V. V. Sergeichuk

Up to the classification of Hermitian forms a classification has been given of triples $\mathscr{P} = (V_F; U_1, U_2)$, consisting of a finite dimensional vector space V over a field of characteristic $\neq 2$ with a symmetric, or a skew-symmetric, or Hermitian form F and two subspaces U_1 , U_2 . Two triples \mathscr{P} and \mathscr{P}' are identified with each other if there exists an isometry $\varphi : V_F \rightarrow V'_F$, such that $\varphi(U_i) = U_i'$, i = 1, 2.

The classification problem for quadruples of subspaces in finite dimensional vector spaces has been solved by Nazarova [1, 2] and independently by Gel'fand and Ponomarev [3, 4]. In this paper we consider a classification problem for pairs of subspaces in scalar product spaces. We will solve it over a field of characteristic \neq 2 up to the classification of Hermitian forms over the field. The result has been partially announced in [5].

Let us strictly define the problem. Denote by $\mathscr{P} = (V_F; U_1, U_2)$ a triple consisting of a finite dimensional vector space V with a symmetric, or skew-symmetric, or Hermitian form and two subspaces U_1 , U_2 . Two triples \mathscr{P} and \mathscr{P}' will be called isomorphic if there exists a nondegenerate linear map $\Psi : V \to V'$ preserving the scalar product and the subspaces U_1 , U_2 , i.e., $F(x, y) = F'(\varphi(x), \varphi(y)), \varphi(U_1) = U'_1, \varphi(U_2) = U'_2$. The aim of this article is to characterize triples \mathscr{P} up to an isomorphism.

1. <u>Main Result</u>. To characterize triples $\mathcal{P} = (V_f; U_1, U_2)$ we will use a method presented in [5, 6, 7].

Let K be a field of characteristic $\neq 2$ with an involution $a \rightarrow \overline{a}$ (possibly trivial). Let us fix a number $\varepsilon \in \{-1, 1\}$ equal to 1 for nontrivial involution in the field K.

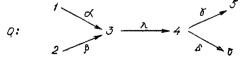
According to [5, 7], a representation A of an oriented graph

6: 2 β 3 € λ

is given if to its vertices 1, 2, and 3 there correspond finite dimensional vector spaces A_1 , A_2 , A_3 ; and to its arrows α , β linear mappings $A_{\alpha} : A_1 \rightarrow A_3$, $A_{\beta} : A_2 \rightarrow A_3$; to its loop $\lambda \in$ -Hermitian form $A_{\lambda}(x, y) = \overline{\epsilon A_{\lambda}(y, x)}$ on space A_3 (i.e., a symmetric, or skew-symmetric, or Hermitian form on A_3). Two representations A and B are isomorphic if there exist non-degenerate linear mappings φ_i : $A_1 \rightarrow B_1$, i = 1, 2, 3 such that $\varphi_3 A_{\alpha} = B_{\alpha} \varphi_1$, $\varphi_3 A_{\beta} = B_{\beta} \varphi_2$, $A_{\lambda}(x, y) = B_{\lambda}(\varphi_3(x), \varphi_3(y))$. The direct sum of the representations A and B is the representation $C = A \oplus B$, where $C_1 = A_1 \oplus B_1$, $i \in \{1, 2, 3, \alpha, \beta, \lambda\}$.

Obviously, every representation A determines a triple $\mathcal{P} = ((A_3)_{A_{\lambda}}; \operatorname{Im}(A_{\alpha}), \operatorname{Im}(A_{\beta}))$ where isomorphic representations correspond to isomorphic triples [for the sake of mutual unique correspondence one can assume that Ker $(A_{\alpha}) = \operatorname{Ker}(A_{\beta}) = 0$].

It has been proved in [5, 7] that classification of representations of a graph G can be obtained from a classification of representations of the quiver



We recall that a representation of quiver Q associates with a vertex a finite dimensional space, with an arrow a linear mapping. A homomorphism $\varphi : M \rightarrow N$ of representations is called a collection of linear mappings $\varphi_i : M_i \rightarrow N_i$, $1 \le i \le 6$ satisfying the conditions

Kiev Institute. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 4, pp. 549-554, April, 1990. Original article submitted September 13, 1988.

