M) € (), _, (RPY@) = R(),

andeach | € R,&(s, q) satisfying pM(s) # O determines a simple submodule S of R such that S(g) = pM(s)
(7.2). Since Transp (M, S) contains L, it annihilatesno P € 2.

Thus, we are reduced to the case considered in the sequel, where Q(,s(s, @M(s) = 0 for each ordinary s e P
such that P(s)=M(s), VPe P

From now on, we fix a pencil F € P subjected to the sole condition that g€ F if q € P. Since we have M

#F and M(t)=F(@) forall ¢t € F (5.4), the generation indicator M of M is not contained in F. Thus M \ F
contains a double or an ordinary point. The two cases are examined separately in 7.5 and 7.6 below.

7.5. First half: Suppose that M\ F consains the double point d=dy of some Y € P.

Let us then examine any X e P different from Y. Since d ¢ X (5.8), we have X(d) = (RX)(d) C (RM)(d) #
M(d) = Y(d). Since the restriction XNY|Y is a maximal submodule of Y| ¥ (5.7), X(d) = (RM)(d) is a
hyperplane of M(d) containing (RY)(d) = R(d). Thus, we can choose vectors u € M(d)\X(d) and v € X(d) \R(d)
such that M(d) = ku @ kv ® R(d) and R(g) € (XYXq) = Rs(d, q)u + zs R(s, g)Y(s), where s runs through the
ordinary points of Y (5.1).

If X, e P differs from ¥ and X, we have X,(s) = M(s) = X(s) for all ordinary s € Y. Using 7.4, we infer that
Ri3(s, @)Y (s) =0 and (RYXg) = R3d. g)u. On the other hand, we have Ry(d, 9)v CR(g) because v belongs
to Y(d) = M(d) and to all X,(d) = (RM)(d) = X(d).

Nowset E={ e R,&(d, q). Uu € R(g)}. Since Q{,i(d, q)u = (RY)g) contains R(q), the multiplication by «
provides a surjection ?u: E — R(g). This implies that the representation ?u, ?v: E =3 R(g) of the double arrow is a

direct sum of tubular and preinjective indecomposables. We distinguish two cases:
a) Case ?v # 0. Our representation then admits an indecomposable summand which is isomorphic neither to 1,

0: k3 k norto 0,0, k=3 0. Such a summand contains vectors |,V € E satisfying O pu=vv=:r and Qv € kr.

Accordingly, if S € R is the simple module such that S(¢g) = &r, @ belongs to Transp (M, S), and Transp (M, S)
does not annihilate Y. On the other hand, each X € P\Y satisfies some relation v € Qw + R(d), where w € X(s),
se X, and @ € Ry4(, d). From vOM(s) C vX(d) = kvvo and vow =vv =r we infer that Transp (M, S) contains v¢
and does not annihilate X. '

b) Case ?v = 0. Then we apply our induction hypothesis to P\Y. Since ¢ satisfies R(g) =M(q) or g€ F,
where F e P\Y, we infer that R contains a simple submodule S located at ¢ and such that Transp (M, S)
annihilates no X € P\Y. On the other hand, since S(g) € R(g) C :K,&(d, Qu, there existsa ¢ € &(d, g) such that
ov = 0 # @u € S(g); thus, Transp (M, S) also contains ¢ and does not vanish on Y.
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7.6. Second half: Suppose that M\ F contains an ordinary point y.

Our premise implies the existence of pencils X,Y € P suchthaty ¢ X and y € ¥ ; hence, X(y) = (RX)(y) C
(RM)() # M) = Y(3). By 5.7 there is a unique point xy =x € X such that Y(x) # M(x) = X(x); by 5.10 xy depends
onlyonX and y,butnoton Y.

Let us now examine the points z € Y \y such that Rz, @M(z)#0. By 5.7, z satisfies X(z) = M(z) = Y(z);
by 7.4 z is the double point dy of Y or satisfies Y 1(2) # Y(z) for some Y, € P, whose indicator Yl runs through y
(5.7). In both cases, z ¢ X . This follows from 5.8 if z = dy, from Y,(z) # M(z), Y;(x)# M(x), and 5.7 if not. We
conclude that

M(2) = (RXX2) = 3, Ralt, X0 = Rg®, DX0) = Ry(x, 21 *)
teX

for all n e X(x)\Y(x). The last equalities result from the fact that each 7 € X \x satisfies X(t) = Y(¢) (5.7); hence
we have i’{%(t, 2)X(@) C RY)z)=R(z) (7.2) and Ry, )Y(x) € R(z); but y ¢ F implies z ¢ F (as we have
seen above in the case of X); hence z#¢g and R(z) =0.

When Y varies, the points z € Y considered above give rise to a subset of P , which we denote by Z. The
contribution

RE=Y Ry(z, qIM(2)

2€Z

of Z to M(q) is contained in R(g). Indeed, this is clear if R(g)= M(qg) and follows from

RZ= Y Ry, R0 DF(p) € (RF)G) = R@)

€2

if ge F (Lemma 7.3). On the other hand, we have R(g) C RZ + R, )M(y) because each Y satisfies

R(@) C (RNN@) = T, Ry(s, M) = Re3, PMO) + 3, Rgle, YM(2).

