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Assume that B is a finite-dimensional algebra over an algebraically closed field k, B a = Speck [B a ] is 

the affme algebraic scheme whose R-points are the B | k[Ba]-m~ structures on R a, and Mg is a 
canonical B | k[Bg]-module supported by k [Bg] d. Further, say that an affme subscheme V of Bg 

is class true if the functor F~: X ~ M~ | X induces an injection between the sets of isomorph- 

ism classes of indecomposable finite-dimensional modules over k [q~ and B. If B d contains a class- 

true plane for some d, then the schemes B, contain class-true subschemes of arbitrary dimensions. 
Otherwise, each Bg contains a finite number of classtme puncture straight lines L(d, i) such that for 
each n, almost each indecomposable B-module of dimension n is isomorphic to some Fz~d. ~)(X); 
furthermore, F aa, ,~ (X) is not isomorphic to F z(t,~} (Y) if ( d, i) ~ (l, j) and X ~ 0. The proof uses a 
reduction to subspace problems, for which an inductive algorithm permits us to prove corresponding 
statements. 

1. Notation, Terminology, Objective. 

Throughout the paper, k denotes an algebraically closed field. 

By A we denote a k-category, i.e., a category whose morphism sets A(X, Y) are endowed with vector space 

structures over k such that the composition maps are bilinear. Furthermore, we suppose that A is an. aggregate  

(over k ), i.e., that the spaced A(X, Y) have finite dimensions over k, that A has finite direct sums, and that each 

idempotent e ~ A(X, X) has a kernel. As a consequence, each X e A is a finite direct sum of  indecomposables, 

and the algebra of endomorphisms of each indecomposable is local. We shall denote by ~ a spectroid of ~ i.e., 

the full subcategory formed by chosen representatives of the isoclasses of indecomposables, and by ~ and R,~ 

the radicals o f  A and "~. 

Typical examples of aggregates are provided by the category proj A of finitely generated projective right 

modules over a finite-dimensional algebra A, or by the category modA of all finite-dimensional right A-modules. 

The aggregate proj A has a finite spectroid; modA, in general, does not. 

A pointwisef in i te( le f i )module  M over A is, by definition, a k-linear functor from A to mod  k. For 

instance, in the examples considered above, each N e modA op yields a module P ~ P| N over proj A and 

each L ~ m o d A  yields a series of  modules X ~ Ex t , (L ,  X) over modA. 

With each module M over A we associate a new aggregate M k whose objects are the M-spaces, i.e:, the 

triples (V,f ,  X)  formed by a space V e mod  k, an object X G A, and a linear map f :  V ~ M (X). A morphism 

from ( V , f , X )  to (V ' , f ' ,X ' )  is determined by morphisms (p: V ~ V '  and ~ : X ~ X "  s u c h t h a t f ' c p = M ( ~ ) f .  

Let L =  ( K , J  . . . .  ) be a bond on M, i.e., a finite set of submodules. We say that (V , f ,  X )  ~ M k  avoids L 

if f - I ( L ( X ) )  = {0} for each L ~ L. The triples which avoid .L form afuU subaggregate of M k, which we denote 

by Mkc= M~,j , . . . .  

When V and X are fixed, the triples (V , f ,  X )  E M k may be identified with points of the space Hom~(V, 

M (X)). The triples avoiding L then correspond to the points of a (Zariski-)open subset Hom~(V, M (X)), which 
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inherits from Homk(V, M (X)) the structure of-an algebraic variety. Our objective is to examine the "number of 

parameters" occurring in an algebraic family of maps f E  Hom~(V, M(X)) such that the triples (V, f, X)  are 
indecomposable and pairwise nonisomorphic. 

2. Formulation of the Main Theorems 

2.1. With the notation introduced above, let e -- (e 0 . . . . .  et) be a coordinate system of an affme subspace S 

of Homk(V, M (X)), i.e., a sequence of vectors e i G Homk(V , M (X)) such that the map 

kt  ~ H o m k ( V , M ( X ) ) ,  x--->eo + xle 1 +...+ xte t 

induces a bijection k t _- S. Then e provides a functor F,,: rep Qt ~ M k, where rep Qt is the aggregate formed by 

the finite-dimensional representations of the quiver Qt with 1 vertex and t arrows:  F e maps a sequence a e rep Qt 

of t endomorphisms ai: W --~ ---> W onto the triple (W | V, f~(a), W | X) ,  where W | X m .R represents the 

functor Homt(W, A(X, ? ))(hence, k" | X = X ") and 

fe(a) = Jlw|  e o + a  I | e 1 + ... + a  t | et: W |  V---~W| M ( X ) = M ( W |  X). 

The functor F e behaves well toward affme subspaces S '  c S. Let e" be a coordinate system of S ', where 

�9 E ~  , t e o = C o +  =lToiei and ej = ~ i = l T j i e i ,  l < j < s .  Wethenhave  F e, = F e o ~ ,  w h e r e ~ : r e p Q  s -4 repQ t is 

the functor a" ~ a defined by a i = Toill w + ~ = l T j i a ~ ,  1 < i< t. In the case S ' =  S, �9 is an automorphism. 

2.2. Let now R be an affine subspace of Horn k (W, W) t with coordinate system d = (d o, d 1 . . . . .  d s ), where dj 

= (djl . . . . .  djt). Then d provides a functor ~a: repQ s ~ rep Qt which maps c E Homk(U , U)~ onto b ~ Homk(U 

| W, U | W )  t, where b i = l lu|  doi + c  1 | dli + ... + c s | dsi. A simple calculation shows that F e ~  = F f ,  

where f is a coordinate system of a subspace of Horn k (W| M ( W |  and is defined by 

and 

fo = l w | eo + dol | el +. . .  + dot | et 

f j=dj l  |  + d j t |  l <_j<_s. 

All compositions @go@d havethe form O h. Inthecase W= k and d j i=Tj i  ~ k =Homk(k, k), @a 

with the functor @ of 2.1. 

Examp/e 1. Consider the affme subspace R of Hornk (k s+l, k s+1)2 formed by the pairs of matrices 

coincides 

0 1 0 

0 0 1 

0 0 0 

..... "o 

0 0 0 

0 0- 

0 0 

o ..... o 

0 1 

o o 

"0 x 1 0 

'0 0 x 2 

, l0 0 0 

10 o o 

0 0 

0 0 

0 0 

I 0  x~ 
! 

I 0  0 

Let d be the coordinate system of R for which xi is the i-th coordinate of the above pair. The associated 

functor ~a: repQ s ---> repQ z maps c e Hornk(X, X) s onto the pair b ~ Homk(X s§ XS*l) 2 represented by the 

matrices 
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0 1 1 x  O 

0 0 11 x 

0 0  0 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 

0 11 

0 0 

"0 q 0 

0 0 C 2 

, 0 0 0 

0 0 0 

0 0 0 

0 0 

0 0 

9....~ 
0 c s 

0 0 

It follows that ~d  factors through the full subaggregate rePo Q2 of rep Q2 formed by the pairs of nilpotent 

simultaneously trigonalizable endomorphisms. A simple calculation shows that ~d preserves indecomposability 

and heteromorphism (c, c' e rep Q s are isomorphic if so are the images r (c), Cl,d (C')). 

Example 2 [1]. Consider the affine subspace U of Hon~ (k 4, k4) 2 formed by the pairs of matrices 

01[  0 1 0 0 x 1 0 0 1 

0 0 1 0 0 " 

0 0 0 0 0 

If g is the coordinate system of U for which x i is the i-th coordinate, the associated functor el,g: rep Q2 

re_C .-,2 rep Q2 factors through the full subaggregate Po ~d of repoQ 2 formed by the pairs of commuting nilpotent 

matrices. The functor r preserves indecomposability and heteromorphism. 

2.3. We now come back to the module M restrained by a bond L 

Definition. Let S be an affine subspace of  dimension t of Honk(V, M (X)), and e a coordinate 

system of  S. We say that S is .L-reliable i f  the functor Fe: r e p o t  ~ Mk factors  through Mkz a n d  

preserves indecomposability and heteromorphism. 

L e m m a .  Suppose that t = 2, (V,e  o, X ) avoids L,  and the restriction Fe lrep~Q 2 preserves  

indecomposability and heteromorphism. Then, for each s ~ ~I, there exists a U ~ mod k ,  a Y G ,q, and an 
T_,reliable subspace of  Homk(U, M (Y)) of dimension s. 

Proof. Let us set W = k s+l and choose d as in Example 1 and g as in Example 2. Then we have F e o r o 

. .. 4@§ M(x4(S*I))). ~d  = Ff, where f is a coordinate system of an affine subspace T of dimension s of rtom k (v , 

Since Fe]rep~Q 2 and the functor rep Qs ---) rep~ Q2 induced by ~g o qb d preserve indecomposability and 

heteromorphism, so does Ff. 

It suffices now to show that Fe maps repo Q2 into M~. For this purpose, we call a sequence 

O ---~ (W', g', Y') ---~ (W, g, Y) ---~ (W", g',  Y") --~ O 

of M ~ short exact if the induced sequences 

O---~ W'---~ W---~ W"--~ O and O---~ Y" ~ Y---~ Y"---~ O 

are exact in mod k and split exact in .R, respectively. Now it is clear that Fe: repQ 2 ~ M k preserves short exact 

sequences and that M~ is closed in M k under extensions (in the sequence above, (W', g', Y') ~ M~ and (W", 
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g", Y") ~ M f  imply (W, g, Y) - Mr) .  It follows that Fe-l(Mf) is closed under extensions; therefore it contains 

repo Q2, which is the smallest full subaggregate of rep Q2, closed under extensions and containing ([0], [0]) 

2.4.DefO~Non. The module M over A is called 2,-wild if, for some V and X, there exists an .[_,- 

reliable affine subspace S C Homk(V , M (X )) of  dimension 2. It is called absolutely wild if it is 2,-wild for 

all proper 2`, i.e.,for all 2, such that M 1 12 

Our objective is to examine the pairs (M, 2,) such that M is not Z,-wild. For this, we need the following 

notion. Assume that the submodules L e 2, contain the radical RM of M, consider M = MI ~ as a module 

over A = A / ~ 4 t ,  and denote by Z the set ofsubmodules /, = L/RVI of .~t(L G L). We say that M is L- 
k m k  

semisimple if the obvious functor M z ---)M Z is an epivalence (i.e., induces surjections on the morphism spaces, 

detects isomorphisms, and hits each isoclass of M']) .  

First main theorem. Let M be a pointwise finite module over an aggregate A with finite spectroid. Then 

M is absolutely wild or f.-semisimplefor some proper 12 

2.5. For each subset C c k, we denote by rePc Q1 the full subaggregate of rep Q1 formed by the 

endomorphisms with eigenvalues in C. It is clear that rep c Q1 is closed m rep Q1 under extensions. The converse 

is valid: Each full subaggregate of rep Q1 which is closed under extensions coincides with some rePc Q1. 

We apply these considerations to punched lines of M, i.e., to subsets of  some Hom~(V,M(X)) of the form 

S\E,  where S is a line(affme subspaceof dimension 1) ofHornt(V, M(X)) and E is a finite subset of S. If e = 

(e 0, el) is a coordinate system of S, the scalars 2~ E k such that e0 + 2,el E S \ E form a cofmite subset C of k. 

With this notation, the considerations developed above show that F e maps repcQ 1 into M~. Accordingly, we 

say that the punched line S \ E  c Hom~(V,M(X)) is 2`-reliable if the functor repcQ 1 ~ M~ induced by F e 

preserves indecomposability and heteromorphism. 

In the second main theorem below, we say that an M-space (W, g, Y) is produced by the punched line S \ E 

C Homk(V,M(X)) if it is isomorphic to some image Fe(kn, )J1 n +'In), where Jn is a nilpotent Jordan block, n > 1 

and ~. e C. This means that there are isomorphisms w: W ~  V ~ and y: y._z) X ~ such that M(y)gw -1 is the linear 

map V ~ ---)M (X n) described by the matrix with n diagonal blocks e 0 + Eel: 

e0 + Eel el 0 0 I 
0 eo + Eel el 0 I 
0 0 eo + Eel e 1 l 
0 0 0 eo + Eel " 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  IJ.-- L 

We also say that a set P of punched lines is locally finite if, for each X e A, P contains only finitely many 

punched lines of the form S\E  C Hom k (V,M (Y)), where Y -~ X. 

Second main theorem. If M is not f~wild, there is a locally finite set P of L-reliable punched lines 
such that: 

a) For each X G A, the set of isoclasses of mdecomposable M-spaces (V, f, X )  which avoid L and 
are not produced by a punched line of P is finite; 

b) Distinct punched lines of P produce nonisomorphic M-spaces. 
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The perspicuous description of the indecomposable M-spaces given by the second main theorem confirms us 

in calling M L-tame (or simply tame in case L= ~3 ) if it is not f_.-wild. 

The second main theorem also shows that M is L-wild whenever it admits a "two-parametric family" of 

pairwise nonisomorphic indecomposable M-spaces avoiding L. Thus, to prove wildness, L-reliability is not 
needed even in the weak form of Lemma 2.3. We owe the following example to Th. Brtistle: Suppose that the 

spectroid ~ of .~ has only one point w, that M (w) = k 4, and that ~(w, w) is the subalgebra of k 4• generated 
by the matrices 

t = 

0 0 0 
0 0 0 ,  0 0 
0 0 u =  0 0 
0 -1 1 0 

which acton k 4 by matrixmultiplication. Then the M-spaces (k2,fxo, w),where A4t = [ ~  0 ~ 0] 7. and ~., 

~t ~ k, are indecomposable and pairwise nonisomorphic. Hence, M is wild. But the action of the functor F: repQ 2 

---> M k associated with the plane { f~u: ~., ~t G k } is already erratic on the two-dimensional representations of Q2. 

2.6. Finally, we consider afinite-dimensional k-algebra B and the tensor algebra | = k �9 B �9 B | 

. . . .  We identify mod B with a full subcategory of mod | B by the aid of the surjective canonical homomorphism 

| ---> B. Accordingly, if the right ~ B -module structures on a finite-dimensional vector space V are interpreted 

as points of Horn k (V | V), the B -module structures on V are identified with the points of an algebraic 

subvarie.ty 9P/'8(V) of Homk(V| V). 

As in 2. 1, each coordinate system e -- (e 0 . . . . .  et) of an aft'me subspace S c Hom~(V | V) gives rise to a 

functor Fe: rep Qt ___> mod | which maps a sequence a = (a] . . . . .  a t ) of t endomorphisms ai: W ---> W onto the 

space W | V equipped with the | B -module structure 

l lw| eo+a I | el + . . . + a t |  et: W|  V |  B--->W| V. 

We say that S is B -reliable if F e factors through mod B and preserves indecomposability and heteromorphism. 

In the case t -- 1, we also consider punched lines S \ E, where E is a Finite subset of S. Setting C = { ~. ~ k: e o 

+ ~.e I e S \ E  } as in 2.5, we say that S \ E  is B -reliable if FelrepcQ]: repcQ 1 ---> mod | B factors through 

mod B and preserves indecomposability and heteromorphism. Under these conditions, the indecomposable B - 

modules isomorphic to Fe(k n, )dtn + j~), where n > I and ~. E C, are called produced by S \ E. 

Third m a i n  t h e o r e m .  I f  B is a finite-dimensional k -algebra, one and only one of  the following two 
statements holds: 

a) B is wild, i.e., there exists a B-reliable plane; 

b) There exists a family of  B-reliable punched lines Si\E i C Hon~(Vi  ~k B, Vi), i e I, with the following 

properties: For each d e l'I, the number of  i ~ I satisfying d = dim V i is finite, and almost all isoclasses of 

indecomposable B-modules of  dimension d consist o f  modules produced by the Si\ Ei; furthermore if i r j,  n o 

indecomposable produced by S i \ E i can be produced by Sj\ E:. 