 $\varphi_3 M_{\alpha} = N_{\alpha} \varphi_1, \varphi_3 M_{\beta} = N_{\beta} \varphi_2, \varphi_4 M_{\lambda} = N_{\lambda} \varphi_3, \varphi_5 M_{\gamma} = N_{\gamma} \varphi_4, \varphi_6 M_{\delta} = N_{\delta} \varphi_4.$ The dimension of representation M is called the vector (m_1, \ldots, m_6) , where $m_i = \dim(M_i)$.

Representations of quiver Q are characterized in [2] (see also Sec. 2). If there exists only one, up to an isomorphism, representation, which is not decomposable into a direct sum, of dimension (m_1, \ldots, m_6) , then it will be denoted by $[m_1, \ldots, m_6]$.

Representations of graph G and quiver Q we define by collections of matrices A = [A_{α} , A_{β} , A_{λ}] and M = [M_{α} , M_{β} , M_{λ} , M_{γ} , M_{δ}], while assuming that some bases in the spaces have been chosen.

For representation M of quiver Q we will define representation M⁺ of the graph G: $M^+ = [M_{\alpha} \oplus M_{\gamma}^*, M_{\beta} \oplus M_{\delta}^*, M_{\lambda} \setminus \epsilon M_{\lambda}^*]$, where $P^* = \overline{P}^T = (\overline{a}_{j_i})$ is the matrix adjoint to the matrix $P = (a_{j_i})$.

$$P \oplus R = \begin{pmatrix} P & O \\ O & R \end{pmatrix}, \quad P \setminus R = \begin{pmatrix} O & R \\ P & O \end{pmatrix}.$$

We will introduce the notation: if $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n \in K[x]$, then $\overline{f}(x) = \overline{a_0} x^n + \overline{a_1} x^{n-1} + ... + \overline{a_n}$, O_{mn} is the null matrix of dimension $m \times n$, $O_n = O_{nn}$, E_n is the unit matrix of dimension $n \times n$, F_n is a matrix obtained from E_n by the reversed ordering of columns (i.e., the unities are situated on the side diagonal), Φ_n is the Frobenius box with unities under the main diagonal and the characteristic polynomial $x^n + \lambda_1 x^{n-1} + \ldots + \lambda_n \in K[x]$ which is a power of an irreducible polynomial $p_{\Phi_n}(x)$. As in [7, Theorem 8], in the case of $\Phi_n = \overline{\Phi}_n$ we will define a matrix Φ_n' of dimension $n \times n$: $\Phi_n' = F_n$ for degenerate Φ_n , $\Phi_n' = (a_{i+1})$ for nondegenerate Φ_n , where $a_2 = 1$, $a_3 = \ldots = a_{n+1} = 0$, $a_{i+n} = -\lambda_1 a_{i+n-1} - \ldots - \lambda_n a_i$, $k \ge 2$.

The following theorem is the main result of this paper.

<u>THEOREM 1.</u> Over field K of characteristic $\neq 2$ for every representation A of a graph G in spaces A₁, A₂, A₃ it is possible to choose bases in such a way that the triple (A_α, A_β, A_λ) be given by a direct sum of collections of matrices of the following forms:

1) [n, n, 2n; 2n, n, n ± 1]⁺, [n, n, 2n; 2n, n ± 1, n]⁺, [n, n, 2n + 1; 2n + 1, n + 1, n + 1]⁺, [n, n + 1, 2n + 1; 2n + 1, n + 1, n]⁺, [n, n + 1, 2n + 1; 2n + 1, n + i, n + i]⁺, [n + 1, n, 2n + 1; 2n + 1, n + i, n + i]⁺, where $i \in \{0, 1\}$;