zeY zeZNY

Thus, we are led to distinguish the following three cases:
a) Case RZ + R,&(y, qM(y) # 0. The nonzero intersection then contains some

r=y o m,=@m #0,

zeZ

where @ € R3(,9) and m e M(s). If S C R denotes the simple module such that S(g) = kr, @, clearly belongs

to Transp (M, S). On the other hand, for each X € P satisfying y ¢ X andeach z€ ZN Y, m, can be written as

m, =Wy, with y, e 7(»5("x’ z), where n € M(xX)\ UY(xx) (see (*) above). We infer that r = @ n, where @,
Y

= 2(;),\;; . vanishes on Y(xy) together with v, hence has rank 1 and belongs to Transp (A4, S).
zeZ
b) Case RZ=0,i.e., Z=. In this case, we have

R(g) € (RYXq) = Ry, PM ()

for all Y e P such that y € Y. Removing these ¥ from P, we obtain a set P’ of smaller cardinality which
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contains F and satisfies the assumptions of Theorem 7.1 because R(g) # M(g) implies g € F. The induction
hypothesis then guarantees the existence of a simple submodule S of R suchthat Transp (M, S) annihilates no X

€ P’,andno Y e P\ P’ because of 0# S(g) € R(g) C Rg(y» M), R0 9RO) =0, and dim M)/ Ry) = 1.

¢) Case RZ=0 and RZN Ryg(y,g)R()=0. Then we set P’ = (Y € P:y € ¥}, and accordingly, P’ =
Uyep Y. Wedenote by 2’ the full subspectroid of % supported by {q} U P, by A’ the corresponding full
subaggregate of 4. WefinallysetY' =Y |2 foreach Y e P, M’ = ZYE?,Y’ and R’ = ﬂYe?,ﬂ( Y’. Thus we

have R’(s)=0 if s € ?’\¢ and
R'(g)= R? ® Ry(y, QM) = (RM)(9);

in particular, R'(g) = M’(g) holds if (RM')(q) = M'(q), hence if ¢ ¢ P . Itfollowsthat M’ and P’ | A’ ={Y:Y e
P} satisfy the assumptions of Theorem 7.1. (But we may, of course, have g & P evenif g e P’. Here is
precisely the point where the alternative R(g) = M(q) of Theorem 7.1 enters the inductive argument.)

The assumptions of 7.1 pass from M’ and P | A" to M”=M’/N and P’ ={Y'/N:Y € P’}, where N
denotes the submodule of R’ such that N(g) = R, M), we then have

R":= & =R’/ N.
Te?
Applying our induction hypothesis to M” and P”, we find a simple submodule §” of R” such that Transp (M”,
$”’) annihilatesno T=Y’/N. Since RZ > R”(g), S” can be “lifted” to a simple submodule S’ of R’ such that
$’(q) C RZ. Extending S’ by 0 to A, we finally obtain the required S C R. Indeed, the construction implies that
each Y € 7’ containsapoint zeZ N Y such that M(z) is not annihilated by Transp (M, S). Since z satisfies
M(z)= R,&(xx, 7)M(xy) foreach X € P\, Transp (M, S) does not annihilate X either.

8. The Case of a Semisimple Pencil.

Our main objective in this section is to prove Lemma 6.6 above.

Sticking to our previous notation and assumptions, we further suppose throughout Sections 8.1, 8.2, and
8.4-8.10 that M is a faithful module over A and P a semisimple L-pencil. This implies that P is the socle of
M (5.3) and that the points x € ‘% satisfy either 0% P(x) =M(x) or P(x) =0#M(x) (5.4). In the case 0% P(x), we
keep the basis chosen in 6.3, setting M(x) = ku, if x is an ordinary point of P and M(d)=kuo kv if d = dp is
the double point. Finally, we set X= {L € L: L(d) = M(d)}.

To help intuition, we may and shall choose A4 as the aggregate of all finite-dimensional projective modules
over some finite-dimensional algebra. Accordingly, if 2, denotes the full subaggregate of 4 formed by the objects
isomorphic to p”*, where p e P isfixedand n ranges over I, the inclusion ﬂlp ~> A admits a canonical right
adjoint which maps X € 4 onto the largest submodule X, belonging to ﬂlp; moreover, if p is an ordinary point of

P and Ye 2p, each vector subspace of M(Y) is identified with M(Z) for some submodule Z e ,qp of Y.

8.1. We first apply our main algorithm to the submodule P of M and to the bond X defined above. As
usual, we set A = Plnp, LW, h,Z)= (L(Z) + h(W)) | (W) for all submodules L C M and all (W, h,Z) e 4,
and f( = {f.: LexiU {13 }. The canonical epivalence Mg( - H;( (5.4) then reduces the investigation of M'§(

to M, :’}C, and we are lead to examine 4.

The relevant part of XN P consists of the maximal submodules P, where s e P\d (5.2). In order to choose

a spectroid of 2= P§< np» We consider a pair of adjoint functors
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R
Play < Pt
S

The right adjoint R is defined by R(V, g,Y) = (V, g4, ¥, where g, is the d-component of g:V — P(Y) = ®P
pE

P(Y,). The left adjoint is such that S(W, k, Z) = (W, h,Zewe Z),where Z=®s5e 4 isthesumofall s € P\d
and 7 maps x € W onto

(hx), x®u,))ePZ)e (Q—S) W @ P(s)).