In case b), the algebra B is called tame. 

A typical example is given by the quotient B = k [x, y]/x  3, x2y, xy 2, y3 of the polynomial algebra k [x, y] 

and by the space V = k 1• (formed by rows with four enlries in k ). A B -reliable plane {ea, b: a, b e k } of 
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Homk(V @/r V)  is then described by the matrices 

Ii ~176 1~ ~ ~176176 ~176 ~176 1 0 0 ,  0 0  a ,  0 0 1 ,  0 0  g 0 0 0 ,  0 0  
0 1  0 0  0 0  0 0  ' 0 0  0 0  " 

0 0  0 0  0 0  0 0  0 0  0 0  

(The endomorphisms v b--> ea, b(V {9 z ), where z runs through the residue classes of 1, x, y, x 2, xy, y2, a r e  obtained 

by multiplication with the given matrices; compare with 2. 2, example 2.) 

2.7. Our third main theorem raises the question of the factorization of the functor F e : repQ t ---> mod {9 B of 2.6 

through modB. The answer is surprisingly simple. Let b 0 = 1 B, b I . . . . .  b n be a basis of the vector space B and let 

bibj X "n c ( =z-,t=0 ~: bt , 1 < i , j  < n, be themultiplicationlaw. Letus furtherset ep~(V) = ep(v {g bi)  for all v e V, p and 

i > 0  (2. 6). Then Fe(W,a) liesin modB if and only if ~tp=oap@%O = llw{9 llv and 

Iq=~oaq |  I~=o ap |  = ~=oCt ls~__o as | 1 

for all i, j > 1, where a 0 = II w. This condition is satisfied for all (W, a) �9 rep c Q~, i.e., for all (W, a) with 

commuting endomorphisms a I . . . . .  at, if and only if eoo = llv, el0 = . . .  = eto = 0, and 

n 

l l 
eojeoi = ~cijeot,  eojepi +epjeoi = ~ci jept ,  

I=0 I=0 

epFpi=O,  eajepi+epjeqi=O 

for all i, j >>. 1 and all p, q such that 1 < p < q. These equations simply mean that the affine subspace S of 

Homk(V {9 B, V)  is contained in the algebraic variety 9r (2.6). Accordingly, if S is a line, we have 

repc Q1 = rep Ql, and F e factors through modB if and only if S C MsfV ). 
If we require that Fe(W, a) �9 modB for all (W, a) �9 rep Qt, we must further impose the conditions eqjepi = 0 

for all i , j  > 1 and all p, q such that 1 < p < q. Thus, Fe: r e p  Qt ~ mod {9 B factors through modB if  and 

only if S c g ~ f V )  and Fe(klX2, a(p, q)) �9 modB for all p, q such that 1 < p < q; here we set a(p, q)s = 0 

if s ~ p , q ,  whereas a(p,q)p and afp, q)q are themultiplicationsbythematrices [0 11 and I 0 ~1" 

Of course, we can also interpret the equations displayed above by saying that F e factors through modB if and 

only if F e (W, a) �9 modB holds for one single (W, a) such that the endomorphisms ll w, a i, and aia j , 1 < i, j < t, 

are linearly independent. In the case t = 2, for instance, we can choose W= k lx3 and 

a I = 0 , a 2 = 0 . 

0 1 

2.8. The functor F e �9 repQ t --> mod B admits the following more traditional interpretation. Let 

Ct = k ( xl . . . . .  xt) denote the free associative algebra generated by x 1 . . . . .  x r The free left C t-module M t = C t {9 k 

V is then equipped with a right {gB-module structure def'med by the map 
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Ct | V | B l|174 ) C t  ~ V, 

where, for each c �9 C t, ~ denotes the map C t ---> C t, y ~ yc.  The C t - | B-bimodule thus obtained gives rise to 

a functor 

t 
rep Q ---> mod @B, CI/V, a) v-~ W | c, Mt 

which is isomorphic to F e. (We  define a right Ct-module structure on W by setting wx i = ai(w), ~/w �9 W.) The 

argument produced in 2.8 shows that this functor factors through modB if and only if the right | B-module 

structure on  M t factors through B. 

Thus, our third main theorem improves results conjectured by Donovan and Freislich [2] and proved by Drozd 
[3] and Grawley-Boevey [4, 5] with the sophisticated technique of Roiter's boxes [6]. 

3. Preparative Lemmas 

3.1. Lemma.  The module M : X ~ X 3 over the aggregate .X = mod k is absolutely wild. 

Proof. We must show that M is L-wild for all proper L. For this, we may assume that L = {L 1 . . . .  , Lr} 

consists of maximal submodules of M, and hence, that there exist scalars ~'i, [ti, vi such that 

L i (X) = {v �9 X 3" ~,ilJ1 + l, tiV2 + VilJ 3 = 0}.  

Transforming /3 by an automorphism of M (i.e., by an invertible 3 x 3 matrix) if necessary, we may assume 

furthermore that ~i ~ 0 for all i. Under these assumptions, we consider the plane S c: Homk(k , M (k)) = k 3 

formed by the columns [1 a b] T. If e o, el, e 2 are the natural basis columns, the functor Fe: rep Q2 __r M k maps 

(A, B) �9 (k n • onto the linear map k n __~ M (k n) = k 3n represented by the matrix [ 11 A T B T ] T. We infer 

that F e is fully faithful. Moreover, since nilpotent simultaneously tligonalizable matrices A, B give rise to 

invertiblemallices Li11,+l.tiA + V / B ,  F e maps reP0Q 2 into M~. By Lemma 2. 3, M is L-wild. 

3.2.  L e m m a .  The module M" (X, Y) V-~ X 2 (~ y2 over the aggregate .R = m o d  k x m o d  k is absolutely 

wild. 

Proof. The group of automorphisms of M is now identified with GL2(k) x GL2(k). This group acts on the 

finite sets of proper submodules. We may therefore suppose that, for each L �9 .C, one of the columns [1 0 0 0] r 

and [0 0 1 0] T doesnot belongto L ( k ) C  M ( k ) = k  2 ~ k 2 -- k 4. Theplane S C Homk(k , M ( k ) )  attached to 

the matrices [1 a 1 b] T with coordinates a, b then provides a fully faithful functor Fe: rep Q2.__> M k which 

maps repo 0 2 into Mz k. 

3.3. For each natural number t > 1, we define a module M t over a spectroid ~ t  with two points x and y as 

follows. Denoting by k[e,f] the algebra of polynomials in 2 indeterminates e and f, we set "~t(x, x) = MI x, ~t(Y, 
t-1 t 

y) = k lly, d~t(X, y)  = (~ ke t - l - i  f i, d~t(,y, x) = 0 and Mt(x ) = ke @ kf, Mt(Y ) = (3 ke t -  j f i .  The s t r u c t u r a l  m a p  f r o m  
~=o j=0 

'{t(x, y) | Mr(x) to Mr(Y) is induced by the multiplication of polynomials. 
.__> 

For instance, if t = 4, ~t is identified with the k-category of paths of the quiver x _._> y, and the linear maps 
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Mt (x) ---) M t (y) associated with the four arrows are represented in the natural bases by the matrices 

I1 0 0 0 0 0 1 T ' I  0 0 I0 1 0 0 01T' I0 0 1 0 0 1 T ' 0  1 0 0 0 1 I0 0 0 1 0] T ' 0  0 0 

Of course, we can interpret '~r as the spectroid of an aggregate At whose objects are the formal direct stuns 

x p ~) yq, and M t can be extended to .~  by setting M t (x  p ~ yq) = M t (x) p ~ M t (y)q. 

Lemma. The module M t over the aggregate At is absolutely wild. 

Proof. We may suppose that .L consists of maximal submodules L 1 . . . . .  L r of M t, where Lj(y) = Mt(Y ) and 

Lj(x) = {ue + v f :  ~ u  + ~tiv = 0} for some (~,i, Iti) e k2\(0, 0). Because of the obvious equivariant action of GL2(k) 

on '~t and M t, we may suppose that ~.i # 0 for all i. Under these assumptions, we consider the plane S c 

Horn k (k 2, Mt(x 2 ~ y)) formed by the maps k 2 ___) Mt(x ) ~ Mt(x ) O) gt(y ) represented by the matrices 

10 0 0 1 0 0 
1 a b 0 0 

e f e t e t - l f  

0~ 01] " 
eft-1 f t  

Choosing a and b as coordinates of these matrices, we obtain a functor Fe: rep Q2 ~ M k whose, restriction 

Fe I repo Q2 factors through M~, preserves indecomposability, and detects isomorphisms. 

3.4. The examples produced in 3.3 admit the following variations. We denote by "~t the spectroid with one 

point x, endomorphism algebra ~t(x, x) = k l  x �9 ke t-I �9 ket-2f ~ ... ~ k f  t-l, radical ke t-1 ~ ... ~ k f  t-1 and 

radical square zero. The formal direct sums xP give rise to an aggregate At. 

We further denote by Mt the At-module with stalk ~ ( x )  = ke �9 k f  �9 ke t @ ke t - l f  �9 . .  �9 k f  t and radical 

ke t ~) . .  ~) k f  t whose structural map "~t(x, x) | (ke @ kf) ~ Mr(x) is induced by the multiplication of k [e,f]. 

Lemma. The module Mt over the aggregate A t is absolutely wild. 

Proof. Use the affine plane of Homk(k, MAx)) formed by the maps represented by the matrices 

[1 a 0 0 ... 0 b] T. 

e f e t e t-if  eft-1 f t  

Remark.  Let L denote the submodule (X, I0 ~ X 2 of the module M" (X, I0 ~ X 2 �9 Y over rood k x 
mod k. Then M is O-wild but not {L}-wild. 

3.5. We now turn to the general case of a pointwise finite A-module M. Our objective is to compare the 
representation types of M and of its factor modules M / N .  For this, wefirs t  suppose in 3.5 and 3.6 that N is a 

simple module located at some s e o~ (dim N (s) -- 1, N (x) = 0 if x e ~ and x ~ s). 

Let (V, g, X) be a space over M" = M / N  and let e: V --~ M (X) be a factorization of ~: V ---) M (X). We 

call transporter T e of V into N(s) the set of all maps V---) N(s) induced by morphisms bt e ;~x~(X, s) such that 

ImM(l.t)e c N(s). We choose some basis gl . . . . .  gn of a supplement U of T e in Homk(V,N(s)),  set 

V" := Homk(V, N(s)) - T e �9 U, 
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and denote by g the induced composition 

[g i  --. g n  ]T inc l .  ~ 
V > N(s) n ~ M(s) n ) M(sn). 

Setting d = [eg] T, we thus obtain an M-space (V, d, X O s ~) which, up to isomorphism, does not depend on the 

basis gl . . . . .  gn of U. 

Lemma 1. (V, d, X ~ s n) avoids each submodule L of  M such that L f) N = O. 

Proof. Clearly, e-I(L(X )) c K:  = N K e r x .  Since T e and gl . . . . .  gn generate re" = Homk(V, N (s)), we infer 
"~E T e 

that ['1 ( K A K e r g i )  = 0, andhence, that d = [ e  g]T avoids L. 
i 

Lemma 2. I f  (V, ~, X) E ~ k  is indecomposable, then so is (V, d, X ~) s n) E M ,. 

k 
Proof. We may, of course, suppose that V r 0. Let us further assume that (V, d, X ~9 s ~) ~ M is 

decomposable. Since (V, d', X ~9 s '~) e ~-k is the direct sum of (V, ~, X) and (0, 0, s~), (V, d, X @ s") admits a 

direct summand of the form (0, 0, s) and a retraction (0, p): (V, d, X ~ s n) ---> (0, 0, s), where p G A(X ~ s n, s). 

Since (V, ~, X) e ~-k has no direct summand of the form (0, 0, s), p I X cannot be a retraction. It follows that 

p Is n is a retraction, i.e., that p Is ~ = al~ 1 + ... + anrc ~ + k where rc i denote the canonical projections s ~ ---> s, the 

scalars a i are not all zero, and k is radical This yields 

n 

0 = M(p)d = M (p IX)e +M(Pls~)g = M(p IX)e + ~,aigi, 
i=n 

where M ( p  I X ) e  G T e. This provides the desired contradiction, since gl . . . . .  gn is a basis of a supplement of T e. 

3.6. L e m m a .  Consider f ixed  maps e o, e l, e 2 e Homk(V , M ( X ) )  and variable spaces W e m o d k  

equipped with commuting endomorphisms a, b. Let further e(a, b): W | V --> W | M (X) -7~ M (W | X ) 

denote the map 11 w | e 0 + a | e 1 + b | e 2 and Te(a, b) denote the associated transporter o f  W | V i n t o  

N (s). Then there is a nonzero polynomial p in two indeterminates and a freed subspace U o f  V" = Hom k (V, 

N (s)) such that 

Homk(W | V, N (s )) ~ W T | V '  = Te(a, b) (9 W T | U 

whenever p (a, b) is invertible . 

By W T we denote the dual of the vector space W. 

Proo f  Let us denote by u and v the compositions 

| X, s) can. > Homk (M (W | X ), M (s)) eCa,b)* > HOmk(W | V, M (s)) 

and 

Homk(W | V, N (s)) ind. > Homk(W | V, M (s)) can. > Coker u, 
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where we set f *  = Homk(f, M (s)). The transporter Te(a, b) then equals Kerv. On the other hand, u and v are 
identified with the compositions 

w T |  ~ l (X , s  ) ~| > w T |  Homk(M(X),M(s)  ) n|174174 > 

and 

~ | +a T@e~ +b T@e~ 
W T | Homk(V, M (s)) 

wT | Homk(V,N(s)) a| ) w T |  Homk(V,M(s)) can. ; Coker u. 

Interpreting a T and b T as multiplication by x and y in W T equipped with a module structure over A = k [x, y], 

we obtain a description of u and v as tensor products W T | AU0 and W T | Av0, where u o and v o are A-linear 

compositions 

A | P~A(X,s) 1| > A | Homk(M(X),M(s))  ~|174 ) 

and 

~ | +x| + y| 
) A | Hom~(V, M (s)) 

A |  Homk(V,N (s )) ~@incl. > A |  Homk(V,M(s)) can. > Cokeruo. 

Now, there is a nonzero polynomial q G k [x, y] such that the kernels, images, and cokemels of A[q-1]| and 

A[q-'l]| are free. This implies that 

Te(a,b) = Kerr  _2_> W T @A[q_al Ker(A[q -1] | AVo) ..~ W T | AKervo ' 

whenever q(a, b) is invertible. 

To conclude, we choose arbitrary scalars ~, TIe  k satisfying q(~, rl) = 0 and an arbitrary supplement U of 

Te(~,n) in Homk(V, N (s)). The canonical map 

Wo: Kerr  o @ A | U �9 > A | Homk(V, N (s)) 

then becomes bijective ff we "specialize" x, y to ~, rl. Hence, there is a nonzero polynomial r such that Air -1] 

| is bijective. So we may finally set p = qr. 

3.7. We now retttm to the case of an arbitrary submodule N of M and denote by L = {L/N:  L e L and 

L ~ N } the bond on M = M / N  induced by a bond L on h,s 

Proposition. M is L-wild if  M / N  is L-wild.  