2) $[n + i, n + j, 2n + 1; 2n, n, n]^+$, $[n - i, n - j, 2n - 1; 2n, n, n]^+$, where i, $j \in \{0, 1\}$;

$$3) \begin{bmatrix} \begin{pmatrix} E_n \\ \Phi_n \end{pmatrix}, \begin{pmatrix} E_n \\ E_n \end{pmatrix}, & E_{2n}, & (E_nO_n), & (O_nE_n) \end{bmatrix}^+, \text{ where } p_{\Phi_n}(x) \text{ equals } x \text{ or } x = 1; \\ 4) \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \begin{pmatrix} E_n & E_n \\ E_n & \Phi_n \end{pmatrix}, & (E_nO_n), & (O_nE_n) \end{bmatrix}^+ \text{ if } \varepsilon = -1 \text{ or } \Phi_n \neq \overline{\Phi}_n; \\ 4^{\circ} \end{pmatrix} \mathcal{P}(\Phi_n, f) = \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \begin{pmatrix} (\Phi'_n)^{-1} & E_n \\ E_n & (\Phi'_n\Phi_n) \end{pmatrix} f(\Phi'_n \oplus \Phi_n) \end{bmatrix}, \text{ if } \varepsilon = 1 \text{ and } \Phi_n = \overline{\Phi}_n, \text{ where } 0 \neq f(x) = \overline{f}(x) \in K[x], \text{ deg } f(x) < \text{ deg } p_{\Phi_n}(x); \\ 5) \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \begin{pmatrix} E_n \\ E_n & E_n \end{pmatrix}, & (E_nO_n), & (O_nE_n) \end{bmatrix}^+ \text{ for } \varepsilon = -1 \text{ and degenerate } \Phi_n; \\ 5^{\circ} \end{pmatrix} \mathcal{A}(n, a) = \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, a \begin{pmatrix} F_{n-1} \oplus O_1 & E_n \\ E_n & F_n \end{pmatrix} \end{bmatrix} \text{ for } \varepsilon = 1, \text{ where } 0 \neq a = \overline{a} \in K; \\ 6) [A_1, B_j, C, A_1^T, B_j^T]^+ \text{ for } \varepsilon = -1, \text{ where } i, j \in \{0, 1\}, A_0 = \begin{pmatrix} E_n \\ O_{n+1,n} \end{pmatrix}, A_1 = \begin{pmatrix} O_{n,n+1} \\ E_{n+1} \end{pmatrix}, \\ B_0 = \begin{pmatrix} E_n \\ E_n \\ O_{1n} \end{pmatrix}, B_1 = \begin{pmatrix} E_nO_{n1} \\ E_{n+1} \end{pmatrix}, C = \begin{pmatrix} F_n & O_{n,n+1} \\ O_{n+1,n} & F_{n+1} \end{pmatrix}; \end{cases}$$

6') $\mathcal{R}(n,a) = [A_i, B_j, aC]$ for $\varepsilon = 1$, where i, $j \in \{0, 1\}$, $0 \neq a = \overline{a} \in K$, the matrices A_i , B_j , C are from 6).

The components with respect to the initial representation A are determined as follows: for 1, 2, 3, 5, and 6 uniquely; for 4 up to exchange of Φ_n by the box $\overline{\Phi}_n$; for 4' up to exchange of the whole group of components $\bigoplus \mathcal{P}(\Phi_n, f_i)$ with the same box Φ_n on $\bigoplus \mathcal{P}(\Phi_n, g_i)$, where $\sum_i f_i(\omega) x_i^{\circ} x_i$ and $\sum_i g_i(\omega) x_i^{\circ} x_i$ are equivalent Hermitian forms over the field $K(\omega) = K[x]/p_{\Phi_n}(x)$ with the involution $f(\omega)^{\circ} = \overline{f}(\omega)$; for 5' and 6' up to the replacement of the whole group of components $\bigoplus_{i} \mathscr{C}(n, a_i) \ [\bigoplus_{i} \mathscr{R}(n, a_i)$ respectively] by the same number n on $\bigoplus_{i} \mathscr{C}(n, b_i)$ [on $\bigoplus_{i} \mathscr{R}(n, b_i)$ respectively], where $\sum_{i} a_i \overline{x}_i x_i$ and $\sum_{i} b_i \overline{x}_i x_j$ are equivalent Hermitian forms over the field K.