This left adjoint factors through Pf,c np andis fully faithful and exact (for the short exact sequences considered in
2.3). Accordingly, the indecomposables A, Tf;, vV, of A d)" are associated with pairwise nonisomorphic

indecomposables of Pé‘m p of the following form:
SA, = k1, a,d" e -1, a,,;=[1, 0 |0 L, .17
STA = e, fy=1,]M,+ T,
STy = (K17, d" @ E"), 1oy =1J,|1,]T,

SV, = k", z,,dv1 @ I, z,d:[&'tl-g}.
01,,
The scalar A ranges over &, n is 21, J, is a nilpotent Jordan block, a,,;: k™! — P(d") is the component of a,
“relative to 4, ... . ‘
Asaspectroid | of 4 =Pk, wechoose the indecomposables SA,, STy, SV, (12 1, A & kU ) and the
P-spaces (0,0, x),x € §\d.

Proposition. There are at most four “scalars” A € kU e such that STﬁ is (M, i)-relevant (6.7) for
some n21.

Sections 8.4 —8.9 are devoted to the proof of the proposition. First, we shall show that the proposition implies
Lemma 6.6 above.

8.2. Proposiﬁon 8.1 deals with a lopped bond X on M, not with the given L. So it remains for us to adapt the
- arguments of 8.1 to L. First, we must replace 4 = P%p by afull subaggregate A = Pk, p. The corresponding
spectroid ‘3 is obtained from ‘A& by deletion of some SV, and some ST?;. For each submodule L of M, the 4-
module I is then replaced by its restriction £ = L|4,and M isrestrainedby L = {L:L e L} U {P}. The
resulting aggregate M kE is identified with a full subaggregate of M :I;C Thus we finally obtain the following
corollary of Proposition 8.1.

Proposition. With the preceding notation, there are at mostfour scalars A € kU oo such that S TZ; is
(M, L)-relevant for some n=1. '

8.3. Proof of Lemma 6.6. The lemma follows directly from Proposition 8.2 when M is faithful and N = P
semisimple. Our objective here is to reduce the general case to the particular one. If N € 2, with e 2 2, we first
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replace L by L, ; (6.3) and are thus reduced to-the case of a minimal pencil N e ‘P,. We may also replace L by
LU KU U J Kp , hence, suppose that Gy =@ (6.5). Our further reduction consists of three steps.
1

First Step. Here we factor out the ideal J of 6.4, replacing A by A = A4/ 5,M by M =M/ M, and N
by N =N/ JM.Thebond BN is replaced by the'set of all X/ JM suchthat M C X € ‘BN. This set equals BN
if L isreplaced by the correspondmg bondon M. Applymg the main algorithm to the submodules N and N of
M and M, we obtain the diagram

k F 3
Mgy ——— Mg

Lo

Nk G =Nk
M. —_— M@v—

Since some Y € BN give no-contribution to ‘BN, it is possible that F is not an epivalence. But it is the restriction
of an epivalence to a full subcategory. Hence it is surjective on the morphism spaces and detects isomorphisms.
Since the vertical arrows of the diagram are equivalences, G preserves indecomposability and heteromorphism. We

infer that 8" (6.5) has fewer “relevant points” than %", and the required statements can be lifted from M to M.

Second Step. We supposevthat (RN)(x) =0 for all x € N. Under this condition, we now set M = M / &N,
N =N /RN, and equip M with the bond formed by all L / RN, where RN € L € BN. Applying the main
algorithmto N © M and N C M, we obtain modules MY and M N over some aggregates with spectroids %V
and 8. The induced functor %Y — %Y is an isomorphism because, for each Z = (W, g, X) € $¥ with space
dimension dim W21, X issupported by N which is disjoint from the support of RN. Accordingly, if RNV) de-
" notes the submodule of MY associated with RV, we have (RVPV(Z) =0, and we may identify %V with %7 and
MY [ (RNW with M ¥ The equality (RVYV(Z) =0 implies that, for any M -space (U, k, Z’), the canonical map

MU, h,Z), ©,0,2)) > M (U, b, Z), 0,0, 2))

is bijective. Therefore, Z is relevant with respect to (MY, éN) if it is so with respect to (M _, BN ). Thus we are
reduced from M to M.

Third Step. Here we may suppose that RN = 0. But formally we still have to reduce our statement to the case
where M is faithful. For this sake, we denote by 4 the residue category of A4 modulo the annihilator of M. If
M and N arethe A-modules associated with M and N, the canonical functor M%’; M gKI; is quasisurjective.

Therefore, the isoclasses of “relevant” points of 2N correspond bijectively to those of ¥,

8.4. We now return to Proposition 8.1. Before entering its proof, we examine the notion of relevance. Let us
provisionally consider an arbitrary pointwise finite module M’ over an aggregate 4’ and a bond £/ on M’.
Equipped with the short exact sequences defined in 2.3, M”Z, is an exact category. Accordingly, an M’-space (V,

£ X)e M"i' is called (M, L)-injective if, for each short exact sequence

0 _ (W’, gl, Y’) —(l_j)——> (W, 8, Y) —(_P:I—)_—) (W”, g”, Y”) —_— O

formed by M’-spaces avoiding L', each morphism from (W, g’,Y’) to (V,f, X) factors through ¢, j). It is
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equivalent to say that, for each (W, g,Y) € M"z,, each linear map m: W — M(X)/ AV) is a composition of the form

W —E My 2D M) —== 5 M)/ F(V).

The indecomposable (M’, @)-injectives are easy to describe; they have the form (k, 0, 0) or (M, (s), 1, ).
The general case L' # @ seems to be more intricate. In the following lemma we examine indecomposables s € 4’
such that (0, 0, s) is (M’, L)-injective; then we simply say that s is (M’, L)-injective.

Lemma. An indecomposable s € A’ is (M’', L )-irrelevant if and only if s is (M’, L')-injective and
satisfies L'(s) = M'(s) for each maximal element L’ of L.