Proof. For each L e L not containing N, let st, e ~4 be such that L(SL) does not contain N (s L). Assume 

further that g = (eo, el, ez ) is a coordinate system of an L -reliable plane in Homk(V, M (X)) and e = (e 0, e 1, e 2) 

is a system of factorizations of the ?/ through M(X).  Restricting '~ to the finite full subspectroid formed by the 

support of X and all points s L, and proceeding by induction on the length of N, we are reduced to the case where 
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N is simple and located at some s. Let  then p e k Ix, y] and U c: Homk(V , N (s)) be chosen according to L e m m a  

3.6. Assume finally that gx . . . . .  g,, denotes a basis of U, g �9 V ~ N (s) n c M (s n) the induced map and rep~, Q2 

denotes the full subcategory of rep Q2 formed by the (W, a, b) such that a, b commute and p (a, b) is invertible. 
Setting 

d o = [e0 g]T G Homk(V, M (X @ sn)) 

and d 1 = [e 1 0] T, d 2 = [e 2 0] T, we prove that the restriction 

Fd [ rep p Q2 :repp Q2 > M k 

preserves indecomposability and heteromorphism and factors through M~. Our proposition will then follow from 

Lemma 2.3 applied to a coordinate system (d o + ~d I + rid 2, d 1, d2), where (~, rl) e k 2 satisfies p (~, ~) r 0. 
The composition 

M k can. rep Q2 ~ > 

into F v ( W , a , b )  @ (0 ,0 ,  W @  sn). Since maps (W, a, b) 

Fa [ rep~, Q2. 
In order to prove the remaining two statements, we consider some (W, a, b) ~ rep~ Q2 

F~ preserves heteromorphism, so do F d and 

and set 

~(a ,b)= ll | g o + a |  gl + b |  ~-2: W |  V 

e(a ,b)= l | e o + a |  el + b |  e2: W |  V 

I m 

) W |  M(X)--z-> M ( W |  X),  

> W | 1 7 4  

On account of Lemma 3.6, W T | U is a supplement of the transporter Te(a. b) of W | V into N (s). The M- 

space (W | V, [e(a, b) cp] T, W | X <9 W | s") provided by a basis qh . . . . .  Cpr ~ of W T and the associated map 

r W |  V > N(s) mxn, w | v ~ [r 

avoids f. by Lemma 1 of 3.5. By Lemma 2, it is indecomposable if so is (W, a, b). It is isomorphic to Fa(W, a, b), 
as shown in the next diagram 

, t(w | z) = [r ]. 
l |  > W @  N(S) m 

N(s)  "• 

W |  

4. P r o o f  o f  the First  M a i n  T h e o r e m  

4.1. Lemma.  Suppose that ~ is an ideal of  an aggregate A with spectroid "~, M is a pointwise finite 

left module over A , N  is the annihilator of  ~ in M, and 1(4 is themodule  M / ~ M  over  .~ = A~ ~. We 

further assume that the induced maps ~(x, y) --> Homk((M /N)(x), (~M)(y)) are surjective for  all x, y e ~ .  

Then: 

a) either ~2M O, the  induced functor P : M ~  -k  = --->M NI~M is quasisurjective, and the indecomposables 
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annihilated by P are isomorphic to some (0, 0, s), where s ~ '$, M (s) -- 0, and i s ~ ~; 

b) or ~ contains the identity II t of  one point t e oa such that d i m M ( t ) =  1, the induced functor Q: 

M~ ~ l('I k is quasisurjective, and the indecomposables annihilated by Q are isomorphic to (0, 0, t) or to 

some (0, 0, s), where s ~ "$, M(s) = O, and lIs e ~. 

The proof of the fast main theorem uses Statement a) only. Statement b) will be used in Section 9. 

Proof. We first show that Q induces surjections of the morphism spaces. Let ( V,f,  X )  and ( V ; f ' ,  X ' )  be 

two objects of M~r and cp e Homk(V, V'), ~ ~ g(X,X')  two morphisms which induce a morphism (q~, ~): (V, ] ,  

X)--9 (V, ] ' ,X ' )  of /14~v/~ M. By definition, we then have M(x) f - f ' cp  = ig for some g e Horn~(V, (~M)(X')), 

where i: ( ~ M ) ( X ' ) ~  M(X') denotes the inclusion. Since (V , f ,X)  avoids N, the obvious maps 

(X, X') ) Homk((M /N )(X), ( ~M)(X')) ) Homk(V, (~M)(X')) 

are both surjective and g is the image of some rl e ~(X,X'). This means that ig = M(~)f  and implies M(~ - r l ) f  

= f'tp. We infer that (~p, ~): (V, .fl X) ~ (V', .f', X') is the image of (cp, ~ - 11): (V,f. X) ~ (V',f ' ,  X'). 
~k Now, in the case ~2M= 0, Q maps M~v into M N/~M, and P is surjective on the objects. This implies a). 

In the case ~2M~ 0, "$ admits a point t such that (~M)(t)  is not contained in N (t). The image of 

Hom k ((M/N )(t ), ( ~M)(t )) in End k M (t) then contains an idempotent of rank 1. A preimage of this idempotent in 

~(t, t ) must be invertible in ~( t ,  t ), because "~(t, t ) is local. We infer that lit e ~ and that dimM(t  ) = 1. The 

last statement of b) now follows from the fact that '$ contains no point r ;e t such that lb e ~ and M(r) ~ O. 

Otherwise, there would be morphisms ~ ~ ~ (t, r) and p e ~ (t, r) such that M (p(~) = ~g(t), and the simple ~( t ,  

t )-module M (t) would not be annihilated by the radical. So it remains to prove that Q hits each isoclass of /f/k. 

Indeed, for each M-space (V, 3 ~, X), we can choose a factorization f :  V ~ M ( X )  of j~ and an isomorphism g : V 

M (t)a, where d = dim V; then (V, I f  d] T, X �9 t n) avoids N, and its image in ~ k  is isomorphic to (V, j~, X). 

4.2. Remarks. a) The assumptions of our Iemma remain valid if we factor the annihilator of M out of A. 
Hence, we might restrict ourselves to the case where M is faithfifl. In this case, the maps 

~(x, y) ~ Homk ((M / N )(x), (~M)(y)) 

are bijective. In subcase b), it follows that ~(x, y) is identified with "$(t, y) | k~(x, t ). In both subcases, ~ can 

be completely "described" in terms of the vector spaces l(x) = (~M)(x) C N (x) C M (x) (where x r t in case b). 
Accordingly, formal examples are constructed with ease. 

b) Our concrete examples are the following. We start with a morphism I.t G ~(s,  t) such that M (~t): M(s) 

M(t ) has rank 1. Setting S = Im M (~t), we denote by C s the submodule of A(?, t) which consists of the 

morphisms ~; X ~ t of .,q mapping M (X) into S. Then we claim that the assumptions of our lemma are 

satisfied by the ideal ~ generated by any submodule C of C s which contains la. Indeed, for all x, y e '$, the 

composition of '$ maps ~(t ,y)  | onto ~0c, y), and N(x) is the annihilator of C(x) in M(x). Hence, the 

obvious map (M/N)(x)  ~ Homk(C(x), S) is injective, and the transposed map C(x) -o Homk((M/N)Oc ), S) is 

surjective. Taking into account that ( ~M)(y ) is the image of "$(t, y) | we infer that the double-headed arrows 
of the diagram 
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~ (t, y)|  (x ) - - ~  (t, y)@ HOmk ( ( M  ~x ),S ~ Homlc ( ( M  ~x ), ~(t, y)@ C (x ) l 

#(x, y) )Hom e ( ( M / N  )(x), (aM)(y)) 
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are surjective. Hence, so is the lower arrow. 

4.3. Let us now consider pairs (A, M ) formed by an aggregate A and a pointwise finite A-module M. We 

saythat two such pairs ( A , M )  and ( . g , M ' )  are equivalent if there exist a k-linear equivalence E : A  > A" 

and an isomorphism M --~ M'E. And we say that the A-module M is climacteric if the pair ( A / ~ t ,  M ), where 

9(.M denotes the annihilator of M in A, is equivalent to one of the absolutely wild pairs examined in 3.1, 3.2; 3.3, 

and 3.4. 

Lemma.  Let M be a pointwise finite module over an aggregate A with finite spectroid ~ .  I f  M is not 
semisimple and has no climacteric quotient, ~ admits a morphism ! x E R~(x, y) such that M (IX): M (x) ---) 

M (y) has rank 1 and M (L~t) = 0 = M (IXv) for all )~ ~ R~(y, z), v G R~(z, x), and z ~ "~. 

Proof. a) Reduction to the case of height 2: Let us assume that M has height h > 2, and that the proposition 

is true formodules of height2. We then denote by SiM the annihilator of R/a in M. Thus M --- M [Sh._2M has 

height 2. If it admits a climacteric quotient, then so does M. Otherwise, there is a p E RA(X, y) such ~at  .~(p)  

has rank 1 and vanishes on (RM)(x). Since p M ( x ) r  0, we have o p M ( x ) s 0  for some o E R~2(y ,  z). On the 
rvh'l "X other hand, op  G -X.A ~ , z) annihilates (!~l)(x), and M(op)  admits a factorization 

M (x) P* ) M (y) / (Sh._2 M )(y) (X > M (z). 

where 13, is induced by p and ~ by ~. We infer that M(cp)  has rank 1. 

b) Finally, we suppose that M has height �9 2. Factoring out the annihilator of M in A if necessary, we may 

suppose that the module M is faithful. We then consider four cases. 

If M/S]M has an isotypic component of dimension 1 supported, say, by x E ,~, then each nonzero radical 

morphism Ix:x---) y of "~ suits. 

If M / Sr~/has  an isotypic component of dimension > 3, then M has a climacteric quotient of type 3.1. 

If M / Sgl,/has at least 2 isotypic components of dimension 2, then M has a climacteric quotient of type 3.2. 

If M / Sr~/ is isotypic of dimension 2 and supported by x ~ "~, then we choose any y e "~ such that RA(X, 

y)~e 0 and consider two subclasses. If M(IX) has rank 1 for some Ix e RA(x,y), then IX suits. If M(p)  has rank 2 

�9 for all nonzero 19 G RA(X, y), we denote by M '  the sum of the isotypic components of S1M not supported by y. 

Then N = M / M "  has a quotient of type 3.3 or 3.4 accordingly as x ~  y or x = y: 

To prove this, we choose two vectors e, f E N (x) whose classes modulo SIN form a basis of (N / Sg7)(x). 

The module structure of N then provides two maps e, ~0: RA(X, y) --+ (SIN)(y) defined by e(9) = pe and g)(p) = 

pf. Since M(p)  has rank2 for each 19 ~ 0, ae + bq0 is injective for all (a, b) ~ kZ\(0, 0). By Kronecker's classifi- 

cation of  pairs of linear maps, we can therefore choose bases n = (n o . . . . .  n t) of (SIN)(y) and r = (ri) i E 1 of RA(X, 

y), where I c {0, 1 . . . . .  t - 1 }, such that rie =e(ri) = n i and rif=q)(ri) = ni+ 1 for all i ~ L A typical example is 
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where t = 5 and I=  {0, 2, 3}. 

ro r2 r3 

, 

no nl  n2 n3 n4 tl 5 

Now we choose natural numbers a < b such that {x �9 ],I: a < x < b} C I and a - 1 ~ I, b r I (for instance, 

a = 2, b --- 4 in the case of our diagram). Factoring out the basis vectors n i for i < a and for b < i, we obtain a 

quotient N '  of N such that (N" / S1N')(x) -~ ke �9 kf and (S1N')(y) ~ @ kni. If N denotes the annihilator 
a<_i<b 

of N',  the pair ( A / 9 ~  N ") is equivalent to one of the pairs (Ae~a, M~.a) or ( .~_, , ,  Mb--a) examined in 3.3 

and 3.4. 

4.4. Proof o f  the first main theorem (2.4)i  We proceed by induction on the length of M. If M is not 

semisimple and hasno climacteric quotient, we choose a morphism It �9 R,~(x, y) according to Lemma 4.3 and 

denote by ~ the ideal of A generated by It. Then the annihilator N of ~ in M is a maximal submodule of M, 

and M / N  is supported by x. By 4.2b), the assumptions of 4.1 a) are satisfied. If M = M / #M is considered as a 
k ~k module over .~ = A / ~, the canonical functor M~ ~MN/~M is an epivalence. By the induction hypothesis, 

admits a bond K formed by submodules L i / 9M ~ R M  / ~M, 1 < i < r, such that ~r~ ~ . ~  is an epivalence 

with the notation of 2.4 ( .~ = ~r / ~ = M~ RI4...). If we set L = {L 1 . . . . . . . .  L r, N } and 1:., = KI,.J {N }, Lemma 

4.1 implies that the composition M~ ---) ,Qk ._.) ~ k  is an epivalence. 

5. Pencils. 

As in Sec. 4, A here denotes an aggregate with finite spectroid '~. If M is a pointwise f'mite module on 

we denote by ~;/: = {x �9 '-$: (Pdl,/)(x) ~M(x)} the generation indicator of M. For each p �9 M, we write Mp 

for the submoduleof M suchthat Mp(p) = (5~,/)(p) and Mp(x)=M(x) ff x � 9  "$\p. 

5.1. Definition. A pencil over A is a pointwise finite A-module  P restrained by a proper bond K 

such that: 
a) P is not K-wild; 
b) there is no proper bond B on P for which P~ has a finite spectroid. 

Condition b) obviously implies that P admits infinitely many maximal submodules or, equivalentlY, that 

~rn P / Pa >- 2 for some d E /5. Proposition 4.3 implies that such a d is unique and satisfies dim P / Pa = 2. We 

therefore call dp: = d the double point of P; any other point s �9 P satisfies d i m P / P  s = 1 and will be called 

ordinary. 

Proposit ion.  Let (P, K )  be a pencil with double point d, and  (us)s~p\ a a family of  elements u s �9 

P(s)\(RP)(s). Let us further suppose that K is not empty and that P is K-semisimple. Then 

s~P\d 

generates a maximal submodule of  P for each u ~ P(d)\ LJ K(d). 
KeK 

We recall that, according to our terminology, each K E K contains R P (2.4). 

Proof. If Q is the module generated by u + ~ s U s  =:v '  it suffices to show that Q ~ R P  ff u 

P(d)\[.J K(d). For this purpose, we set ~ = d @ @ s and consider any r �9 (RP)(x), x G ~.  The P-spaces 
K s 
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(k,[v" 0 ] T , E  ~ x )  and (k,[v" r ' ] T , ~  ~ x ) , w h e r e  v '@):~,v  and r'(~) = ~.r, then avoid if( and give rise to 

- ( [(X ~] 1 which is c~ t~ the identitY the same P -space. They are, therefore, connected by a morphism ll, 7 

modulo ~ (2.4). This means that [~  ~]I~)] = Ivl  and implies that y v = r  with ],~ 9~a(Z,x). 

5.2. Proposition 5.1 only concerned the module structure of a pencil. We now examine its bond. 

Proposition. For each ordinary point s ~ P of a pencil (P, 90,Ps belongs to 9(.. 

Proof. Suppose that Ps ~ K and set N = Pan Ps, -ff = P/N, and K = {K/N" N c K ~ K},  where d = d e. 

Then P is a semisimple pencil supported by d and s. The functor F :  repQ 2 --> pk associates (2.1) with the two- 
parametric affme family of 

I 
1 0 0 0  
0 1 0 0  
0 0 1 0  

01001 ]  0 0 1 0 x  
0 0 0 1 y  

preserves indecomposability and heteromorphism. The P-spaces represented by the displayed matrices avoid all 

proper submodules of P" except Ps = Ps/N ~" ~.. We infer that P is .K-wild, and P is K-wild (3.7). 