2. <u>Classification of Representations of Quiver Q</u>. Theorem 1 assumes that the classification of representations of quiver Q is known. This classification has been obtained in [2]. We will present it in the form suggested by [4].

We will introduce the notation: $\Phi_n(\lambda)$ is the Frobenius box with the characteristic polynomial $(x - \lambda)^n$, $E_{n+1,n^{\uparrow}}$, $E_{n,n+1^{\leftarrow}}$, $E_{n,n+1^{\rightarrow}}$ are matrices obtained from E_n by adding a null row or a null column from above, from below, from the left, and from the right, respectively.

2.1 A complete system ind (Q') of nonisomorphic indecomposable into a direct sum representations of the quiver

contains exactly one representation for each dimension (n, n, 2n, n, n ± 1), (n, n, 2n, n ± 1, n), (n, n ± 1, 2n, n, n), (n ± 1, n, 2n, n, n), x_1 , x_2 , 2n + 1, x_4 , x_5), where x_1 , x_2 , x_4 , $x_5 \in \{n, n + 1\}$. These representations can be obtained from the following indecomposable representations $M = [M_{\alpha}, M_{\beta}, M_{\gamma}, M_{\delta}]$:

1)
$$\begin{pmatrix} E_n \\ O_n \end{pmatrix}$$
, $\begin{pmatrix} O_n \\ E_n \end{pmatrix}$, $\begin{pmatrix} E_n \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n,n+1}^{\dagger} \\ E_{n,n+1}^{\dagger} \end{pmatrix}^{\mathsf{T}}$ or $\begin{pmatrix} E_{n,n+1}^{\star} \\ E_{n,n+1}^{\star} \end{pmatrix}^{\mathsf{T}}$;
2) $\begin{pmatrix} E_{n+1} \\ O_{n,n+1} \end{pmatrix}$, $\begin{pmatrix} O_{n+1,n} \\ E_n \end{pmatrix}$, $\begin{pmatrix} E_{n+1,n} \\ E_n \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n+1,n} \\ E_n \end{pmatrix}^{\mathsf{T}}$ or $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$;
3) $\begin{pmatrix} E_{n+1} \\ O_{n,n+1} \end{pmatrix}$, $\begin{pmatrix} O_{n+1,n} \\ E_n \end{pmatrix}$, $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$;
4) $\begin{pmatrix} E_n \\ O_{n+1,n} \end{pmatrix}$, $\begin{pmatrix} O_{n+1,n} \\ E_n \end{pmatrix}$, $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n-1,n} \oplus \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}^{\mathsf{T}}$;
5) $\begin{pmatrix} E_{n+1,n} \\ E_n \end{pmatrix}$, $\begin{pmatrix} O_{n+1,n} \\ E_n \end{pmatrix}$, $\begin{pmatrix} O_{n+1,n} \\ E_n \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n+1,n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n+1,n} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$;
6) $\begin{pmatrix} E_{n+1} \\ O_{n,n+1} \end{pmatrix}$, $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}$, $\begin{pmatrix} E_{n+1} \\ O_{n,n+1} \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E_{n+1} \\ E_{n,n+1} \end{pmatrix}^{\mathsf{T}}$, $\begin{pmatrix} E$

using transpositions of the matrices M_{α} , M_{β} , transpositions of matrices M_{γ} , M_{δ} , passage to the adjoint indecomposable representation $M^{\circ} = [M_{\gamma}^{*}, M_{\delta}^{*}, M_{\alpha}^{*}, M_{\beta}^{*}]$ of dimension $(m_{4}, m_{5}, m_{3}, m_{1}, m_{2})$.