Proof. a) The condition is sufficient: If (V, [fg]T,Y @ 5) avoids L', the equalities L’(s) = M’(s) considered
above imply that (V, f, X) € M%.. Hence, we have a short exact sequence

0— (0,0,5) — (V,[fgIhY&s5) —> (V,,1)—> 0

of M’%;., which splits because s is (M’, L)-injective.

b) The condition is necessary. In order to show that s is (M’, L')-injective, it suffices to prove that the exact
sequence

N T
0——)(0,0,5) (0. [0 T) (V9[fg] ,YQS)—(“TO]T)——)(V,f,Y)__)O

splits if (V,f£,Y) is indecomposable. But this is clear if (V,f,Y) 5 (0, 0, 5). If not, Y has no direct summand
isomorphic to s. Decomposing the middle term into indecomposables, we obtain an isomorphism

V. [fglhY@s5) —— (V,4,1)®(0,0,5)

whose components are, say (e, [ab]) and (0, [c d]). The composition of i with (0, [01]T) is a section with
components (0, ) and (0, d). Since b cannot be a section, d is an isomorphism, and our short exact sequence
splits.

Let us now turn to a maximal L’ € L. In the case L'(s) # M’(s), we consider the submodule N’ of M’ which
is generated by L’ and M’(s). Since the generation indicator of N’ contains s, the indecomposable M’-space
associated with N’ in 6.1 has the form (k,f, Y @ s) and avoids L. This contradicts our assumptions that s is (M’,

L)-irrelevant.

8.5. We now return to the assumptions of Proposition 8.1 and start with the proof. By 5.6, each L € X
satisfies L N P = P, for some ordinary point s € P. It easily follows that K(ST;})= P(ST;}) = M(ST}) holds for
each K e 72', Hence, ST,,’~ is (M, i’%_)-relevant if and only if it is not (M, K)-mjective.

Thus, our objective is to show that Ext (X, (0, 0, ST,,")) =0 forall X e M;(’ provided )\ avoids some

finite set e. The extension groups Ext (X, (W, h, Z)) considered here can be computed within the surrounding
category M* with the help of an injective resolution of (W, 4, Z) in M* of the following form:

0 —— (W, h,Z) — (Ker 1,0,0) ® (M (2), 1, Z) ——> (Coker 4, 0, 0) ——> 0.

The resolution shows that Ext is right exact on the short exact sequences of M¥ considered here (2.3).
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We display the spectroid ‘% of ,’3{ (8.1) in such a way that all morphisms from the right to the left vanish (s €
S\d, A e kU o).

(0,0,5), SA,, SAy, SA,, ..., ST, ..., 8V,, SV, SV

In particular, Hom (SF, (0,0, 5))=0 forall s € §\d and all F e (P| ﬂld)". It follows that each A ;’i gives rise
to a canonical split sequence

0—— Ap——A— A[Ap— 0,

1

where A, is isomorphic to some SF, and A/A, to some @l (0,0, s;) with 5; € ]\d. Accordingly,each (U, f, A)
{3

e M* gives rise (o an exact sequence

0— (0,0,4p) —g5—> W, A)—g 5> U, can o LA/ Ap) — 0 (*)

of M* Inthe case U.f,A) e AAI:( the end terms (0, 0, Ap) and (U, cano f, A /A,,) also belong to A:ng( because -
ﬁ(SF) =M@SF),VLeX,VFe(P | ﬂld)k. We shall denote by M lk and M '2‘ the full subaggregates of M;‘(
formed by the (U, f, A) such that Ap=A and Ap =0, respectively.

Now, since we have Ext ((0, 0, Ap), (0, 0, ST,,’“)) =0 by the definition of the exact sequences of MF*, we infer
that the map

Ext (U, £, 4), 0,0, ST,")) — Ext (U, can o £, A/Ap), (0,0, ST,*)

is surjective, and we are reduced to proving the following lemma.

Lemma. If M is not L-wild, there exists a subset e C kU o of cardinality <4 such thar Ext (X, (0, 0,
STM)=0 forail Xe M, all n21, andall . € (kU =)\e.

8.6. Lemma 8.5 concerns the aggregate M;( Our next step brings us back to M;"( via the rum functor
- Mf( — My, (U.f,(W,h,2)) 5 (V, g, Z) ® (Ker h,0,0),

where V C M (Z) is the inverse image of f(U) € M (Z)/h(W) and g the inclusion. This functor induces a
bijection between the sets of isoclasses of M;( and M§<. It is a quasiinverse of the classical equivalence M;‘( -
M;‘( if X#Q, ie,if P\d#®.In general, the main virtue of @ is to be exact, whereas M; — Mj is not

because M;‘( has “more” exact sequences than M :c Infact, forall A}, A, e M 1/,5(, @ induces an injection
Ext (A, A}) > Ext (®A,, PA)),

~ whose image consists of all classes of short exact sequences

0> PA, = (V1,81,Z;) > (V3,83,.23) > PA, = (Vy, 82,2Z3) >0

of M:’,‘( such that the induced sequence
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0-+(g1 (PZy), &, 1)—>(g YPZ3), 85, 23) = (83'(PZy), 85, 25) > 0

is split exact in A= Pgm p- Such exact sequences of M:'c will be called P-exact.
In particular, if (U, f,»A) ranges over M, the images of the sequences (*) under @ are short exact sequences

of Mé‘c. Up to isomorphism, they can be descnbed directly as follows. Let us consider the two pairs of adjoint
functors '