5.3. From now on and throughout Section 5, M denotes a pointwise finite A-module restrained by a bond L 

for which M is not -6-wild. All submodules P of M are implicitly supposed to be restrained by the trace -6 n 
P:  = {L n P: L E -6} of L Our objective is to investigate the pencils of M, i.e., the submodules P of M such 

that (P, -6 n P) is a pencil. Our first result is easily derived from 5.2. 

Corollary. If P is a pencil of M with double point d , P / P  a is the socle of M /Pa. As a consequence, 

P / RP is the socle of M / RP. 

Proof. Replacing M ~ P by M / Pd ~ P / Pd and applying 3.7, we are reduced to thecase where P is 

semisimple and P = { d}. Then let Q denote the socle of M. Since Q is not L CI Q-wild, Q is a pencil of M 

which satisfies dQ = d. In the case Q v P, Q has a simple point t outside P and L contains an L such that L 

n Q = Qt ~ P : a contradiction to the assumption that .6 O P a proper bond on P. 

5.4. Our next result rests on the classical submodule algorithm [7]. Starting from a submodule P of M we 

consider anew aggregate .~ = P~NP and modules R on .~ associated with submodules R of M and defined 

by 

R(W, g ,X)  = (g(W) + R (X))[g(W) C M(X)[ g(W) = 1VI(W, g,X).  

By L,  we denote the bond on M formed by /3 and the submodules L, L ~ L. Thus, we obtain a functor 

E:  M~ ~ / ~ ,  (V, f ,  X) ~ ( V / V ' ,  f " ,  (V', f ' ,  X)), 

where V" equals f - I (P(X))  and f': V'--> P(X), f": V/V'--> M(X)/ f (V')  are induced by f. This functor is an 

epivalence, and even an equivalence if .L ~ 0. 

Proposition. If  P is a pencil of M, P (X ) = M (X ) holds for all x ~ P. Accordingly, M contains only 

finitely many pencils. 
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Proof. Restricting M, P, and all L e L to P,  we may suppose that /~ = L. Arguing by contradiction and 
replacing M by a submodule if necessary, we may further suppose that M / P is simple, i.e., that dim M (x) -- 1 + 

dimP(x)  forsome x e  a~ and M(y)=P(y)  forall y e  a~/x. S e t t i n g N = P a N  Px and replacing M by M / N ,  

we are reduced to the case where P is semisimple and where '~ consists of two points d ~ x or of one point d = x. 

a) Case d ~ x. For each submodule R of M, we then denote by R" the restriction of R to the full 

subaggregate .ff of .~ = P~flv whose spectroid consists of the indecomposables (0, 0, x) e .~ and p = (k 3, 

~, d 4 @ X 3 ), where 

p = [i ~176 1 0 
0 1 

0 0 
0 0 
0 0 

1 0 
0 1 
0 0 

0 1 
0 0 
1 0 

o~ 
d x 

The module M '  admits a submodule Q such that Q(0, 0, x) = P'(0, 0, x) = P(x) and Q(p ) = M'(p ) = M(d 4 @ 

x 3)/Im,~ D P '(p ). To prove this, it suffices to show that each morphism (0, It): (k 3, ~, d 4 ~B x 3) ---> (0, 0, x) maps 

M(d 4 <9 x 3) into P(x). For this, it is enough to show that It: d 4 ~ x 3 ---> x is radical. This is due to the fact that a 

section 0 of It would provide a section (0, o) of (0, It). 

The restriction L" = {L': L e L} I.J {P'} of .~ to M'  induces a proper bond L' fl Q on Q, because P "= 

P" fl Q ~ Q and L' fl P "~ P '  for each L e L Therefore, it suffices to show that dim Q(p ) / (tV~Q)(p) > 3 (3.1). 
This follows from dim (M/P)  (d 4 (9 x 3) = dim (M/P)Oc 3) = 3 and from (RQ)(p)  c P (a n @ x 3 ) / l m p .  The 

inclusion is due to the fact that each morphism (0, 0, x) ---> (k 3, if, d 4 ~ x 3) of A' maps Q(0, 0, x) = P(x) into 

P(d 4 �9 x3), and that each radical endomorphism of p is induced by a radical endomorphism of d a ~B x 3 which 

annihilates (M / P )(d 4 @ x3). 

b) Case d = x. Then the argument is simpler. We focus on the sole indecomposable q = (k 2, ~, d 3) of .~, 

0 o 0  ' 
1 0 0 0 Each element of .L induces a proper subspace of M(q) -- M(d3) / Im~ ,  and 

each radical endomorphism of q maps M(q) into /3(q). Replacing 3~ by its restriction M '  to the full 

subaggregate r162 of .~ defined by q, we infer that dimM'(q)/(9~M)(q) > d i m M ( d 3 ) / p ( d  3) = 3, and we 
conclude with 3.1. 

5.5 .  Propos i t ion .  

dim M(x) / K(x) = 1. 
x~P 

Let K be maximal in s and not contained in the pencil P of  M. Then 

Proof. Suppose that the statement is wrong. Then we can find submodules R 1 C Q1 of M I P which 

contain KJ P and are of colength 2 and 1. We denote by Q0 the maximal submodule of P such that Q0 l / '  = Q~, 

by R the maximal submodule of Q = Qo + K such that R I P = R]. (Of course, R contains K.) 

We set d = d e and Y~ = @s, where s e /~ \d.  Up to isomorphism there is a unique indecomposable P-space of 
$ 

the form p = (k 3, ~, d 4 �9 ~3), which avoids all maximal submodules of P. Applying the submodule algorithm to 

p C: M, we denote by M' and L" the restrictions of ~Q and L to the full subaggregate A'  of .~ k = PZd"IP 

whose spectroid consists of p and of the (0, 0, y), where y e /~. The desired contradiction will follow from the 

fact that M' is Z'-wild. 

To prove this, we consider the submodule N of M" such that N(p ) = Q(d 4 �9 y3) mod Im ff and N(0, 0, y) = 

Rfy) if y ~/~.  Such a submodule exists because each morphism (0, ti): (k 3, if, d 4 * E 3) ---> (0, 0, y) maps Q(d 4 
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Y)) into R(y). Otherwise, IX would induce an isomorphism of a summand y '  of d 4 �9 5". 3 onto y, and (0, It) 
would admit a section. 

Let X' denote the submodule of M' induced by a submodule X of M. Then N is not contained in K', 

because p avoids each proper submodule of P; hence, R(d 4 �9 ~3) and Q(d 4 ~) ~3) are identified with their images 

in M(cl 4 (~ E 3 ) / I m p ,  and we have K ' ( p ) c  R(d 4 ( t )Y))~ Q(d 4 ~)E  3) --:> N(p). On the other hand, each L E ( L \  

K) U {P} intersects R properly; it follows that L'(O,O,y)=L(y)#:R(y)=N(O,O,y) forsome y (~ /~ and that L" 

is a proper bond on N. Hence, it suffices to prove that dim (N / RN)(p) > 3, which implies that N is absolutely 

wild and M' is L'-wild. 

The announced inequality is due to the fact that each radical endomorphism of p is induced by a radical 

endomorphism of d 4 (~ 5. 3 and maps N(p) -:) Q(d 4 (t) 5.3) into R (d 4 (t) E3). We conclude that (RN)fp) c R (d 4 

~) E 3) and that 

dim(N / ~ l ) (p )  > dim(Q/ R )(d 4 ~) Y ) ) = 4  or 3. 

k k 5.6. If ./~ denotes the set of all maximal elements of L, it is clear that M z = M Z . Therefore we may always 

restrict ourselves to the case where L is irredundant, i.e., where L = L .  

Corollary. Suppose that L is an irredundant bond on M and that s E P is an ordinary point of a pencil 

P of M. The conditions L ~ L and L(s) ~= M(s) then imply L O P = Ps. 

5.7. Corollary.  Let K be a submodule of M which is neither contained in the pencil P of M nor in 

any L ~ L .  Then ~ dim M(x) / K(x) < 1. 
xE[ ~ 

Proof. The corollary follows from Proposition 5.5 applied to a new bond f. U {K}. 

5.8. Corollary.  Suppose that the f-.-pencils P and Q of M are not comparable. Then d e ~ Q_. and 

Proof. Suppose that dQ 0 P and that u G Q(dQ) ~ M(dQ) lies outside L(dQ) whenever L G L satisfies 

L(dQ) #: M(dQ). Let further K denote a maximal submodule of a such that u e K(dQ) ~ M(dQ). Then K is not 

contained in P and L n K is a proper bond on K. On the other hand, we have K(do) ~ M(dQ) and K(s) = Q(s) 

M(s) for some s e /~, hence 

. ~ dim M(x)/K(x) >_ 2, 
x~P 

in contradiction to 5.7. 

5.9. Corollary. I f  the f_.-pencils P and Q of  M are not comparable, then (RP)(s) = (9~Q)(s) for  all 

s~ PN(2. 

Proof Indeed, s is ordinary by 5.8. If L is maximal in .L and such that L O P = Ps (5.2), we have L f3 Q = 

Os by 5.6; hence, (RP)(s) = L(s) = (9~Q)(s). 

V %/ 

5.10. For each submodule N of M, we set N -- {x ~ ~ :  N(x) = M(x)}. Thus we have 15 c P if P 

pencil of M. 
is a 
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V V 

Corollary. / f  P, Q, and R are 3 pairwise incomparable pencils of M, the equality P \ R = Q \ R implies 
v V 

k \ P = R \ Q .  

Proof  Let s ~ P A Q be such that R(s) ~ M(s), and L a maximal element of .L such that L A P = Ps and 

L O Q = Qs (5.6). If t ~/~ is such that M(t) = R(t) ~ L(t), we have P(t) = Psq) c L(t) and Q(t) = Qs(t) c L(t); 
V V 

hence, / ~ \ P  = {t} = R \ Q .  

6. Proof of the Second Main Theorem (Reduction). 

Our objective is to propose a general "construction" of locally finite sets D = D(M, L) of L-reliable punched 

lines which satisfy the conditions a) and b) of the second main theorem. Our sets D are the unions of subsets D n = 

Dn(M, L) formed by punched lines D \ E c Horn k (V, M(X)) whose points have space dimension dim V = n. We 

construct the slices D,~(M, L) by induction on n and simultaneously for "all" nonwild pairs (M, L). The 

construction is rather precise and rather involved, as nature seems to be. 

In order to classify the indecomposable M-spaces, we can examine the f'mite full subspectroids "~' of "~. 

separately and focus on the M-spaces with "support" "~'. We are thus reduced to the case examined in the present 

section where the spectroid '~ o f  A is assumed to be finite. From 6.2 until the end o f  the section, we assume 

that M is not L-wild. 

6.1. Since our construction proceeds by induction on the space dimension, we first examine indecomposable 

M-spaces with space dimension I. For this purpose, no restriction is needed on the representation type of (M, .6). 

Proposition. The map (V,f, X) t--> .~f (V), which assigns to (V, f ,  X) the submodule of  M generated by 

f(V), induces a bijection between the set o f  isoclasses of  indecomposables in Mkz with space dimension 1 and the 

set of  submodules N of M for which f~ A N is a proper bond. 

Proof. The inverse bijection is obtained as follows. For each N, we choose a projective cover n: A(X, ?) --> N 

and set n' = n(X)(~z) e N(X). To N we then assign the isoclass of (k, ?n', X) E M t z. 

6.2. Let us now return to the case where M is not L-wild. Each pencil P of (M, L) with double point d 

gives rise to a one-parametric family of maximal submodules Q of P such that Pa c Q c p. The other maximal 

submodules of P have the form Ps, where s is an ordinary point of P;  their number is finite, and the induced 

bond .L A Ps is not proper (5.2). 

Proposition. Besides maximal submodules of  pencils, M contains only finitely many submodules N for  

which L n N is a proper bond. 

Proof. We proceed by induction on the number of pencils of (M, L), which is finite by 5.4. If M contains no 

pencil, we denote by 9(  the set of all N c M such that L {3 N is proper. Each element of 9 (  has finitely many 

(direct) predecessors. Since 9(  has finite height and (at most) one maximal element, 9(  is finite. 
If M contains pencils, we consider a minimal pencil P (with double point d) and maximal submodules 

Qt ..... Qs (s > 1) of P containing Pa and such that each u e P(d) \ ~iiffilQi(d) satisfies the statement of 

Proposition 5.1. Then each nonmaximal submodule of P is contained in s o m e  Qi or some Ps with s E t '  \ d. And 

each nonmaximal submodule N C P for which 12 N N is proper is contained in some Qi. Together with Q1 ..... 

Qs, these N form a poset 9(  which has finite height and a f'mite number of maximal elements. Since each element 

of 9 (  has a finite number of (direct) predecessors, 9(  is finite. 

On the other hand, since (M, L O { P }) admits fewer pencils than (M, L), we know by induction that there are 
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only finitely many submodules N ' which are not contained in P, which are not maximal in a pencil of (M, L) and 

for which .6' N N" is proper. 

6.3. The construction of  D 1. For each pencil P of M, we pick vectors u s e P(s)\(RP)(s), s e P \de ,  and a 

basis (u, v) of a supplement of (RP)(d e) in P(de). Thus, we obtain a straight line 

D 1, = {u+3 ,v+~Us:  ~,~ k} 
S 

of M(dp @ s~s) _2> Homk(k ' M(dp @ s@s)) whose associated functor F: rep Q1 __> M ~ preserves indecomposability 

and heteromorphism. Erasing from D e the points lying in the various subspaces L(dp @ ~ss), L G .6, we get an 

L-reliable punched line, which seems to be a good applicant for a position in D 1. Unfortunately, if the lines D e are 

to be retained, the present state of our technology urges us to overpunch them, as will be explained below. 

First we consider the minimal pencils of M, which we stack up in a finite set P equipped with an arbitrary 

linear order. If P r ~3, we construct an ideal J of A and a bond K on M which satisfy the statements of 

Lemma 6.4 below. Finally, for each P e P, we construct a proper bond Kp  on P, formed by maximal submodules 

N such that P is K e-semisimple and v ~ N(de) for some N. The submodules N give birth to a bond 

L v = ( L n  P) U ( K n  P) U K~, U Ix: P > x  ~ 

on P and to a finite subset 

LeLj, 

of the straight line Dp. The associated punched lines DI, kE p are the first selected constituents of D 1. 
t 

The restraint imposed by K will permit us to prove l_emma 6.4 below. As a result of the insertion of K p  into 
�9 ? 

L'p, all maximal elements of Le  and all proper submodules K of P for which Lp N K is proper are 

maximal in P (5.1). Accordingly, each u + ~,v + ~ s  us ~ De \ P P generates a maximal submodule of P. 

In order to puncture the lines Dp when P is not minimal, we now set PI: = P and K1 := K.  w e  denote by 

P2 the set of minimal pencils of (M, -6 U P1) or, equivalently, of (M, L U K1 U P1 ), by P3 the set of minimal 

pencils of (M, L U P1 U P2) . . . .  Replacing .6 by .61 = .6 U K1 U P1, we construct a bond 9(2 which satisfies 

the statements of Lemma 6.4 for (M, L 1). Adapting the technique above to the new data, we obtain a proper bond 
P 

.6p on each P G P2 and the associated f'mite subset Ep c D e. Then replacing s = L U K1 U P1 by s = f--q U 

9(2 U Pa, we construct bonds 9(3 on M and L e on each P E P3, thus obtaining finite sets Ep c D e for all e E 

P3 . . . .  If Ph is the last nonempty set of pencils constructed in this way, we finally set 

D I ( M , L  ) = {Dp\Ep:PE~. ,  l < i<h} .  

