Up to the classification of Hermitian forms a classification has been given of triples $\mathscr{P}=\left(\mathrm{V}_{\mathrm{F}} ; \mathrm{U}_{1}, \mathrm{U}_{2}\right)$, consisting of a finite dimensional vector space V over a field of characteristic $\neq 2$ with a symmetric, or a skew-symmetric, or Hermitian form F and two subspaces U_{1}, U_{2}. Two triples \mathscr{P} and \mathscr{P}^{\prime} are identified with each other if there exists an isometry $\varphi: V_{F} \rightarrow V_{F}^{\prime}$ such that $\varphi\left(U_{i}\right)=U_{i}{ }^{\prime}, i=1,2$.

The classification problem for quadruples of subspaces in finite dimensional vector spaces has been solved by Nazarova [1, 2] and independently by Gel'fand and Ponomarev [3, 4]. In this paper we consider a classification problem for pairs of subspaces in scalar product spaces. We will solve it over a field of characteristic $\neq 2$ up to the classification of Hermitian forms over the field. The result has been partially announced in [5].

Let us strictly define the problem. Denote by $\mathscr{P}=\left(\mathrm{V}_{\mathrm{F}} ; \mathrm{U}_{1}, \mathrm{U}_{2}\right)$ a triple consisting of a finite dimensional vector space V with a symmetric, or skew-symmetric, or Hermitian form and two subspaces U_{1}, U_{2}. Two triples \mathscr{P} and \mathscr{O}^{\prime} will be called isomorphic if there exists a nondegenerate linear map $\varphi: V \rightarrow V^{\prime}$ preserving the scalar product and the subspaces U_{1}, U_{2}, i.e., $F(x, y)=F^{\prime}(\varphi(x), \varphi(y)), \varphi\left(U_{1}\right)=U_{1}^{\prime}, \varphi\left(U_{2}\right)=U_{2}^{\prime}$. The aim of this article is to characterize triples \mathscr{P} up to an isomorphism.

1. Main Result. To characterize triples $\mathcal{P}=\left(V_{f} ; U_{1}, U_{2}\right)$ we will use a method presented in $[5,6,7]$.

Let K be a field of characteristic $\neq 2$ with an involution $a \rightarrow \bar{a}$ (possibly trivial). Let us fix a number $\varepsilon \in\{-1,1\}$ equal to 1 for nontrivial involution in the field k.

According to [5, 7], a representation A of an oriented graph

is given if to its vertices 1,2 , and 3 there correspond finite dimensional vector spaces $A_{1}, A_{2}, A_{3} ;$ and to its arrows α, β linear mappings $A_{\alpha}: A_{1} \rightarrow A_{3}, A_{\beta}: A_{2} \rightarrow A_{3}$; to its loop $\lambda \varepsilon$-Hermitian form $A_{\lambda}(x, y)=\overline{\varepsilon A_{\lambda}(y, x)}$ on space A_{3} (i.e., a symmetric, or skew-symmetric, or Hermitian form on A_{3}). Two representations A and B are isomorphic if there exist nondegenerate linear mappings $\varphi_{i}: A_{i} \rightarrow B_{i}, i=1,2,3$ such that $\varphi_{3} A_{\alpha}=B_{\alpha} \varphi_{1}, \varphi_{3} A_{\beta}=B_{B} \varphi_{2}$, $A_{\lambda}(x, y)=B_{\lambda}\left(\varphi_{3}(x), \varphi_{3}(y)\right)$. The direct sum of the representations A and B is the representation $C=A \oplus B$, where $C_{i}=A_{i} \oplus B_{i}, i \in\{1,2,3, \alpha, \beta, \lambda\}$.

Obviously, every representation A determines a triple $\mathscr{P}=\left(\left(A_{3}\right)_{A_{\lambda}} ; \operatorname{Im}\left(A_{\alpha}\right), \operatorname{Im}\left(A_{\beta}\right)\right)$ where isomorphic representations correspond to isomorphic triples [for the sake of mutual unique correspondence one can assume that $\left.\operatorname{Ker}\left(A_{\alpha}\right)=\operatorname{Ker}\left(A_{\beta}\right)=0\right]$.

It has been proved in [5, 7] that classification of representations of a graph G can be obtained from a classification of representations of the quiver
$Q:$

We recall that a representation of quiver Q associates with a vertex a finite dimensional space, with an arrow a linear mapping. A homomorphism $\varphi: M \rightarrow N$ of representations is called a collection of linear mappings $\varphi_{i}: M_{i} \rightarrow N_{i}, l \leq i \leq 6$ satisfying the conditions

[^0]$\varphi_{3} M_{\alpha}=N_{\alpha} \varphi_{1}, \varphi_{3}, M_{\beta}=N_{\beta} \varphi_{2}, \varphi_{A} M_{\lambda}=N_{\lambda} \varphi_{3}, \varphi_{\delta} M_{\gamma}=N_{\gamma} \varphi_{4}, \varphi_{8} M_{\delta}=N_{\delta} \varphi_{4}$. The dimension of representation M is called the vector $\left(m_{1}, \ldots, m_{6}\right)$, where $m_{i}=\operatorname{dim}\left(M_{i}\right)$.