S N

where R, S are defined as in 8.1, S ” is the functor (W, h, Z) > (W, h, Z) induced by the inclusion P — M, and
R’ is the trace functor (V, g, Y) — (g }(PY), &', Y) already considered above. With each (V, g, Y) € Mi’f(, the
adjoint pair (RR’, S’S) associates a canonical short exact sequence

0~ (PN, 2., ¥) -5 (v, 2, 1) @, (v/g-1(PY), ¢, Y V) > 0, (%)

of M;'f(, where Y=Y, @g‘l(PY) ® Y. These sequences are related to the short exact sequences (*) of 8.5 via the
rum . If we denote by M{‘ and Mf the full subaggregates of Mfc formed by the pairs (V, g, Y), which induce
isomorphisms (v,1) and (@, 7)) Tespectively, then S’S induces an equivalence.(P | A)* > Mf, whereas M} is
equivalent to :’,( np’ where M’, X/, P’ denote the restrictions of M, X, P to 3\d. The functor P : IL:IZ,‘c -

M;‘( maps A711 into M_l and induces an equivalence Mé‘ 5 M5 . Moreover, in the case A e M{‘ and A, e'I%‘ ,
all short exact sequences

0->®A; - E—->PA, >0
of My are obviously P-exact. Hence, ® induces a bijection
Ext (Ay, A)) > Ext(®A,, DA,),

and Lemma 8.5 is reduced to the following lemma, where we set E3 = §'SE forall E e (P ).

Lemma. If M is not L-wild, there exists a subset e C k U o of cardinality < 4 such that Ext(H, T,,H‘) =
0 forall He MY, all n21,andall A e (kU =)\e.

8.7. In order to prove Lemma 8.6, we start with an arbitrary H € M* and some F =E'Y e Mf, where E e
(P|A4,)*. For the exact structure defined in 2.3, M * admits almost split sequences [8, 9]. If tH denotes the
cotranslate of H, we know that

Ext(H, F) S Hom(F, TH)T,

where WT denotes the dual of a vector space W and Hom(F, tH) the residue space of Hom(F, TH) obtained by
annihilation of the morphisms factoring through injectives of M*. Now, since F admits an injective resolution

whose indecomposable injective summands have the form (k, 0,0) or (M ), 1,p), p € P, it suffices to
annihilate the morphisms factoring through these injectives. But T©H has no nonzero injective direct summand. It
easily follows that all morphisms from (k,0,0) or (M (p), 1,p) to tH vanish and that
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Ext(H, F) > Hom(E', tH)T = Hom(E, (tH) )T

if weset K,=RR'K  (P|4)f forall K eM*.
Now, in the case H € M}, the following lemma states that (tH), is a direct sum of indecomposables A, and
T*, where A belongs to some subset ¢ C k\J o of cardinality <4. If follows that Hom (E, (H))=0if E=V,

or E=T}! with p € kU e \e. So it remains for us to prove the following lemma.

Lemma. Let e C kU o bethesetofall A € k U e such that, for some n2>1 and some H € Mf , T7N
is isomorphic to a direct summand of (1H),. Then the cardinality of e is < 4. Furthermore, if H & M2, (’cH)d
has no direct summand isomorphicto V,, n2 1.

8.8. Lemma 8.7 will finally result from the virtues of some restriction M of the module M examined in 8.1.
Let § denote the finite full subspectroid of § formed by SA; andall (0,0,s), s € ¥\ dp. Let 2 be the full

subaggregaté of 4 formed by the points of E, all isomorphic indecomposable, and their finite direct sums. The
restrictions M=M|4 and X = {K 14:Ke ﬂt} then satisfy the following lemma.

Lemma. M isnot K-wild.

Proof. We know that the module M of 8.2 is not L-wild. It has a submodule N which vanishes at SA,,
SA,, SAj,andall (0,0,s) with se 4\ dp, and which takes the same values as M at all other points of ‘i By

3.7, M /N isnot (£ JN)-wild if we set f,/N= (K/N:NC K e L).Thecondition N C K eliminates all X of
the form K = L with L(d p) # M(dp). Hence, only X contributes to L /N, and M, K are identified with the

restrictions of M /N, L /N to 4.

8.9. Proof of Lemma 8.7. a) Obviously, 117}C can be identified with the full subcategory of AA{;{ formed by

the M -spaces (U, f,A) suchthat Ap (8.5)is a direct sum of copies of SA,. Setting X = (U, can o f, A /AP) € A7If
and denoting by

e € Ext(X, (0, 0, Ap)) = Hom,(Hom(Ap, SA4), Ext(X, (0, 0, SA;))
the extension associated with an M -space (U, f, A) e ﬁ% and with the sequence
0—(0,0,4p) ——— (U, f, A) —7—=—> ) —g=—>X=(U,canf,A[Ap)—>0
in 8.5, we obtain an epivalence

¥ Mg? — EX, (U.£.A) b (Hom(A, 5Ay), €, X),

where E is the module on M; °P such that E(X)=Ext(X, (0, 0, SA,)). This epivalence can be composed with an
equivalence E* = E* which results from the equivalence M, ;( > M:,kc and from the invariance

Ext(A,, A;) = Ext(®A,, A,), A, € M} ,A, & M}

examined in 8.6. By E we here denote the module
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H v Ext(H, A Yy > Hom(A3, (‘tH)d)

which is defined on the aggregate M, (8.6).
b) In the epivalence Ff;(” — E* derived above, the point is that E is free of any bond. Before exploiting this
point, we must transfer “tameness” from M to E.