The set ind (Q') contains also the following representations of dimension (n, n, 2n, n, n): $\mathcal{M}_1(\Phi_n) = \begin{bmatrix} E_n \\ O_n \end{bmatrix}, \ \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \ (E_n E_n), \ (E_n \Phi_n) \end{bmatrix},$

$$\mathcal{M}_{1}(\Phi_{n}) = \left[\left(O_{n} \right)^{n} \left(E_{n} \right)^{n} \left(E_{n} L_{n} \right)^{n} \left(E_{n} \Phi_{n} \right) \right]^{n}$$
$$\mathcal{M}_{2} = \left[\left(\left(E_{n} \\ O_{n} \right)^{n} \left(E_{n} \right)^{n} \right)^{n} \left(\Phi_{n}(0) E_{n} \right)^{n} \left(E_{n} E_{n} \right) \right]^{n},$$
$$\mathcal{M}_{3}(\lambda) = \left[\left(\left(E_{n} \\ \Phi_{n}(\lambda) \right)^{n} \left(E_{n} \\ E_{n} \right)^{n} \right)^{n} \left(E_{n} O_{n} \right)^{n} \left(O_{n} E_{n} \right)^{n} \right]^{n}, \quad \mathcal{M}_{4} = \mathcal{M}_{3}(0)^{0}.$$

The set ind(Q') does not contain any other representations.

2.2 A complete system ind (Q) of nonisomorphic indecomposable into a direct sum represensations of the quiver Q consists of the representations

a) $\mathcal{N}_1(A) = [A_{\alpha}, A_{\beta}, E, A_{\gamma}, A_{\delta}]$, where $A = [A_{\alpha}, A_{\beta}, A_{\gamma}, A_{\delta}] \in ind(Q')$ is a representation of dimension $\neq (n, n, 2n, n, n)$;

b) $\mathcal{N}_2(A) = \begin{bmatrix} A_{\alpha}, A_{\beta}, \begin{pmatrix} A_{\gamma} \\ A_{\delta} \end{pmatrix}, (E_n O_n), (O_n E_n) \end{bmatrix}$, where $A \in \operatorname{ind}(Q')$ is a representation of dimension (n, n, 2n, n, n), or (n + i, n + j, 2n + 1, n, n) or (n - i, n - j, 2n - 1, n, n), i, j \in \{0, 1\};

c) $\mathcal{N}_3(A) = \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \begin{pmatrix} A_{\gamma}^* A_{\delta}^* \end{pmatrix}, A_{\alpha}^*, A_{\beta}^* \end{bmatrix}$, where $A = \mathcal{M}_3(1)$ or $A \in \text{ind}(Q')$ is a representation of dimension (n + i, n + j, 2n + 1, n, n) or (n - i, n - j, 2n - 1, n, n), $i, j \in \{0, 1\}$.

3. <u>Proof of Theorem 1.</u> A representation adjoint to the representation $M = [M_{\alpha}, M_{\beta}, M_{\lambda}, M_{\gamma}, M_{\delta}]$ of quiver Q is the representation $M^{\circ} = [M_{\gamma}^{*}, M_{\delta}^{*}, \varepsilon M_{\lambda}^{*}, M_{\alpha}^{*}, M_{\beta}^{*}]$ (ε is the same as in the quiver Q). An adjoint homomorphism to the homomorphism $\psi = (\Psi_{1}, \ldots, \Psi_{6})$: $M \rightarrow N$ is the homomorphism $\psi^{\circ} = (\Psi_{5}^{*}, \Psi_{6}^{*}, \Psi_{4}^{*}, \Psi_{3}^{*}, \Psi_{1}^{*}, \Psi_{2}^{*})$: $N^{\circ} \rightarrow M^{\circ}$.

We will replace each representation from ind (Q), isomorphic to an adjoint one, by a self-adjoint representation and we will denote their set by $\text{ind}_0(Q)$. We will include into $\text{ind}_1(Q)$ all representations from ind (Q) isomorphic with an adjoint but not self-adjoint one, and one from each pair {M, N} \subset ind (Q), where M \cong N \cong M⁰.