If M contains no pencil, D 1 (M, L) is empty. 

6.4. Lemma.  Suppose that M is a pointwise finite module over an aggregate A with finite spectroid ~ , 

L is a bond on M such that M is not L-wild, P is a nonempty set ofpairwise incomparable pencils (5.1) 
of M, and R = N p e p R  P is the intersection of  their radicals. Then there is an ideal J C R A  and a bond K 
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on M such that: 
a) ffM C R C B [q P ~ P and (flM)(x) = (RP)(x) for all B ~ K, all P G P, and all x E P; 

b) If  M / JM is considered as a module over A / J  and K~ JM denotes the set of  all B / JM, B ~ K 

then the canonical functor Mff( --) (M / JM)~ ! yM is an epivalence. 

The proof of the lemma is given in 7.1 below. 

6.5. The construction of D,., r > 2. The construction is based on a sequence ofsubmodules of M which we 

must present beforehand. First supposing P1 ~ 0, we consider the submodules X such that: a) L iq X is a proper 

bond on X; b) X is contained in a module belonging to K = ~ or to some Ke ,  where P E P = PI (6.3). These 

submodules form afinite set (6.2), which we denote by Oo = Oo(M, L) and equip with some linear order < such 

that X C Y implies X < Y. By construction, Oo contains all the nonmaximal submodules N of P, P G P1, for 

which .L fl N is a proper bond. 

Replacing L by f--a = L O ~ U PI, then by s = LI O K2 U P2 ..... f-'h = -f-'h-1 U ~ U Ph, we may repeat 

the construction of O0 and obtain further linearly ordered sets O 1 = Oo(M, L1), 0 z = Oo(M, .L 2) ..... Oh_ 1 = Oo(M, 

f-'h-1). To these sets we add a set O h, formed by the submodules N of M for which .L h iq N is proper, and also 

equipped with a linear order < such that X c Y implies X < Y. Together with the linear orders imposed onto P1, 

P2 . . . . .  Ph, we finally obtain a finite linearly ordered set Q which has M as maximum and is formed by the 

disjoint intervals 

Oo<P1 < OI < P2 < % <...< Pn < Oh. 

If M contains no pencil, O o denotes the set of all submodules X of M for which .L Iq X is proper. We then 

set Q= O 0. 

Our construction of Dr (M, L) now results from an application of our main algorithm to each submodule N 

Q and to the associated bond ~ r  = L U  {X E (2; X <N} o n  M. For this sake, we introduce the aggregate A N = 
^ 

k NB/vflN,itsspectroid "~N, themodule M N on .fiN def'med by MN(W,g,X)=M(X)/g(W), and abond  B N  on 

M N, which consists of the submodules of M/v induced by N and the modules X G BN. The resulting epivalence 

Nk will allow us to lift various slices of the desired Dr(M, L) from (M N, BN)  to (M, BN). We M~v ---~ M~ N 

distinguish two cases: 

1) Case N ~ 0 i. Then ~ q  fl N contains all maximal submodules of N. The spectroid ' ~  is finite and con- 

tains one point (k, g, s~/q' s) with space dimension I. The remaining points of ,~N have the form (0. 0. t), t e "~. 

Obviously, M N is not BN-wild, because two-parametric families of indecomposables could be lifted from 

(M N, BN) to (M, L). Proceeding by induction on r, we may therefore suppose that the sets Ds(M N, BN) are at our 

disposal for all s < r. Here we are concerned with BN-reliable punched lines formed by MN-spaces (U, h, Z) 
k whose bases Z = (W, g, X) e N~VNN have a space dimension dim W =: t > 1. These lines form a subset Dts(M N, 

BN) of Ds(M N, BN). Lifting the lines of Dtr_t(M N, BN) from (M N, BN) to (M, BN), we finally obtain a set 

f)tr_t(MN, BN) of f_.-reliable punched lines and the requested contribution of N to Dr(M, L): 

r-1 

U D~-, (MN' BN). 
t= l  

2) Case N e P/. We then proceed as in case 1, the difference being that ~N is infinite. According to Lemma 

6.6 below, ,$N contains a finite full subspectroid '~r N which supports the bases Z = (W, g, X) of all 
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Nk indecomposables (U, h, Z) E M ~ ,  such that 1 < dim U and dim W < r. (More precisely, '~r N is formed by the 

points (0, 0, t), t r '~, and by at most 5 ( r -  1) points of the form (W', g', X') with 1 < dim W' < r.) Since '~r N 

is finite, our induction provides us with finite sets Ds(MN I ~4 N r , BN ] "~ N r ) for s < r. As in case 1, these sets are 

partitioned into subsets Dts(MN I "~N r , BNI  "~Nr). Lifted from (M N, BN) to (M, L), these subsets give rise to 

finite sets of ~2~V-reliable punched lines denoted by Dst(M N, BN). 
Putting together the various pieces obtained above, we finally set 

r-1 

= U U 
N ~ Q  t=l 

(*) 

The fact that D(M, L) = [,Jr >_ 1 Dr(M' L) satisfies the statements of the second main theorem is easy and will be 

checked in 6.7. 

6.6. Let us provisionally consider an arbitrary pointwise finite module M" over an aggregate A'  and a bond 

L' on M'. We then say that an indecomposable s e A" is (M',/:,')-relevant if s is a direct summand of the base X 
of some indecomposable (V,f, X) ~ M~k,. 

Lemma.  With the notation of 6.5, let N be a pencil of M and r > 2. Then there are at most 5 ( r -  1 ) 

isoclasses of indecomposable N-spaces (W, g, X) which avoid BN f) N, satisfy 1 _< dim W < r, and are 

(M N, P~V )-relevant. 

6.7. Checking the statements of the second main theorem. The statements result almost immediately from 
the construction. 

Since '~ is assumed to be f'mite, the finiteness of the cardinality of D r (M, L) follows from 6.5 (*). 

In order to prove statement a), we denote by Vr(M, L) the number of isoclasses of indecomposable M-spaces 

(V,f, X) r M~ which have space dimension r and are not produced by punched lines of D(M, L). We shall prove 

that v r (M, L) is finite by induction on r. Clearly, v0(M, L) is equal to the number of points of "~. So let us 

assume that r = 1. By 6.1, the isoclasses of the indecomposables (k,f, X) ~ M~ with space dimension 1 correspond 

bijectively to the submodules X = .,'~f(k) for which L fl X is proper. In the case .fff(k) ~ Q, (k,f, X) is produced 

by D(M, .6) and Af(k) is amaximal submodule of apencil. We inferthat vt(M, -6)= ] Q.J. 

In the case r >_ 2, let (v,f ,  x) ~ Mkc be an indecomposable with space dimension r which is not produced by 

D(M, -6), and let N be the smallest element of Q such that t = d i m f  -1 (N(X)) >_ 1. If  N is not a pencil, our 

induction hypothesis and the finiteness of ~ s  imply that M ~  has a finite number, say, Vtr_t(M N, BN), of iso- 

classes ofindecomposables (U, h,Z) not producedby D(M u, ~ r  and such that dim U = r - t and that Z has 

space dimension t >_ 1. The contribution of N to vr(M, L) is therefore equal to ~'~.~--1 vtr-t ,(MN, ~tN). (We recall 

that vro(M N, ~N) = 0 in the considered case r > 2.) 

If N is apencil, the numbers vt_t(M N, Pr162 E gt U {*~} can still be defined. Now v0(MN, ~ )  = 1. In the 

case 1 < t < r, the finiteness of V_t(MN, ~V) follows from the fact that the bases Z of the indecomposables (U, 

h, Z) considered above are supported by afinite subspectroid "~r N of ,~N (6.5, case 2, and 6.6). It follows that N 

still has a finite contribution "~--~=1 t Vr_ t (M N, ~ )  and that 

r 

E Evk,( ,6v). 
N~Q t=l 
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Finally, in order to check statement b), we prove by induction on r that indecomposable M-spaces (V, f, X) E 

M~ and (V', f ' ,  X') E M~ cannot be isomorphic if they are produced by different punched lines D and D' of 

D<_r(M, 15): = Us<_r Ds (M, L). This is clear by construction if D G DI(M , 15) or D" ~ D](M, 15). Otherwise, r is 

> 2. Then we consider the smallest elements N and N' of Q which are not avoided by (V,f ,  X) and (V; f ' ,  X'), 

respectively. Our claim is clear if N ~ N'. In the case N ~ N', D and D '  are obtained by lifting punched lines 

defined on finite spectroids ,~N or "~r N. These punched lines consist of MN-spaces with space dimension less than 

r. They produce the MN-spaces associated with (V,f, X) and (V',f, X'). Since these MN-spaces are not isomorphic 

by induction hypothesis, (V,f, X) and (V; f ' ,  X') are not isomorphic either. 

7. Simultaneous Eradication of Incomparable Pencils 

7.1. Theorem.  Let M be a pointwise finite module over an aggregate A with finite spectroid ~ ,  Z a 
bond on M such that M is not 15-wild, P a nonempty set of  pairwise incomparable pencils o f  M, and R = 
N p ~ R P  the intersection of  their radicals. We suppose that R(q) ;e O, where q e "~ satisfies R(q) = M(q) or 

belongs to the generation indicator P = {x ~ "~: P(x) ~e (RP)(x)} o f  some P ~ P. Then R contains a simple 

submodule S such that the transporter Transp (M, S), i.e., the ideal o f  A formed by the radical morphisms g: X 

--> Y satisfying ~M(X) C S(Y), annihilates no P ~ 

Before presenting the proof of the theorem, we show that it implies Lemma 6.4 given above. 

In the notation of 6.4, we proceed by induction on d = ~ x  dim R(x), where x e Upon,/5. In the case d = 0, 

we set J = {0} and K =  ;3. In the case d > 0, we apply our theorem, setting 9 = Transp (M, S) and B =N + R, where 

N is the annihilator of 9 in M. Considering M = M / S = M / 9M as a module over .~ = A / ~, we then obtain an 

epivalence M~ --> M~/s (4.2.b). Applying the induction hypothesis to M and P = {P / S: P e P}, we get an  

ideal .~ of .~ and a bond K on .~  which satisfy the statements of the lemma mutatis mutandis. For J, it then 

suffices to choose the inverse image of J in A for K,  the set formed by B and by the inverse images of the 

submodules in K .  

7.2. Beginning o f  the proof  o f  Theorem 7.1. The proof occupies the whole Section 7. We are really interested 

in the case q e / 5 ;  the alternative R(q) = M(q) only serves our inductive argument. 

If P has cardinality ] PI = 1, we apply Lemma 4.3 to P and use the fact that P(x) = M(x) for all x ~ /5  (5.4). 

Hence, we may suppose that I P] > 2 and proceed by induction on ] PI. We set P = Ue~p/5 and call a point 

s G/5 double if s = dp for some P e P; otherwise, s is called ordinary. 

Lemma.  For each p ~ P and each x e /5, we have R(x) = (RP)(x). Accordingly, R(x) has codimension 
1 in M(x) i f  x is ordinary and codimension 2 if  x = dp. 

Proof  Consider any Q E P \ e .  If x G Q, x is ordinary (5.8), and we have (9~Q)(x) = (RP)(x) by 5.9. If x 

r Q, we have (RQ)(x) = Q(x); on the other hand, the restriction Q I/5 is a maximal submodule of P115 (5.7); it 

follows that Q [/5 D  el/5) = l P, hence Q(x) D (RP)(x). Accordingly, (9~Q)(x) contains (RP)(x) in all 
cases. 

7.3. First reduction. Let T denote the full subspectroid of '~ formed by P and by the points x e ,-~ such 

that R(x) = M(x). Let  further n ~ ~,I be such that ~+1  annihilates all R(x), x E T, whereas ~ ( t ,  s)R(t) ~ 0 for 

some t ~ T and some s e "~. Denoting by R' the annihilator of ~ in R, we replace M by M / R ' ,  15 by L / R "  

= { L / R ' : R ' C L G L } ,  and P b y  P / R ' = [ P / R ' : P e P } .  

We claim that our theorem is true if it holds for M / R', IL / R', and P / R'. Indeed, let N / R'  be a simple 

submodule of R / R' such that the transporter J of M / R' into N / R" annihilates no P / R', P e P. If N / R' is 
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located at x �9 ~ ,  there is a morphism It G ~ ( x ,  y) and a simple submodule S of M such that S(y) = l.tN(x) ~ 0. 

Our claim then follows from the observation that the ideal ~ such that a(z, y) = ItJ(z, x) and fl(z, t) = 0 in the case 

t ~ y is contained in Transp (M, S) and annihilates no P E P. 

Thus, we are reduced to the case where R,~ annihilates all R(t), t �9 T, and R(q) ~ 0 for some q �9 'Z. 

Restricting M to the full subspectroid of ~ formed by P and q, we are further reduced to the case where R is 

semisimple. Factoring out the submodule R" of R such that R'(q) = 0 and R'(t) = R(t) if t ~ q, we are finally 

reduced to the following situation, to which we restrict ourselves in the sequel: R is a semisimple module vanishing 

outside some point q �9 ~4; the set ofpoints of  ~ is ~o LI {q}; and, finally, M(q) = (RM)(q) = R(q) if q ~ P .  

7.4. Second reduction and dichotomy of  the proof. Suppose that there is an ordinary point s e P such that 

P(s) = M(s) for all P �9 P and 9~(s,  q)M(s) ~ O. Then we have 

9(~(s, q)M(s) G N p e e  (RP)(q) = R(q), 

and each It G ~ ( s ,  q) satisfying laM(s) ~: 0 determines a simple submodule S of R such that S(q) = p.M(s) 

(7.2). Since Transp (M, S) contains It, it annihilates no P �9 P. 

Thus, we are reduced to the case considered in the sequel, where 9~(s,  q)M(s) = 0 for each ordinary s �9 

such that P(s) = M(s), ~/ P �9 P. 

From now on, we fix a pencil F �9 P subjected to the sole condition that q �9 P if q �9 P .  Since we have M 

F and M(t) = F(t) for all t �9 P (5.4), the generation indicator A;/ of M is not contained in F'. Thus M \ P 
contains a double or an ordinary point. The two cases are examined separately in 7.5 and 7.6 below. 

7.5. First ha!f: Suppose that 1(4 \ P contains the double point d = d I, of some Y �9 P. 

Let us then examine any X �9 P different from Y. Since d ,  ,~" (5.8), we have X(d) = (P~0(d) c (RI4)(d) 

M(d) = Y(d). Since the restriction X f) YI I;" is a maximal submodule of Y I Y (5.7), X(d) = (~14)(d) is a 

hyperplane of M(d) containing (RY)(d) = R(d). Thus, we can choose vectors u �9 M(d) \X(d )  and v �9 X(d) \ R ( d )  

such that M(d) = ku �9 kv �9 R(d) and R(q) c (RY)(q) = R,~(d, q)u + ~ ' s  R,~(s, q)Y(s), where s runs through the 

ordinary points of I ~ (5.1). 

If X 1 �9 P differs from Y and X, we have Xl(s) = M(s) = X(s) for all ordinary s �9 I~. Using 7.4, we infer that 

~(~(s, q)Y(s) = 0 and (RY)(q) = ~ ( d ,  q)u. On the other hand, we have R,~(d, q)v c R(q) because v belongs 

to Y(a') = M(d) and to all X l(d) = (RM)(d) = X(d). 