Lemma. E is not wild.

Proof. 1t suffices to prove that E is tame. If not, there is a plane coordinate system
e €, €5 € Ext((U, g, B), (0,0, W ® SA,)) > Hom(W, E(U, g, B))

such that the induced functor repQ? — E* preserves indecomposability and heteromorphism. The extensions e;
are the classes of short exact sequences, which we may write as follows:

0— (0,0, WT®SA3) —— (U, [”'} W @ SA4® B)——> (U, 8, B) —> 0

where 1 and 7 are the canonical immersion and projection. Setting f,= [y g]7 and f; = [#; O]T for i=1,2, we
obtain a plane coordinate system

fy s f, € Hom (U, M (WT ® SA,® B)).

The induced functor F;: repQ? — M ¥ factors through ﬁ% by construction. We claim that the composition

. —k -
repQ? —5 (repQ?)oP 7, >M9—(°p 5 s EX

where D is induced by the duality of vector spaces, is isomorphic to F,. This implies that  F preserves
indecomposability and heteromorphisms, a contradiction to Lemma 8.8.

Our claim follows from the observation that the map

Hom,(U, M (C)) — Ext((U, g, B),(0,0,C)), h+> h,
where # denotes the class of the short exact sequence

0—>0.0,0) 5 .| %] co By — W.5.5) —0, ¢*%)

is k-linear for all C =W7 ® SA;. To ascertain this point, we compute the extension group using the injective '
resolution

0 —> (0,0,0) g5 (M (0), 1,0) <z (M(C),0,00 — 0

of (0,0,C) in M¥. The induced linear map

Hom((U, g, B), (M (C), 0, 0)) —— Ext((U, g, B), (0,0, C))
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maps (h, 0) onto the induced pull-back of the chosen resolution. This puIl-back is isomorphic to (***),

¢) Let us now suppose that Lemma 8.7 is false, and let H e Mé‘ be such that (tH), has a direct summand
of the form V. Then we may further assume that H is indecomposable and denote by # the full subaggregate
of Mf formed by the objects isomorphic to /', r € N. If m is the smallest number satisfying Hom(V,,, (tH),) #
0, then Hom(V, , @H) ) ® V, is identified with a nonzero direct summand of (tH),, and '

X+ Hom(V,, @H);) ® Hom(A,, V)
with a submodule of

ET|#:X > Hom(A,, (tH),) > Ext(X, AD)T.

Accordingly, each simple submodule S of X+ Hom(V,, (tH),) provides a semisimple submodule S ® Hom(A;,
V,) of ET| # such that

dimS(H) ® Hom(A,, V,,) = dimHom(A,, V,) =m +2 23,

We infer that E | AP has a semisimple residue module whose dimension at H is > 3; and hence, that E is wild in
contradiction to the lemma of part b).

d) Let us finally suppose that Ay, Ay, Ay, Ay, As are distinct scalars and H is an object of Mf such that,
for each i, (tH), has a direct summand of the form T, ,3:" . We then denote by # the full subaggregate of Mf

formed by the objects isomorphic to direct summands of H”, r € N. The restriction ET | % contains a direct sum
of five nonzero submodules of the form

X > Hom(T}™, (tH),) ® Hom(A,, T, ).

Accordingly, if S; is a simple submodule of X > Hom(Tl;”" , (tH),), ET | has a semisimple submodule of the
form

5
© S; ® Hom(A,, ),

and E| A" has a semisimple residue module of length 5. We infer that £ is wild in contradiction to the lemma of
part b).

9. From Subspaces to Modules.

In the present section, we apply our second main theorem (2.5) to a finite-dimensional k-algebra B. For this
sake, we consider a proper quotient 7 of a spectroid 7 of B and reduce mod B - mod 7 to a “subspace cate-
gory” M{f,, where M and N are suitable left modules over mod 7 .

9.0. Since we prefer working with finite spectroids rather than with finite-dimensional algebras, we first adapt
the language introduced in 2.6 to the case of a finite spectroid T.

First, we introduce the k-category ®7 whose objects are the points of 7' and whose morphism spaces are
defined by

(®D(r,s) = (?Q(xn_l, 5)B;... 8 Lx;, x,) B /T(r, x,),
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where x ranges over the sequences of points of 7 of length » 2 0. (In the case n = 0, the displayed tensor product
coincides with 7, s).) The composition of ®7 is induced by tensor muitiplication.

Let mod® 7 and mod 7 denote the categories of all finite-dimensional right modules over ®<7 and 7, ie.,
of all contravariant k-linear functors from ®7 and 7 to mod k. An object of mod ®7 is given by a family U =
( U(S’))SET of “stalks” U(s) € modk and by a family of linear maps lying in )

= n Hom, (U(r) ® T(r, 5), U(s)).
rseT

We shall identify mod 7 with a full subcategory of mod ®7 with the aid of the canonical functor ® T— 7.
Each coordinate system e = (ey,..., ¢,) of an affine subspace S C Hy, gives rise to a functor F,:repQ’ —

mod®7 which maps a sequence a = (a,,..., @) of ¢ endomorphisms a,: W — W onto the family W®U =
(W® U(s));e7 equipped with the linear maps

1,®ey(r, 5) +a,Be (r, ) + ... +aBe/r, 5) : WBU(N®Lr, s) - WRU(s).

The space S is called T-reliable if F, factors through mod 7 and preserves indecomposability and hetero-
morphism. And 7 is called wild if it admits a Z-reliable plane. If not, 7T is tame.