The ring of endomorphisms $\Lambda = \text{End}(N)$ of an indecomposable representation $N \in \text{ind}_0(Q)$ is local, the set R of its irreversible elements is the radical; therefore $T(N) = \Lambda/R$ is a field. By means of the representation $N \in \text{ind}_0(Q)$ and its self-adjoint automorphism $\psi = \psi^0$ we will define the representation of the graph G: $N^{\psi} = [N_{\alpha}, N_{\beta}, N_{\lambda}\Psi_3]$.

The following theorem is a particular case of Theorem 1 [7].

<u>THEOREM 2.</u> Every representation of graph G over field K of characteristic \neq 2 is decomposable into a direct sum of representations of the forms

a) M^+ , where $M \in \text{ind}_1(Q)$;

b) N^{ψ} , where $N \in \text{ind}_0(Q)$, $\psi = \psi^0 \in \text{Aut}(N)$.

The components are determined as follows: of the form a) uniquely; of the form b) up to the exchange of the whole group of components $\bigoplus_i N^{\psi_i}$ with the same N for $\bigoplus_i N^{\varphi_i}$, where $\sum_i (\psi_i + R) x_i^{\circ} x_i$ and $\sum_i (\varphi_i + R) x_i^{\circ} x_i$ are equivalent Hermitian forms over the field $T(N) = \Lambda/R$ with the involution $(\psi + R)^{\circ} = \psi^{\circ} + R$.

We will use Theorem 2 to prove Theorem 1. The set ind (Q) has been introduced in subsection 2.2. If $z = (z_1, \ldots, z_6)$ is the dimension of the representation M, then $z^0 = (z_5, z_6, z_4, z_3, z_1, z_2)$ is the dimension of the adjoint representation M⁰.

Representations of dimensions $z \neq z^0$ from ind (Q) are fully determined by their dimensions and they are not isomorphic to self-adjoint ones. We will divide them into pairs of representations of mutually adjoint dimensions z, z^0 and from each pair we will choose one representation. We will obtain all representations of M from ind₁(Q) of nonself-adjoint dimensions. Passing to representations of M⁺, we will obtain all representations 1-2 in Theorem 1.

The representations $\mathcal{N}_2(\mathcal{M}_3(\lambda))$, $\lambda \in \{0, 1\}$ (see 2.2) are not isomorphic to self-adjoint ones since $\mathcal{N}_2(\mathcal{M}_3(0))^{\circ} \simeq \mathcal{N}_2(\mathcal{M}_4)$, $\mathcal{N}_2(\mathcal{M}_3(1))^{\circ} \simeq \mathcal{N}_3(\mathcal{M}_3(1))$. We obtain representations 3 in Theorem 1.

Let us consider the representation

$$\mathcal{N}_{2}(\mathcal{M}_{1}(\Phi_{n})) = \left[\begin{pmatrix} E_{n} \\ O_{n} \end{pmatrix}, \begin{pmatrix} O_{n} \\ E_{n} \end{pmatrix}, \begin{pmatrix} E_{n} & E_{n} \\ E_{n} & \Phi_{n} \end{pmatrix}, (E_{n}O_{n}), (O_{n}E_{n}) \right].$$

Obviously, $\mathcal{N}_{2}(\mathcal{M}_{1}(\Phi_{n}))^{\circ} \simeq \mathcal{N}_{2}(\mathcal{M}_{1}(\overline{\Phi}_{n})).$

Let $\varphi: \mathcal{N}_2(\mathcal{M}_1(\Phi_n)) \rightarrow B = B^0$ be an isomorphism into a self-adjoint representation. Replacing B by an isomorphic self-adjoint representation we can write

$$B = \begin{bmatrix} \begin{pmatrix} E_n \\ O_n \end{pmatrix}, \begin{pmatrix} O_n \\ E_n \end{pmatrix}, \begin{pmatrix} M & E_n \\ \varepsilon E_n & N \end{pmatrix}, (E_n O_n), (O_n E_n) \end{bmatrix},$$

 $M = \epsilon M^*$, $N = \epsilon N^*$. Then the isomorphism takes the form

$$\varphi = (S_1, S_2, S_1 \oplus S_2, S_2 \oplus \varepsilon S_1, S_2, \varepsilon S_1).$$
⁽¹⁾