Now set E-- {It �9 ~ ( d ,  q): [.tu �9 R(q)}. Since ~ ( d ,  q)u = (~r)(q) contains R(q), the multiplication by u 

provides a surjection ?u: E ---> R(q). This implies that the representation ?u, ?v: E ::~ R(q) of the double arrow is a 

direct stun of tubular and preinjective indecomposables. We distinguish two cases: 

a) Case ?v ;~ 0. Our representation then admits an indecomposable summand which is isomorphic neither to 1, 

0: k 2~ k nor to 0, 0, k ::~ 0. Such a summand contains vectors It, v �9 E satisfying 0 r lau = vv =: r and Itv �9 kr. 

Accordingly, if S C R is the simple module such that S(q) = kr, It belongs to Transp (M, S), and Transp (M, S) 

does not annihilate Y. On the other hand, each X �9 P \  Y satisfies some relation v �9 tpw + R(d), where w �9 X(s), 

s ~ X, and tp ~ ~ ( s ,  d). From vtpM(s) C vX(d) = kvv and vtpw = vv = r we infer that Transp (M, S) contains vtp 

and does not annihilate X. 

b) Case ?v = 0. Then we apply our induction hypothesis to P \ Y .  Since q satisfies R(q) = M(q) or q G F,  

where F E P \ Y ,  we infer that R contains a simple submodule S located at q and such that Transp (M, S) 

annihilates no X �9 P \  Y. On the other hand, since S(q) c R(q) c ~ ( d ,  q)u, there exists a tp E ~ ( d ,  q) such that 

tpv -- 0 ~ tpu �9 S(q); thus, Transp (M, S) also contains tp and does not vanish on Y. 
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7.6. Second half: Suppose that 1(4 \ ~" contains an ordinary point y. 

Our premise implies the existence of pencils X, Y �9 P such that y q .~ and y E I;" ; hence, X(y) = (RX)(y) c 

(~14)(y) ~: M(y) = Y(y). By 5.7 there is a tmique point x X = x E j( such that Y(x) ~ M(x) = X(x); by 5.10 x x depends 

only on X and y, but not on Y. 

Let us now examine the points z E ]" \ y such that R~(z, q)M(z) ~: O. By 5.7, z satisfies X(z) = M(z) = Y(z); 

by 7.4 z is the double point d r of Y or satisfies Yl(z) ~ Y(z) for some Y] �9 P, whose indicator ~ runs through y 

(5.7). In both cases, z ~ X. This follows from 5.8 if z = d r, from Y] (z) ;~ M(z), Y1 (x) r M(x), and 5.7 if not. We 

conclude that 

t~X 

(*) 

for all n E X(x) \ Y(x). The last equalities result from the fact that each t ~ X \ x satisfies X(t) = Y(t) (5.7); hence 

we have ~ ( t ,  z)X(t) c 5~Y)(z) = R(z) (7.2) and ~ ( x ,  z)Y(x) c R(z); but y ~ P implies z r P (as we have 

seen above in the case of X); hence z ;~ q and R(z) = O. 

When Y varies, the points z E I~ considered above give rise to a subset of P ,  which we denote by Z. The 

contribution 

R z =  q)M(z)  

z~Z 

of Z to M(q) is contained in R(q). Indeed, this is clear if R(q) = M(q) and follows from 

R z = ~ ~ ( z ,  q)~ (xp ,  z)F(xt:) C (RF)(q) = R(q) 
zEZ 

if q �9 P (1.emma 7.3). On the other hand, we have R(q) c R z + ~ ( y ,  q)M(y) because each Y satisfies 

R(q) c (RY)(q) = ~_~ ~ ( s ,  q)M(s) = ~ ( y ,  q)M(.y) + ~ 9~(z, q)M(z). 
z ~  z~ZN~ 

Thus, we are led to distinguish the following three cases: 

a) Case R z + ~ ( y ,  q)M(y) ~: 0. The nonzero intersection then contains some 

r = z = w n r .  o, 
zeZ  

where (Ps G 9~(s, q) and m s �9 M(s). If S c R denotes the simple module such that S(q) = kr, ~p~, clearly belongs 

to Transp (M, S). On the other hand, for each X �9 P satisfying y ~ X and each z �9 Z fl I', m z can be written as 

m z = ~gz n with ~gz �9 ~'~(Xx, z), where n �9 M(xx)\  U Y ( x x )  (see ( , )  above). We infer that r = q)xn, where (Px 
Y 

= ~qJz~gz vanishes on Y(xx) together with ~gz, hence has rank 1 and belongs to Transp (M, S). 
z~Z 

b) Case R z = 0, i.e., Z --- ~.  In this case, we have 

R(q) c (RY)(q) = ~ ( y ,  q)M(y) 

for all Y G P such that y e ~'. Removing these Y from P, we obtain a set P"  of smaUer cardinality which 
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contains F and satisfies the assumptions of Theorem 7.1 because R(q) r M(q) implies q G F .  The induction 

hypothesis then guarantees the existence of a simple submodule S of R such that Transp (M, S) annihilates no X 

P ' ,  and no Y ~ P \  ~ because of 0 r S(q) c R(q) c Y~(y, q)M(y), ~ ( y ,  q)R(y) = O, and dim M(y) / Rfy) = 1. 

c) Case R z ~: 0 and R z f) R~(y, q)R(y) = 0. Then we set ~ = { Y e P: y e l ~ }, and accordingly, P '  = 

[-Jr~P" I;'. We denote by "~" the full subspectroid of '~ supported by {q} U P ' ,  by A" the corresponding full 

subaggregate of A. We finally set F' = Y [ A' for each Y e ~/~, M" = ~-~r ~ ~" Y" and R" = ~ r  ~ ~," R Y'. Thus we 

have R ' ( s )=0  if s e ~O'\q and 

R'(q) = R z �9 ~ ( y ,  q)M(y) = (RM')(q); 

in particular, R'(q) = M'(q) holds if (RM')(q) = M'(q), hence if q r P ' .  It follows that M' and P '  I A '  = { Y': Y G 

~V} satisfy the assumptions of Theorem 7.1. (But we may, of course, have q ,  P" even if q ~ P' .  Here is 
precisely the point where the alternative R(q) = M(q) of Theorem 7.1 enters the inductive argument.) 

The assumptions of 7.1 pass from M' and P '  [ A'  to M "  = M ' / N  and ~" = { Y ' / N :  Y ~ P'} ,  where N 

denotes the submodu!e of R" such that N(q) = ~ ( y ,  q)M(y); we then have 

R":= 
TeP 

Applying our induction hypothesis to M" and P",  we fred a simple submodule S" of R" such that Transp (M", 

S") annihilates no T = Y' ] N. Since R z ~ R"(q), S'" can be "lifted" to a simple submodule S" of R' such that 

S'(q) C R z. Extending S' by 0 to A, we finally obtain the required S c R. Indeed, the construction implies that 

each Y E P" contains a point z E Z iq I~ such that M(z) is not annihilated by Transp (M, S). Since z satisfies 

M(z) = R~(x x, z)M(x x) for each X e P \ P ' ,  Transp (M, S) does not annihilate X either. 

8. The Case of a Semisimple Pencil. 

Our main objective in this section is to prove Lemma 6.6 above. 
Sticking to our previous notation and assumptions, we further suppose throughout Sections 8.1, 8.2, and 

8.4-8.10 that M is a faithful module over A and P a semisimple s This implies that P is ihe socle o f  

M (5.3) and that the points x E "~ satisfy either 0 ~ P(x) = M(x) or P(x) = 0 ~ M(x) (5.4). In the case 0 ~ P(x), we 

keep the basis chosen in 6.3, setting M(x) = kux if x is an ordinary point of P and M(d) = ku �9 kv if d -- d e is 

the double point. Finally, we set K = {L G L: L(d) = M(d)}. 

To help intuition, we may and shall choose A as the aggregate of all f'mite-dimensional projective modules 

over some finite-dimensional algebra. Accordingly, if .,%, denotes the full subaggregate of A formed by the objects 

isomorphic to p", where p e P is fixed and n ranges over ~I, the inclusion Ap ---) A admits a canonical right 

adjoint which maps X ~ A onto the largest submodule Xp belonging to .,~; moreover, if p is an ordinary point of 

P and Y e Ap, each vector subspace of M(Y) is identified with M(Z) for some submodule Z ~ ~ of Y. 

8.1. We f'trst apply our main algorithm to the submodule P of M and to the bond K defined above. As 

usual, we set .~ = P~CNt', L(W, h, Z) = (L(Z) + h(W)) / h(W) for all submodules L C M and all (W, h, Z) ~ .~, 

and K = { L: L e ff(] U {/; }. The canonical epivalence M~( ~ M ~  (5.4) then reduces the investigation of M~( 

to M ~ ,  and we are lead to examine .~. 

The relevant part of KN P consists of the maximal submodules Ps, where s ~/5 \ d  (5.2). In order to choose 

a spectroid of .,~ = P~CNP, we consider a pair of adjoint functors 



360 P. GABRIEL, L. A. NAZAROVA, A. V. ROITER, V. V. SERGEICardK, AND D. VOSSlECK 

R 
 elad  ek. ..> 

S 

Tile right adjoint R is defined by R(V, g, Y) = (V, ga, Ya), where gd is the d-component of g: V --4 P(Y) = @. 
pep 

P(Ye)" The left adjoint is such that S(W, h, Z) = (W, "h, Z �9 W | Z), where X = �9 s ~ A is the sum of all s ~ P \ d 

and h maps x G W onto 

(h(x), (x | u s )) G P(Z) * (~s W | P(s)). 

This left adjoint factors through P~(op and is fully faithful and exact (for the short exact sequences considered in 

2.3). Accordingly, the indecomposables An, Tn ~, Vn of (ClAd) k are associated with pairwise nonisomorphic 

indecomposables of p k f l p  of the following form: 

SA  n = (k n-l, an, am �9 Xn-1), an a = [~ln_l 0 10 lln,1]T, 

= t .IZL+LF, 

ST7 = ( e ,  tT. d', * X"), = [jr,, I. lt.] T, 

[ II'-L'0 1 SV n = (k',, z,, cl "-1 �9 E',), z,a = 0 ~In-1 " 

The scalar ~. ranges over k, n is > 1, J', is a nilpotent Jordan block, an,/: k n-1 ---> P(dn) is the component of a', 

relative to d . . . . .  

As a speclxoid ~ of .~ = P~(f~p we choose the indecomposables SA n, STUn, SV n (n >_ 1, )~ , k U ~,) and the  

P-spaces (0, 0, x), x E .~ \ d. 

Proposition. There are at most four "'scalars" ~. ~ k U ~ such that ST~ is (1~I, f ( ) -re levant  ( 6 . 7 ) f o r  

some n > 1. 

Sections 8.4 - 8.9 are devoted to the proof of the proposition. First, we shall show that the proposition implies 
Lemma 6.6 above. 

8.2. Proposition 8.1 deals with a lopped bond K on M, not with the given .6. So it remains for us to adapt the 

arguments of 8.1 to L. First, we must replace .~ = e (ne by afull subaggregate .,~ = P~fll ,"  The corresponding 

spectroid '~ is obtained from S~ by deletion of some SV', and some STX,. For each submodule L of M, the ,~- 

module L is then replaced by its restriction /~ = L [ .~ ,  and h~ is restrained by Z = {L:L  ~ s U {/5}. The 
^k -k is identified with a full subaggregate of M~.  Thus we finally obtain the following resulting aggregate M L 

corollary of Proposition 8.1. 

Proposit ion.  With the preceding notation, there are at most four  scalars ~. ~ k O ~ such that S T~n i s 

(M,  Z )-relevant for  some n > 1. 

8.3. Proof  o f  Lemma 6.6. The lemma follows directly from Proposition 8.2 when M is faithful and N = P 

semisimple. Our objective here is to reduce the general case to the particular one. I f  N E Pe with e > 2, we fn'st 
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replace L by Le_ 1 (6.3) and are thus reduced to the case of a ~ a l  pencil N e PI" We may also replace L by 

L O KU U p e  ~ K~,, hence, suppose that O 0 = ~ (6.5). Our further reduction consists of three steps. 

FirstStep. Here we factor out the ideal .9 of 6A, replacing A by .~ = A / . 9 ,  M by M = M / tiM, and N 

by N = N / JM. The bond BN is replaced by the set of all X / JM such that JM ~ X ~ BN. This set equals BN" 

if .L is replaced by the corresponding bond on M .  Applying the main algorithm to the submodules N and N of 

M and M, we obtain the diagram 

i l 
MNk G ~ k  

Since some Y E BN give no contribution to B/V, it is possible that F is not an epivalence. But it is the restriction 
of an epivalence to a full subcategory. Hence it is surjective on the morphism spaces and detects isomorphisms. 
Since the vertical arrows of :the diagram are equivalences, G preserves indecomposability and heteromorphism. We 

infer that ,{N (6.5) has fewer "relevant points" than "{N, and the required statements can be lifted from M to M. 

Second Step. We suppose that (~) (x)  = 0 for all x e N. Under this condition, we now set M = M / RN, 

= N ] RV, and equip M with the bond formed by all L / RN,  where RN c L ~ BN. Applying the main 

algorithm to N c M and 2V C ,~,  we obtain modules M 2v and ~r ~ over some aggregates with spectroids ~N 

and ~N.  The induced functor ~lv ~ ~ is an isomorphism because, for each Z = (W, g, X) e ~N with space 

dimension dim W_> I, X is supported by N which is disjoint from the support of R,V. Accordingly, if ~ de- 

notes the submodule of M N associated with ~ ,  we have (~V)N(z) = 0, and we may identify ~2v with ~ ~ and 

MN/(g~)N with ~r ~7. The equality (5~r~(Z) -- 0 implies that, for any MN-space (U, h, Z'), the canonical map 

MNk((U, h, Z'), (0, O, Z)) --~ MNk ((U, h, Z'), (0, 0, Z)) 

is bijective. Therefore, Z is relevant with respect to (M N, BN) if it is so with respect to (MN, BN).  Thus we are 

reduced from M to M. 

Third Step. Here we may suppose that ~V = 0. But formally we still have to reduce our statement to the case 

where M is faithful. For this sake, we denote by A the residue category of A modulo the annihilator of M. If 

and 2V are the A,modules associated with M and N, the canonical functor M Nk --~k BN ---> M ~  is quasisurjective. 

Therefore, the isoclasses of"relevant" points of ,{Iv correspond bijectively to those of "~N. 

8.4. We now return to Proposition 8.1. Before entering its proof, we examine the notion of relevance. Let us 

provisionally consider an arbitrary pointwise finite module M" over an aggregate A'  and a bond L' on M'. 

Equipped with the short exact sequences defined in 2.3, M'~, is an exact category. Accordingly, an M'-space (V, 

f, X) E M'tc, is called (M', Z')-injective if, for each short exact sequence 

) (W t, g', Y') ~ (W, g, II) (p, q) ) (W t', g", Y") > 0 

formed by M'-spaces avoiding L', each morphism from (W', g', Y') to (V, f, X) factors through (i, j).  It is 
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,k equivalent to say that, for each (W, g, Y) �9 M ~:,, each linear map m: W --~ M(X)/f(V) is a composition of the form 

W ~ > M(Y) M(~) > M(X) can. > M(X)/f(V).  

The indecomposable (M', 0)-injectives are easy to describe; they have the form (k, 0, 0) or (M', (s), ~, s). 

The general case L' ~ f3 seems to be more intricate. In the following lemma we examine indecomposables s �9 A" 

such that (0, 0, s) is (M', f_,')-injective; then we simply say that s is (M', s 

L e m m a .  An indecomposable s �9 .fl' is (M', f_/)-irrelevant if and only if s is (M', s and 

satisfies L'(s) = M'(s) for each maximal element L' of L'. 