Lemma. Let B be a finite-dimensional algebra with spectroid I. Then B iswild ifsois ‘T

Proof. We may suppose that the points of 7 are projective B-modules ¢,B,..., ..., €, B, where the g, denote
primitive idempotents. Choosing an isomorphism B - i(z)l(si B)"‘ of mod B, we then identify the algebra B with
the matrix algebra @(S,B e xn;, '

Now let U= (U Nsion be a family of stalks and ¢y, e;, ¢, € H Hom,(U; ® e,B g, U) be a coordinate system
u
of a Treliable plane. If V' denotes the direct sum of the spaces U,- " formed by the rows with n; entriesin U,

we obtain a coordinate system fy, f},f, € Homk(V ® B,V) of a B-reliable plane by setting

m.o . Mmoo ixn.
- J i i-bhY . =
fp(v®b)—(i§=1:v e,(i,j:b ))15,-5,” e U=V

=1’
forall v= (') e (-iBUIX”" =V andall b= (@Y= l_ej(eiB ej)f'i""j = B. Here
e (i, j; b%) € Homy(U,, U)">"i
denotes a matrix whose entries are defined by
e, i b), %) = e,x ® b)),

In the case ¢= 1, we also consider punched lines S\E, where E is afinite subsetof S. Setting C = {A e k:ey+
Le, € S\E) asin 2.5 and 2.6, we say that S\E is T-reliable if F,:repc Q! — mod ®T factors through mod T
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and preserves indecomposability and heteromorphism. As in the case of reliable planes considered above, T-re-
liable punched lines give rise to B-reliable punched lines whenever B is a finite-dimensional algebra with spectroid
7. Thus, in order to prove our third main theorem, it suffices to construct suitable 7T-reliable punched lines whenever
T is tame and to carry them over to B. As a corollary, we obtain the converse of the lemma above (B is tame if so
is 7y, which of course could also be proved directly.

9.1. Assume that 7 is an arbitrary finite spectroid over k, 6 € R;(s, ) is a nonzero radical morphism of T
such that Rz, x)o = 0 = 6Rf(x, 5) for all x € T, and T=T /0. For each X € modZ, we denote by X the
largest submodule of X annihilated by ©. Concretely, X satisfies X (x)=X(x) for all x € 7\, whereas X(¢) is

the kernel of X(oG) : X(¢) — X(s). Accordingly, X /X is semisimple and located at . The obvious exact sequence

0 > X > X > X /X > 0,

therefore, provides a linear map
ey & Hom(Hom (-, X / X), Exte(t 7, X)) & Exty(X/X, X),
where 7~ € mod7 is the simple module located at ¢. Finally, we obtain an epivalence

G:mod T— My, X— (Homq(~X/X), ¢, X),

where M and N are the left modules over 4 = mod7 such that N @) = Extli(t S Z2)YCM@Z)= Extlr(t - 2Z)
([91,4.2).

Our proof of the third main theorem uses the epivalence mod 7 — M,'f, , the second main theorem, and the
following statement. There, ind 7 denotes the chosen spectroid § of Z=mod 7 .

Proposition. With the notation above, suppose that M is not N-wild. Then, for each d € N, ind T
contains only finitely many (M, N)-relevant modules of length d (6.6).

The proposition will be proved in 9.6.
9.2. Proposition. 7 is wild if M is N-wild.

Proof. Let e = (ey, €,, €,) be a coordinate system of an N-reliable plane in some Homy(V, M(X)) &
Ext%(V? t~, X)(V e modk, X € 4. To produce a T-eliable plane, we start from the tensor product

0 ’V‘%B >V§p —)V%t‘—)O *)

of V with the obvious sequence (9.1) associated with p = X(?, 7).
The induced connecting homomorphism Homg(V§ p. X) - Ext%(V% t~, X) is subjective and maps

f: V% p — X onto the class of the push-out of (*) along f. Choosing the preimages h; of the given e, we

construct the commutative diagram with exact rows
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0 - W?V?E - W?V%p - W?V%t' - 0
W ® hy+ay ®hy+by Oy | | I : ")

0 - wW&x % v, - WOV - 0

where ay, and by, map w € W onto wa and wb.

For Y,,, we choose the following concrete construction. Let ¥ = (¥(q)) be a family of stalks such that Y () =
X@)®©V and Y(r)=X(r) if r#¢ Weset Y, ,(q)=W®, Y(g) forall g e 7. Thus, the stalks of W ® X are
subspaces of the stalks Y, (g); on these subspaces, the structure maps

fa,b(rv q: Ya,b(q)' ® I, g) — Ya,b(r)

coincide with those of W @ X. Accordingly, 4 is an inclusion, and it remains for us to describe ¢ and the
restriction

Y, (1)® Rfr, ) —> Y, 5

of f,,(r,?). The morphism ¢ is determined by the commutativity of the left square of (**) and by the equations
cw ®@v ® 1) =w ® v. These equations imply

L YW Bv)=w®hyOW+wa® hON+wb® hv W
forall p € Rp(n, 1). Thus, we have
L0 @) = Ly ® fir.@) +a® fi(r, q) + b ® (1, q),

where f(r, g), f,(r,q) vanishon X(q) ® Tr, q), whereas for, @) coincides there with the structure map of X. In

other words, we have Y, , = FAW,a, b) where f=(fy.f;.f,) € Hy (9.0).
Furthermore, the construction of Y, , as a push-out shows that the composition

repQ2—pf——>mod'Z'—G—>M§,

of Ff with the epivalence G of 9.1 coincides with F,. Since F, preserves indecomposability and heteromorphism,
so does Fy.