Replacing M, N, S₁, S₂ by $S_2^{-1}MS_2^{*-1}$, $S_2^{*}NS_2$, $S_2^{*}S_1$, E_n we obtain an isomorphism φ of the form (1) in which $S_2 = E_n$ and by the definition of an isomorphism $MS_1 = E_n$, $N = \epsilon S_1 \Phi_n$. Since $M = \varepsilon M^*$, $N = \varepsilon N^*$, then $S_1 = \varepsilon S_1^*$, $S_1 \Phi_n = \varepsilon (S_1 \Phi_n)^*$. By [7, Lemma 8, Theorem 8] $\varepsilon = 1$, $\Phi_n = \overline{\Phi}_n$ and, therefore, we can put $S_1 = \Phi_n'$, $M = (\Phi_n')^{-1}$, $N = \Phi_n' \Phi_n$ (Φ_n' has been defined in Sec. 1).

Let ψ : B \rightarrow B be an endomorphism. Then $\eta = \varphi^{-1}\psi\varphi$ is an endomorphism of the repre-H). A matrix commuting with a Frobenius box is a polynomial with respect to this box and therefore $H = f(\Phi_n)$, $f \in K[x]$. Since $\Phi_n H(\Phi_n')^{-1} = f(\Phi_n \Phi_n(\Phi_n')^{-1}) = f(\Phi_n \Phi_n)$, then $\psi = \phi \eta \phi^{-1} = (f(\Phi_n'), f(\Phi_n), f(\Phi_n \Phi_n), f(\Phi_n \Phi_n), f(\Phi_n), f(\Phi_n),$...), and the field T(B) = End(B)/R can be identified with the field $K(\omega) = K[x]/p_{\Phi_{\omega}}(x)$ with the involution $f(\omega)^0 = \overline{f}(\omega)$. By Theorem 2 we obtain the components 4 and 4' of Theorem 1. By representation $\mathcal{N}_2(\mathcal{M}_2)$ we obtain the components 5 and 5'.

In the set ind (Q) there are still not considered representations of the dimensions (n + i, n + j, 2n + 1; 2n + 1, n + i, n + j), where i, $j \in \{0, 1\}$. It is easy to verify that these representations are isomorphic to the representations $[A_i, B_j, C, A_i^T, B_j^T]$ (see 6 in Theorem 1), which are self-adjoint for $\varepsilon = 1$. Thus, we obtain the components 6 and 6' of Theorem 1. An application of Theorem 2 concludes the proof of Theorem 1.

LITERATURE CITED

- 1. L. A. Nazarova, "Representations of a quadruple," Izv. Akad. Nauk SSSR, Ser. Mat., <u>31, No. 6, 1361-1378 (1967).</u>
- 2. L. A. Nazarova, "Representations of guivers of infinite type," Izv. Akad. Nauk SSSR, Ser. Mat., 37, No. 4, 752-791 (1973).
- 3. I. M. Gel'fand and V. A. Ponomarev, "Problems of linear algebra and classification of quadruples of subspaces of a finite dimensional vector space," Preprint, No. 71.06, Institute of Applied Mathematics, Akad. Nauk SSSR, Moscow (1971).
- 4. I. M. Gel'fand and V. A. Ponomarev, "Quadruples of subspaces of a finite dimensional vector space," Dokl. Akad. Nauk SSSR, 197, No. 4, 762-765 (1971).
- 5. V. V. Sergeichuk, "Classification problems for systems of linear mappings and semilinear forms," submitted to Ukr.NIINTI, No. 196Uk-D84. 6. A. V. Roiter, "Boxes with involution," in: Representations and Quadratic Forms [in
- Russian], Kiev Institute of Mathematics, Academy of Sciences, UkrSSR, 124-126 (1979).
- 7. V. V. Sergeichuk, "Classification problems for systems of forms and linear mappings," Izv. Akad. Nauk SSSR, Ser. Mat., 51, No. 6, 1170-1190 (1987).