Proof  a) The condition is sufficient: If (V, [fg ]T, y �9 s) avoids L', the equalities L'(s) = M'(s) considered 

above imply that (V,f, X) �9 Mkc,. Hence, we have a short exact sequence 

0 ) (0, O, S) > (V, [ fg ]T, y �9 s) ) (V, f ,  ]I) ) 0 

rk of M f,,, which splits because s is (M', f_,')-injective. 

b) The condition is necessary. In order to show that s is (M', .L')-injective, it suffices to prove that the exact 
sequence 

0 > (O,O,s )  (O,[01IT) > ( V , [ f g ] T , y ~ s )  (1,1101-r) > (V , f ,Y )  > 0 

splits if (V, f ,  Y) is indecomposable. But this is clear if (V,f, Y) -~ (0, 0, s). If not, Y has no direct summand 

isomorphic to s. Decomposing the middle term into indecomposables, we obtain an isomorphism 

(V,[fglT, y o s )  - > (V,h, lOO(O,O,s) 
i 

whose components are, say (e, [a b]) and (0, [c d]). The composition of i with (0, [011] r )  is a section with 
components (0, b) and (0, d). Since b cannot be a section, d is an isomorphism, and our short exact sequence 
splits. 

Let us now turn to a maximal L' �9 L'. In the case L ' ( s ) ,  M'(s), we consider the submodule N" of M" which 

is generated by L' and M'(s). Since the generation indicator of N' contains s,  the indecomposable M'-space 

associated with N' in 6.1 has the form (k,f, Y �9 s) and avoids fZ. This contradicts our assumptions that s is (M', 

.L')-irrelevant. 

8.5. We now return to the assumptions of Proposition 8.1 and start with the proof. By 5.6, each L E if( 

satisfies L fl P = Ps for some ordinary point s E P. It easily follows that K(ST ) )  = fi(STn x) = M(ST~ x) holds for 

each /r E ~r~. Hence, STn x is (M, K)-relevant if and only if it is not (M, ~f()-injective. 

Thus, our objective is to show that Ext (X, (0, 0, STnX)) = 0 for all X �9 ~I~(, provided ~ avoids some 

finite set e. The extension groups Ext (X, (W, h, Z)) considered here can be computed within the surrounding 

category s with the help of an injective resolution of (W, h, Z) in /lT/k of the following form: 

^ 

0 > (W, h, Z) > (Ker h, 0, 0) �9 (M(Z), 11, 2') > (Coker h, 0, 0) > 0. 

The resolution shows that Ext is right exact on the short exact sequences of ~ k  considered here (2.3). 
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We display the spectroid S~ of A (8.1) in such a way that all morphisms from the right to the left vanish (s e 

"{ \d ,~ ,E  k U  oo): 

(0, 0, s), SAp SA 2, SA 3 . . . . .  STn x . . . . .  SV 3, SV 2, SV 1 . 

In particular, Horn (SF, (0, 0, s)) = 0 for all s E "{ \ d and all F G (P I -'qa) k. It follows that each A E .~ gives rise 

to a canonical split sequence 

where Ap is isomorphic to some SF, 

E 21~/k gives rise to an exact sequence 

0 ) Ap >A 
t 

and A / A  e to some 

> A / A p  > 0, 

(0, O, s i) with s i ~ ~ \ d .  Accordingly, each (U, f,  A) 

0 >(O,O, A p ) ~ ( U , f , A )  (l,n) >(U, canof,  A]Ap)  >0 

of ~k .  In the case (U,f ,A) ~ 1~1~, the end terms (0, O, Ap) and (U, can o f, A [ Ap) also belong to M~- 

(*) 

because 

s (SF) = I~I(SF), V L ~ K ,  V F G (P I AJ'. w e  shall denote by /~ ~ and M ~ the full subaggregates of M~ 

formed by the (U,f,  A) such that A e =A and Ap = 0, respectively. 

Now, since we have Ext ((0, 0, Ap), (0, 0, ST,\)) = 0 by the def'mition of the exact sequences of /17/k, we infer 
that the map 

Ext ((U,f, A), (0, O, STnX)) ~- Ext ((U, can o f, A/Ap) ,  (0, O, STnX)) 

is surjective, and we are reduced to proving the following lemma. 

Lemma.  I f  M is not L-wild, there exists a subset e c k [3 0o of cardinality < 4 such that Ext (X, (0, 0, 

ST,\)) = 0 for all X e M~, all n _> 1, andall ~, G (kU ~ ) \ e .  

^ k  8.6. Lemma 8.5 concerns the aggregate M~. Our next step brings us back to M~ via the rum functor 

r " 2~'I~ --~ Mff(, (U,f,  (W, h,Z)) ~--~ (V, g,Z) ~9 (Ker h, O, O), 

where V c M (Z) is the inverse image of f (U)  c M (Z)/h(W) and g the inclusion. This functor induces a 

bijection between the sets of isoclasses of )1~/~- and M~. It is a quasiinverse of the classical equivalence M~ 

M~ if K; t  9 ,  i.e., if P \ d  ~ 9 .  In general, the main virtue of �9 is to be exact, whereas M~ ---> M~ is not 
^k  because M~ has "more" exact sequences than M~. In fact, for all A I, A 2 ~ Ms �9 induces an injection 

Ext (A z, At) ---> Ext (~A 2, ~A1), 

whose image consists of all classes of short exact sequences 

0 --~ ~A 1 = (V 1, gl, Z1) ~ (V3, g3, Z3) "--) ~A2 = (1/2, g2, Z2) ---> 0 

of M~: such that the induced sequence 
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0 ~ (gfl(Pz1), g~,Z1) ---) (g~I(PZ3), g~,Z3) ~ (g~'I(PZ2), g~,Z2) ---) 0 

A D  is split exact in - P~(tq/'" Such exact sequences of M~ will be called P-exact. 
^ k  In particular, if (U,f, A) ranges over M~, the images of the sequences (,) under @ are short exact sequences 

of M~. Up to isomorphism, they can be described directly as follows. Let us consider the two pairs of adjoint 
functors 

S I 

where R, S are defined as in  8.1, S" is the functor (W, h, Z) ~ (W, h, Z) induced by the inclusion P --~ M, and 

R '  is the trace functor (V, g, Y) ~ (g-l(py), g,, y) already considered above. With each (V, g, Y) E M~, the 

adjoint pair (RR ", S "S) associates a canonical short exact sequence 

0-") (g-l(PY), ga, Y') (v,t)~ (V,g, Y) (~'~)) (V/g-I(Py),g ", Y /Y ' )  --~ O, (**) 

of M~, where Y" = Yd @ g-l(py) | •. These sequences are related to the short exact sequences (*) of 8.5 via the 

rum ~.  If we denote by M~ and M~ thefullsubaggregates of M~ formed by the pairs (V, g, Y), which induce 

isomorphisms (v, t) and (9, x) respectively, then S'S induces an equivaJence(P lad) k --7-> M~, whereas M2 k is 

equivalent to M~,Np, where M', K', P" denote the restrictions of M, 9C P to '~ \d .  Thefunctor ~ -  ,Q~ ---) 

M~ maps M1 k into M~ andinduces an equivalence ,Q~ -:-> M~. Moreover, in the case a 1 /f/~ and a 2 .~/k �9 E E 2 ,  

all short exact sequences 

of 

0 ---) ~A 1 ----)E ~ @A 2 ---) 0 

are obviously P-exact. Hence, �9 induces a bijection 

Ext (A 2, A1) ..7.) Ext (rigA2, cI~A1), 

and Lemma 8.5 is reduced to tlie foUowing lemma, where we set E ~ = S "SE for all E ~ (P I -C/d) ~- 

Lemma.  I f  M is not L-wild, there exists a subset e C k [.J oo of cardinality < 4 such that Ext (H, Tn ~ )  = 

0 for all H e Mk,2 a l l n  >_ 1, and all ~, ~ (k [3 oo) \ e. 

8.7. In order to prove Lemma 8.6, we start with an arbitrary H G M k and some F = E ~ e M~, where E e 

(P [ -,qa) k. For the exact structure defined in 2.3, M k admits almost split sequences [8, 9]. If "oH denotes the 

cotranslate of H, we know that 

Ext(H, F) ..7_> H0m (F, "gn) T, 

where W T denotes the dual of a vector space W and Hom(F, "OH) the residue space of Hom(F, 'tH) obtained by 
annihilation of the morphisms factoring through injectives of M k. Now, since F admits an injective resolution 

whose indecomp0sable injective summands have the form (k, 0, 0) or (M (p),  11, p), p ~ P,  it suffices to 

annihilate the morphisms factoringthrough these injectives. But xH has no nonzero injective direct summand. It 

easily follows that all morphisms from (k, 0, 0) or (M (p), ~1, p) to xH vanish and that 
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Ext(H, F) _.7_> Hom(E'~i ,cH)'r ~ Hom(E, ('cH)d)T 

if we set Kd=RR'KG (P IAd)~ for all KE M k. 

Now, in the case H e M~, the following lemma states that ('oH) d is a direct sum of indecomposables A n and 

T), where ~ belongs to some subset e c k U ~o of cardinality < 4. If follows that Horn (E, ('rJ-/)d) = 0 if E = V n 

or E = T~ with g c k [.J oo \ e. So it remains for us to prove the following lemma. 

L e m m a .  Let e C k U o o  be the set of  all ~ c k U ~ such that, for  some n :>- 1 and some H ~ M~, T )  

is isomorphic to a direct summand o f  ('ct-1) a. Then the cardinality of  e is <_ 4. Furthermore, i f  H ~ M~ , ('r d 

has no direct summand isomorphic to V n, n > 1. 

8.8. Lemma 8.7 will finally result from the virtues of some restriction ~r of the module M examined in 8.1. 

Let ~" denote the finite full subspectroid of ~ formed by SA a and all (0, 0, s), s G ~ \ do. Let .~ be the full 

subaggregate of .~ formed by the points of "~', all isomorphic indecomposable, and their finite direct sums. The 

restrictions M-=MI A and K = {KI .~ :Ke  K} then satisfy the following lemma. 

Lemma. M is not K-wiM.  

Proof. We know that the module ,Q of 8.2 is not .6-wild. It has a submodule N which vanishes at SA 3, 

SA 2, SAp and all (0, 0, s) with s E ~ \ d t , ,  and which takes the same values as ,Q at all other points of S~. By 

3.7, h~t/N is not (Z,/N)-wild if we set s  = { K I N  : N C K ~ s }. The condition N C K eliminates all K of 

the form K = L with L(de) ~ M(dl, ). Hence, only K contributes to /~ /N,  and M, .K are identified with the 

restrictions of ,Q/N,  Z / N  to A .  

8.9. Proof  o f  Lemma 8.7. a) Obviously, --k M~ can be identified with the full subcategory of / ~  formed by 

the M-spaces (U,f, A) such that At, (8.5) is a direct sum of copies of SA 3. Setting X = (U, c a n .  f ,  A/At , )  E ~ 

and denoting by 

e e Ext(X, (0, 0, At,) ) .2_> Homk(Hom(At, ' Sh3) ' Ext(X, (0, 0, SA3)) 

k k 

the extension associated with an M -space (U,f ,A)  E M~ and with the sequence 

0 > (0, O, A e) ~ (U,f, A) (~, ~) > X = (U, can ,  f ,  A l A p )  > 0 

in 8.5, we obtain an epivalence 

~ .  Uk_op 
""K > ~k, (U,f, A) b--> (Hom(A, SA3), e, X), 

A~tkop where E is the module on '"2 such that /~(X) = Ext(X, (0, 0, SA3)). This epivalence can be composed with an 

~k __~ E k which results from the equivalence :~'~ -~ M~ and from the invariance equivalence 

Ext(A2, A1) -7-> Ext(~A2, r , A 1 E 3~/1 k , A 2 E/~t~ 

examined in 8.6. By E we here denote the module 
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n F--> Ext(n, A~) ._Z.> Horn(A3 ' (.CH)d)T ' 

~arkop which is defined on the aggregate '"2 (8.6). 

b) In the epivalence ~k_op E k "'-K -> derived above, the point is that E is free of any bond. Before exploiting this 

point, we must transfer "tameness" from ,~t to E. 

Lemma.  E is not wild. 

Proof. It suffices to prove that E is tame. If not, there is a plane coordinate system 

eo, el,  e 2 ~ Ext((U, g, B), (0, 0, W T ~ SA3) ) -2-> I4omk(w, ~(V, g, 8)) 

such that the induced functor repQ 2 --> ~k preserves indecomposability and heteromorphism. The extensions e i 
are the classes of short exact sequences, which we may write as follows: 

0 )(O,O, Wr@SA3) (~.0 (U, 'Wr |  *B)  ( l . n ) ) (U ,g ,B )  )0  

where t and x are the canonical immersion and projection. Setting fo = [ho g]r and .~ = [hi O] r for i = i, 2, we 
obtain a plane coordinate system 

fo'fl ' f2 ~ Hom,(U, M(W T | SA3* B)). 

The induced functor Ff" repQ 2 ---> ~ k  factors through --k M~ by construction. We claim that the composition 

M~( u,, )j~k, repQ 2 ~ (repQ2)O p ~ -kop  

where D is induced by the duality of vector spaces, is isomorphic to F e. This implies that Ff  preserves 
indecomposability and heteromorphisms, a contradiction to Lemma 8.8. 

Our claim follows from the observation that the map 

Hom,(U, M(C)) > Ext((U, g, B), (0, 01C)), h v--> h ,  

where h denotes the class of the short exact sequence 

0 

is k-linear for all C = W T | SA 3. To ascertain this point, w e  compute the extension group using the injective 
resolution 

0 ) (0, 0, C) ~ (m (C), 11, C) ~ (M (C), 0, 0) ) 0 

of (0, 0, C) in ~-k. The induced linear map 

Hom((U, g, B), (M (C), 0, 0)) Ext((U, g, B), (0, 0, C)) 
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maps (h, 0) onto the induced pull-back of the chosen resolution. This pull-back is isomorphic to (***). 

c) Let us now suppose that Lemma 8.7 is false, and let H ~ M~ be such that ('oH) a has a direct summand 

of the form V n. Then we may further assume that H is indecomposable and denote by H the full subaggregate 

of M~ formed by the objects isomorphic to H r, r e ~I. If m is the smallest number satisfying Hom(V m, ('cH)a) ~: 

0, then Hom(V m, (xH) a) | V is identified with a nonzero direct summand of ('oH) a, and 

X ~ Horn(V,,,, ('oH) a ) | Hom(A 3, V., ) 

with a submodule of 

E T [ H :  X ~ Hom(A 3, (Z/-/)d) --7-> Ext(X, A~3) T. 

Accordingly, each simple submodule S of X ~ Hom(V m, ('~H)d) provides a semisimple submodule S | Horn(A3, 

V m) of E "r ] H such that 

dimS(H) | Horn(A3, Vm) = dimHom(A3, Vm) = m + 2 > 3. 

We infer that E ] H ~ has a semisimple residue module whose dimension at H is > 3; and hence, that E is wild in 
contradiction to the lemma of part b). 

d) Let us finally suppose that ~'1, ~'2, L3, ~'4, ~5 are distinct scalars and H is an object of M~ such that, 

for each i, ('oH) d has a direct summand of the form T~;. We then denote by H the full subaggregate of M2* 

formed by the objects isomorphic to direct summands of H r, r E ~I. The restriction E T [ H contains a direct sum 
of five nonzero submodules of the form 

X ~-~ Hom(T1 ~'i , ('~H)a) | Hom(A 3, T1 ~'' ). 