9.3. Proof of the third main theorem. Supposing that T is not wild, we shall construct a family of “Z-reliable
punched lines which (mutatis mutandis) satisfy statement b) of 2.6 (see 9.0 above).

Using induction on the dimension Z dimTa, b) of 7, we may suppose that such a family is already
abeT

available for T =T, / 6. Hence, we restrict our attention to the “new” indecomposables, which are not annihilated
by o, i.e., are transformed by mod7 - M :/ into M-spaces with nonzero first components. By 9.2, M is not N-
wild. By 9.1, the full subaggregate A, of A “generated” by the indecomposables X of dimension <d, which are
(M, N)-relevant, has a finite spectroid for each d2 1. Denoting by M, and N, the restrictions of M and N t0 4,
there exists a locally finite set 27 of Nreliable punched lines which, for each X € 4, produce almost all
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indecomposables of (Md)fvd of the form (V, £, X) up to isomorphism. Of course, we may and shall assume that

pDcpPcC....
Now assume that S\E is an element of D=J;,, 7%, e= (e, ¢,) is acoordinate systemof S, and C={\ "
kley+ Ae; € S\E}. Asin the proof of 9.2, we can construct a T-reliable punched line with coordinate system f=

F
(fpfy) € H% such that the composition rep Q! —/— mod T—&— M ,’i, is isomorphic to repc Q! Fe,um [f, It

is easy to check that the punched lines arising in this way from D “parametrize” the new indecomposables over T
as wanted.

9.4. We now tumn to the proof of Proposition 9.1. Our first objective is to shake off the bond N = Extlf-r- e,

on M= Ext}z.(t -, 7). For this sake, we resort to the injective Z-module i = s, NT. The largest submodule i of i
annihilated by © is identified with T (s,D7T, and i /i can be identified with ¢~ via

i) = Ts,)f >k f f(0).

It easily follows that 0=N (1) S M ({)=ke, where g; denotes the extension associated with the exact sequence 0
— i =i -t~ — 0. As a consequence, the submodule of M generated by g; € M (i) coincides with 9M, where 9
is the ideal of A =modT generated by 1;. In the following proposition, M : =M / 9M is considered as a

module over the aggregate a= A/ 4, whose spectroid % is obtained by deleting the point { from the quotient
R /1; of the spectroid % =indZ of A=modT.

Proposition. The canonical functor M;, - M* is quasisurjective. Up to isomorphism, it annihilates just

one indecomposable (0,0,i)e M :,

We postpone the proof to0 9.7.

9.5. Proposition. With the notation of 9.4, suppose that M is not wild. Then, for each d €e N, M
vanishes on almost all modules in 3 of length d.

It seems advisable here to recall that the points of ‘3 are genuine modules over 7, even though the
morphisms of ‘§ are classes of morphisms of mod7 . ‘

Proof. Let us denote by Y 4 the full subspectroid of % formed by the modules of dimension d, by M 4 the
restriction of M to & 4 By the lemma of Harada and Sai ([9), 3.2, Example 2), the radical R, of Y 4 1s nilpotent.
If M, (x)=0 for infinitely many x € % ,, we infer that (R M R ) (x)#0 for some ne N and at
least!) five points x 3 4 This means that M 4 has a subquotient which is the sum of five nonisomorphic simple
modules. Hence, the subquotient is wild, and soare M , and M.

9.6. Proof of proposition 9.1. a) We first show that M is N-wild if M is wild. Indeed, let M denote
the quotient M / 9M considered as a module over A If M is wild, itis clear that oM is wild. Since M is a
quotient of M and N does not contain 9M, Proposition 3.7 implies that M is N-wild.

b) Suppose now that M is not N-wild. Then M is not wild. Hence, for each d € N, % has a finite number
n(d) of points x of dimension d such that M (x) #0. Of course, all these x € §\; are (M, N)-relevant. On the
other hand, if y € ®\{ is (M, N)-relevant, Mllf, admits an indecomposable (V,f,y ® Y) such that V # 0. Since
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this triple is also indecomposable as an object of M* (9.4), we have M (y)#0. We infer that, besides i, ‘R has
n(d) points of dimension d which are (M, N)-relevant.

9.7. It remains for us to prove Proposition 9.4, which follows from 4.2 b), 4.1, and the following lemma.
Lemma. The annihilator of 9 in M=Ext.(t~, ?) is N=Exti(:~, ?).

Proof. For each Z e 4, the annihilator of 9 in M (Z) consists of the classes of short exact sequences 0
—Z—]Y — T 0 of mod T whose push-out splits for each 1 € Hom(Z, i). If the class belongs to

modT , Y isa T -module and the push-out splits because i is injective in modT . Hence, N is contained in the
annihilator.

Conversely, suppose that the class of (1, ®) is annihilated by 9. Sinceeach L e Hom(Z, i) factors through
Y, the first row of

0 - Hom,z-(t—,g') - Hom,r(Y,g') - Hom,I(Z,g’) - 0
d J d
0 - Hom,r(t‘,i) - Hom,I(Y,i) - HomT(Z,i) - 0

is exact. Since the first and the second vertical arrows are invertible, so is the second. Since i is, up to isomorphism,

the only indecomposable injective Z-module outside mod T , we infer that Y € mod T.
During their work, the authors benefited from the considerable support of the Ukrainian Academy of Sciences
and the Schweizerischer Nationalfonds.
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