Accordingly, if S i is a simple submodule of 

form 
X v--> Horn(T1 ~'i , (X/-/)d), E T I H has a semisimple submodule of the 

5 
@ S i | Hom(A 3, T1 ~'i ), 
i=1 

and E [ H ~ has a semisimple residue module of length 5. We infer that E is wild in contradiction to the lemma of 
part b). 

9. From Subspaces to Modules. 

In the present section, we apply our second main theorem (2.5) to a finite-dimensional k-algebra B. For this 

sake, we consider a proper quotient c~ of a spectroid T of B and reduce rood B ~ mod T to a "subspace cate- 

gory" M k , N where M and N are suitable left modules over rood 'T. 

9.0. Since we prefer working with finite spectroids rather than with finite-dimensional algebras, we first adapt 

the language introduced in 2.6 to the case of afinitespectroid T.. 

First, we introduce the k-category | T whose objects are the points of T and whose morphism spaces are 
defined by 

(| (r, s) = ~x q(Xn_l, s)|174 1, x2) | Xl),. 
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where x ranges over the sequences of points of 'T of length n > 0. (In the case n = 0, the displayed tensor product 

coincides with 'T(r, s).) The composition of |  is induced by tensor multiplication. 

Let mod| 'T and mod'T denote the categories of all finite-dimensional right modules over | 'T and ~ i.e., 

of all contravariant k-linear functors from |  and 'T to rood k. An object of mod |  is given by a family U = 

(U(s))s= T of "stalks" U(s) E rood k and by a family of linear maps lying in 

HU : = 1-I H~ | %(r,  s), U(s)) .  
r,s ~ "ff 

We shall identify mod 'T  with a full subcategory of mod |  with the aid of the canonical functor | 'Z. 

Each coordinate system e = (e 0 ..... G) of an affine subspace S C H U gives rise to a functor F~ : repQ t ----) 

mod|  which maps a sequence a = (a 1 ..... a r) of t endomorphisms a i : W --> W onto the family W@ U = 

(W| equipped with the linear maps 

IIw| s) + al |  s) + ... + at |  s) " W|174 s) ---> W| 

The space S is called ~ r e l i a b l e  i f  F e factors through mod 'T and preserves indecomposability and hetero- 

morphism. And 'T is called wild if it admits a q-reliable plane. If not, 'T is tame. 

Lemma. Let B be a finite-dimensional algebra with spectroid ~ Then B is wild i f  so is 

Proof. We may suppose that the points of 'T are projective B-modules c1B . . . . . . . . .  em B, where the e] denote 
m 

primitive idempotents. Choosing an isomorphism B ~ i=$1(ei B) n" of mod B, we then identify the algebra B with 

the matrix algebra .~. (e/B ej)n, "• 
t , j  

Now let U=  (Ui)l<_i~,, be a family of stalks and e 0, e 1, e 2 G l - I  H~ | eft  ej, ~)  be a coordinate system 
i,j 

[ f l xn i  of a T-reliable plane. If V denotes the direct sum of the spaces v i formed by the rows with n i entries in U i, 

we obtain a coordinate system fo, f l , f 2  ~ H~ | B,  V) of a B-reliable plane by setting 

E = V  v'ep'i 'J;-'J" l<<m j=l j 
\ i = 1  ) - ] -  

for all v = (v i) e ~ U  l• = V and all b= (biJ) = ~ ( e i B  ej)ni• =B.  Here 
i i , j  

ee(i, j; biJ) e Homk(Ui, Uj)ni• 

denotes a matrix whose entries are defined by 

ep(i,j; b(i)rs(X ) = ep(x | b~Js). 

In the case t = 1, we also consider punched lines S \ E ,  where E is a finite subset of  S. Setting C = { ~ ~ k" e 0 + 

~.e 1 ~ S \ E )  as in 2.5 and 2.6, we say that S \ E  is q-reliable i f  Fe:  repcQ 1 --> rood |  factors through rood 'T 
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and preserves indecomposability and heteromorphism. As in the case of reliable planes considered above, T-re- 

liable punched lines give rise to B-reliable punched lines whenever B is a finite-dimensional algebra with spectroid 

cs Thus, in order to prove our third main theorem, it suffices to construct suitable T-reliable punched lines whenever 

T is tame and to carry them over to B. As a corollary, we obtain the converse of the lemma above (B is tame if so 
is '23, which of course could also be proved directly. 

9.1. Assume that T is an arbitrary finite spectroidover k, 6 �9 9~r(s, t) is a nonzero radical morphism of T 

such that 9~r(t, x)c = 0 = 69~r(x, s) for all x �9 "L, and T = T/6 .  For each X �9 rood'Z, we denote by X the 

largest submodule of X annihilated by 6. Concretely, X satisfies X(x) = X(x) for all x �9 '-/~t, whereas X(t) is 

the kernel of X(ff) : X(t) ---> X(s). Accordingly, X / X  is semisimple and located at t. The obvious exact sequence 

0 > X >X >X/X_ ) O, 

therefore, provides a linear map 

e x �9 Hom,(HOmT(t-, X/X_), Ext~( t - ,  _X)) <_z_ Ext~r(X / X_., X_), 

where t - �9 m o d T  is the simple module located at t. Finally, we obtain an epivalence 

G "modT  > M~, X > (HOmT(t-,X/X),ex,  X),  

where M and N are the left modules over A -- modT such that N (Z) = Ext,.-y(t-, Z) C M (Z) = Ext (t-, Z) 

([9], 4.2). 

Our proof of the third main theorem uses the epivalence mod T---> M~, the second main theorem, and the 

following statement. There, ind c~ denotes the chosen spectroid '{ of A = mod c~. 

Proposit ion.  With the notation above, suppose that M is not N-wild. Then, for each d �9 ]H, ind T 

contains only finitely many (M, N)-relevant modules of length d (6.6). 

The proposition will be proved in 9.6. 

9.2. Proposition. T is wild if M is N-wild. 

Proof. Let e = (e 0, e 1, e2) be a coordinate system of an N-reliable plane in some Homk(V, M(X)) 

Ex t , (V@ t -, X)(V �9 modk, X �9 A). To produce a T-reliable plane, we start from the tensor product 

0 >V@k - p > V ~ p  >V| t -  >0 (*) 

of V with the obvious sequence (9.1) associated with p = q'(?, t). 

The induced connecting homomorphism HomT(V~ _.p, X) ---> E x t ~ ( V ~  t- ,  X) is 

f :  V~  __p ---> X onto the class of the push-out of (*) along f. Choosing the preimages h i 

construct the commutative diagram with exact rows 

subjective and maps 

of the given e i, we 
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0 ~ W | 1 7 4  
k k -  

"w @ ho +aw @hl +bw | 

o ---> w |  & 

W |  ---> W |  ---> 0 
k k k k 

c I II �9 

Ya, b --> W |  V | t -  --> 0 
k k 

(**) 

where a w and b w map w e W onto wa and wb. 

For Ya,o' we choose the following concrete construction. Let Y = (Y(q)) be a family of stalks such that Y(t) = 

X(t) @ V and Y(r) = X(r) if r ~: t. We set Ya,b(q) = W | Y(q) for all q E 'Z. Thus, the stalks of W | X are 

subspaces of the stalks Ya;b(q); on these subspaces, the structure maps 

fa,b( r' q)" Ya,b(q) | if(r, q) > Ya,b(r) 

coincide with those of W | X. Accordingly, d is an inclusion, and it remains for us to describe c and the 
restriction 

Ya.b(t) | 9~r(r, t) > Ya,o(r) 

of fa,b(r, t). The morphism c is determined by the commutativity of the left square of (**) and by the equations 

c(w @ v | lip) = w | v. These equations imply 

fa,o(r, t) (w | v) = w | ho(v | It) + wa @ hl(V | It) + wb | h2(v | It) 

for all It e 9~r(n, t). Thus, we have 

fa~(r, q) = 11 w | fo(r, q) + a @ fl(r, q) + b @ f2(r, q), 

where fl(r, q), f2(r, q) vanish on X(q) | q~r, q), whereas fo(r, q) coincides there with the structure map of X. In 
3 

other words, wehave Ya,b = F1(W,a,b) where f=(fo,  f l , f2)  e H r (9.0). 

Furthermore, the construction of Ya,b as a push-out shows that the composition 

k repQ 2 ~ rood T -----ff-o M N 

of Ff with the epivalence G of 9.1 coincides with F,, Since F e preserves indecomposability and heteromorphism, 

so does F I. 

9.3. Pro| o f  the third main theorem. Supposing that T is not wild, we shall construct a family of T-reliable 
punched lines which (mutatis mutandis) satisfy statement b) of 2.6 (see 9.0 above). 

Using induction on the dimension ~ dimq'(a, b) of q:, we may suppose that such a family is already 
a , b ~ T  

available for 'T = T~ a. Hence, we restrict our attention to the "new" indecomposables, which are not annihilated 

by if, i.e., are transformed by modT--> M~ into M-spaces with nonzero first components. By 9.2, M is not N- 

wild. By 9.1, the full subaggregate A a of A "generated" by the indecomposables X of dimension < d, which are 

(M, N)-relevant, has a finite spectroid for each d _> 1. Denoting by M a and N a the restrictions of M and N to A a, 

there exists a locally t-mite set ~ of Na-reliable punched lines which, for each X G Aa, produce almost all 
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indecomposables of (Ma)~d of the form (V, f, X) up to isomorphism. Of course, we may and shall assume that 

D~ c D2 c . . . .  

Now assume that S \ E  is an element of D= l, Ja_>lD a, e -- (e o, e I) is a coordinate system of S, and C = {~, e 

k ] e o + )~e I e S \ E } .  As in the proof of 9.2, we can construct a T-reliable punched line with coordinate system f = 

(f0,f l )a  H~ such that the composition repQ 1 F[ > m o d T  G > M~ is isomorphic to repcQ 1 Fe > M~. I t  

is easy to check that the punched lines arising in this way from D "'parametrize" the new indecomposables over T 
as wanted. 

9.4. We now turn to the proof of Proposition 9.1. Our first objective is to shake off the bond N = Ext , .  (t -, ?) 

on M = Ext~(t  -, ?). For this sake, we resort to the injective T-module i = ~s ,  ?)T. The largest submodule i of i 

annihilated by ff is identified with Cs ?)T, and i]i can be identified with t - v i a  

i (t) = C/Is, t) T ----> k, f~-> f(ff). 

It easily follows that 0 = N (L) c M (/)  = k e i, where ei denotes the extension associated with theexact sequence 0 

---> / ---> i ---> t - --> 0. Asa  consequence, the submodule of M generated by E i G M (/) coincides with ~M, where 

is the ideal of  A mod c~ generated by 11 ,... In the following proposition, M �9 = M / ~M is considered as a 

module over the aggregate .~ = A~ 6, whose spectroid "~" is obtained by deleting the point / from the quotient 

'~/~.~ of the spectroid ~=indC~ of A=modC~.  

Proposition. The canonical functor M~ ---> M~ is quasisurjective. Up to isomorphism, it annihilates just 
k one indecomposable (0, O, i) E M N . 

We postpone the proof to 9.7. 

9.5. 

vanishes on almost all modules in "~ of length d. 

Proposi t ion.  With the notation of 9.4, suppose that M is not wild. Then, for each d E ~I , M 

It seems advisable here to recall that the points of 

morphisms of "~" axe classes of morphisms of mode- 7. 

"~ are genuine modules over c~, even though the 

m m m 

Proof. Let us denote by "~ a the full subspectroid of "~ formed by the modules of dimension d, by M a the 

restriction of M to "~a- By the lemma of Harada and Sai ([9], 3.2, Example 2), the radical ~ of '~a is nilpotent. 

If M,a(x)~O for infinitely many x e "~'a, we infer that ( ~ M d / ~ + ~ M a )  (x) ~ 0 for some n E I',I and (at 

least!) five points x ~ "~a" This means that M a  has a subquotient which is the sum of five nonisomorphic simple 

modules. Hence, the subquotient is wild, and so are Ma and M. 

m m 

9.6. Proof of proposition 9.1. a) We first show that M is N-wild if M is wild. Indeed, let A M denote 

the quotient M / ~M considered as a module over A. If M is wild, it is clear that A,~ is wild. Since A ~r is a 

quotient of M and N does not contain ~M, Proposition 3.7 implies that M is N-wild. 

b) Suppose now that M is not N-wild. Then M is not wild. Hence, for each d ~ ~I, "~ has a finite number 

n(d) of points x of dimension d such that M (x)~ 0. Of course, all these x ~ ~ \ i  are (M, N)-relevant. On the 

other hand, if y e " ~ \ /  is (M, N)-relevant, M~ admits an indecomposable (V,f, y | Y) such that V ;e 0. Since 
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this triple is also indecomposable as an object of ~ k  (9.4), we have ,~t (y) ~ 0. We infer that, besides /, "~ has 

n(d) points of dimension d which are (M, N)-relevant. 

9.7. It remains for  us to prove Proposition 9.4, which follows from 4.2 b), 4.1, and the following lemma. 

Lenuna.  The annihilator o f  ~ in M= Ext~r(t -, ?) is N-- Ext~(t  -, ?). 

Proof. For each Z ~ A, the annihilator of ~ in M (Z) consists of the classes of short exact sequences 0 

) t - ) 0 of mod 'T whose push-out splits for each ~t e Hom,r(Z, / ) .  If the class belongs to ) Z  t ) Y  n 

modC~, Y is a C~-module and the push-out splits because / is injective in modC~. Hence, N is contained in the 
annihilator. 

Conversely, suppose that the class of (t, ~) is annihilated by ~. Since each Ix e HomT(Z, _/) factors through 

Y, the first row of 

0 --) Hom,/-(t-, /)  ~ HomT(Y,/)  ---) Homc/- (Z, /) --4 0 
$ $ $ 

0 ---) H o m T ( t - , i )  --) HomT(Y,i)  ~ HomT(Z, i )  ~ 0 

is exact. Since the first and the second vertical arrows are invertible, so is the second. Since i is, up to isomorphism, 

the only indecomposable injective q-module outside mod r~, we infer that Y e rood T .  
During their work, the authors benefited from the considerable support of the Ukrainian Academy of Sciences 

and the Schweizerischer Nationalfonds. 

REFERENCES 

1. I.M. Gel'fand and V. A. Ponomarev, "Remarks on the classification of a pair of commuting linear transformations in finite- 
dimensional spaces," Funlas. Anal. Prilozh., 3, 81--82 (1969). 

2. P. Donovan and M. R. F'reislich, "Some evidence for an extension of the Brauer-Thrall conjecture," Sonderforschungsbereich Theor. 
Math., 40, 24--26 (1972). 

3. Yu. A. Drozd, "Tame and wild matrix problems,"Lect. Notes Math., 832, 242-258 (1980). 
4. W.W. Grawley-Boevey, "On tame algebras and bocses," Proc. London Math. Soc. IlL, Ser. 56, 451-483 (1988). 
5. W.W. Grawley-Boevey, "Tame algebras and generic modules." Ibid., Ser. 63, 241-265 (1991). 
6. A.V. Roiter, "Matrix problems and representations of bocses," Lect. Notes Math., 831, 288-324 (1980). 
7. L.A. Nazarova, A. V. Roiter, and P. Gabriel, "Representations idecomposables : un algorithme," C. R. Acad. Sci. Paris, 307, ser. 1., 

701-706 (1988). 
8. M. Auslander and S. O. Smalo, "Almost split sequences in subcategories,"J. Algebra, 69, 426-454 (1981); Addendum, 71, 592-594 

(1981). 
9. P. Gabriel and A. V. Roiter, "Representations of t-mite-dimensional algebras," in: Encyclopaedia of Math. Sci., Vol. 73., Algebra 

VIII, SpringeroVerlag (1992). 