Representations of quiver Q are characterized in [2] (see also Sec. 2). If there exists only one, up to an isomorphism, representation, which is not decomposable into a direct sum, of dimension (m_{1}, \ldots, m_{6}), then it will be denoted by $\left[m_{1}, \ldots, m_{6}\right.$].

Representations of graph G and quiver Q we define by collections of matrices $A=\left[A_{\alpha}\right.$, $\left.A_{\beta}, A_{\lambda}\right]$ and $M=\left[M_{\alpha}, M_{\beta}, M_{\lambda}, M_{\gamma}, M_{\delta}\right]$, while assuming that some bases in the spaces have been chosen.

For representation M of quiver Q we will define representation M^{+}of the graph G : $\mathrm{M}^{+}=\left[\mathrm{M}_{\alpha} \oplus \mathrm{M}_{\gamma}{ }^{*}, \mathrm{M}_{\beta} \oplus \mathrm{M}_{\delta}{ }^{*}, M_{\lambda} \backslash \varepsilon M_{\lambda}{ }^{*}\right]$, where $\mathrm{P}^{*}=\overline{\mathrm{P}}^{\mathrm{T}}=\left(\bar{a}_{j i}\right)$ is the matrix adjoint to the matrix $\mathrm{P}=\left(a_{i j}\right)$.

$$
P \oplus R=\left(\begin{array}{ll}
P & 0 \\
0 & R
\end{array}\right), \quad P \backslash R=\left(\begin{array}{ll}
0 & R \\
P & 0
\end{array}\right) .
$$

We will introduce the notation: if $\mathrm{f}(\mathrm{x})=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in K[x]$, then $\overline{\mathrm{f}}(\mathrm{x})=\bar{a}_{0} x^{n}+$ $\bar{a}_{1} x^{n-1}+\ldots+\bar{a}_{n}, O_{m n}$ is the null matrix of dimension $m \times n, O_{n}=O_{n n}$, E_{n} is the unit matrix of dimension $n \times n, F_{n}$ is a matrix obtained from E_{n} by the reversed ordering of columns (i.e., the unities are situated on the side diagonal), Φ_{n} is the Frobenius box with unities under the main diagonal and the characteristic polynomial $x^{n}+\lambda_{1} x^{n-1}+\ldots+\lambda_{n} \in K[x]$ which is a power of an irreducible polynomial $p_{\Phi_{n}}(x)$. As in [7, Theorem 8], in the case of $\Phi_{n}=\widehat{\Phi}_{\mathrm{n}}$ we will define a matrix $\Phi_{\mathrm{n}}{ }^{\prime}$ of dimension $\mathrm{n} \times \mathrm{n}: \Phi_{\mathrm{n}}{ }^{\prime}=F_{\mathrm{n}}$ for degenerate Φ_{n}, $\Phi_{\mathrm{n}}{ }^{\prime}=\left(a_{i+1}\right)$ for nondegenerate Φ_{n}, where $a_{2}=1, a_{3}=\ldots=a_{n+1}=0, a_{l+n}=-\lambda_{1} a_{l+n-1}-\ldots-\lambda_{n} a_{l}, \ell \geq 2$.

The following theorem is the main result of this paper.
THEOREM 1. Over field K of characteristic $\neq 2$ for every representation A of a graph G in spaces A_{1}, A_{2}, A_{3} it is possible to choose bases in such a way that the triple (A_{α}, A_{β}, A_{λ}) be given by a direct sum of collections of matrices of the following forms:

1) $[\mathrm{n}, \mathrm{n}, 2 \mathrm{n} ; 2 \mathrm{n}, \mathrm{n}, \mathrm{n} \pm 1]^{+}$, $[\mathrm{n}, \mathrm{n}, 2 \mathrm{n} ; 2 \mathrm{n}, \mathrm{n} \pm 1, \mathrm{n}]^{+},[\mathrm{n}, \mathrm{n}, 2 \mathrm{n}+1 ; 2 \mathrm{n}+1, \mathrm{n}+$ $1, n+1]^{+},[n, n+1,2 n+1 ; 2 n+1, n+1, n]^{+},[n, n+1,2 n+1 ; 2 n+1, n+i, n+$ $i]^{+},[n+1, n, 2 n+1 ; 2 n+1, n+i, n+i]^{+}$, where $i \in\{0,1\} ;$
2) $[n+i, n+j, 2 n+1 ; 2 n, n, n]^{+},[n-i, n-j, 2 n-1 ; 2 n, n, n]^{+}$, where $i, j \in$ $\{0,1\} ;$
3) $\left[\binom{E_{n}}{\boldsymbol{\Phi}_{n}},\binom{E_{n}}{E_{n}}, \quad E_{2 n}, \quad\left(E_{n} O_{n}\right), \quad\left(O_{n} E_{n}\right)\right]^{+}$, where $\mathrm{p}_{\Phi_{n}}(\mathrm{x})$ equals x or $\mathrm{x}-1$;
4) $\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\begin{array}{cc}E_{n} & E_{n} \\ E_{n} & \Phi_{n}\end{array}\right),\left(E_{n} O_{n}\right), \quad\left(O_{n} E_{n}\right)\right]^{+}$if $\varepsilon=-1$ or $\Phi_{\mathrm{n}} \neq \bar{\Phi}_{\mathrm{n}}$;
$\left.4^{\prime}\right) \mathcal{P}\left(\Phi_{n}, f\right)=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\begin{array}{ll}\left(\Phi_{n}^{\prime}\right)^{-1} & E_{n} \\ E_{n} & \left(\Phi_{n}^{\prime} \Phi_{n}\right.\end{array}\right) f\left(\Phi_{n}^{*} \oplus \Phi_{n}\right)\right]$, if $\varepsilon=1$ and $\Phi_{\mathrm{n}}=\Phi_{\mathrm{n}}$, where $0 \neq$ $\mathrm{f}(\mathrm{x})=\overline{\mathrm{f}}(\mathrm{x}) \in \mathrm{K}[\mathrm{x}], \operatorname{deg} \mathrm{f}(\mathrm{x})<\operatorname{deg} \mathrm{p}_{\Phi_{\mathrm{n}}}(\mathrm{x})$;
5) $\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\begin{array}{ll}\Phi_{n} & E_{n} \\ E_{n} & E_{n}\end{array}\right),\left(E_{n} O_{n}\right),\left(O_{n} E_{n}\right)\right]^{+}$for $\varepsilon=-1$ and degenerate Φ_{n};
$\left.5^{\prime}\right) a(n, a)=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}}, a\left(\begin{array}{cc}F_{n-1} \oplus O_{1} & E_{n} \\ E_{n} & F_{n}\end{array}\right)\right]$ for $\varepsilon=1$, where $0 \neq a=\bar{a} \in \mathrm{~K}$;
6) $\left[A_{i}, B_{j}, C, A_{i}{ }^{T}, B_{j} T^{T}+\right.$ for $\varepsilon=-1$, where $i, j \in\{0,1\}, A_{0}=\binom{E_{n}}{O_{n+1, n}}, A_{1}=\binom{O_{n, n+1}}{E_{n+1}}$, $\mathrm{B}_{0}=\left(\begin{array}{l}E_{n} \\ E_{n} \\ O_{1 n}\end{array}\right), \quad \mathrm{B}_{1}=\binom{E_{n} O_{n 1}}{E_{n+1}}, \quad \mathrm{C}=\left(\begin{array}{ll}F_{\%} & O_{n, n+1} \\ O_{n+1, n} & F_{n+1}\end{array}\right)$;
$\left.6^{1}\right) \mathcal{R}(n, a)=\left[A_{i}, B_{j}, a C\right]$ for $\varepsilon=1$, where $i, j \in\{0,1\}, 0 \neq a=\bar{a} \in K$, the matrices A_{i}, B_{j}, C are from 6).

The components with respect to the initial representation A are determined as follows: for $1,2,3,5$, and 6 uniquely; for 4 up to exchange of Φ_{n} by the box $\bar{\phi}_{n}$; for 4^{\prime} up to exchange of the whole group of components $\oplus \mathscr{P}\left(\Phi_{n}, f_{i}\right)$ with the same box Φ_{n} on $\oplus \mathscr{P}\left(\Phi_{n}, g_{i}\right)$, where $\sum_{i} f_{i}(\omega) x_{i}{ }^{0} x_{i}$ and $\sum_{i} g_{i}(\omega) x_{i}{ }^{0} x_{i}$ are equivalent Hermitian forms over the field $K(\omega)=K[x] / p_{\Phi_{n}}(x)$ with the involution $f(\omega)^{0}=\bar{f}(\omega)$; for 5^{\prime} and 6^{\prime} up to the replacement
of the whole group of components $\oplus_{i} \mathbb{C}\left(n, a_{i}\right)\left[{\underset{i}{i}}_{\mathscr{R}}\left(n, a_{i}\right)\right.$ respectively] by the same number n on $\oplus_{i} a\left(n, b_{i}\right)$ [on $\oplus \mathcal{R}\left(n, b_{i}\right)$ respectively], where $\sum_{i} a_{i} \bar{x}_{i} x_{i}$ and $\sum_{i} b_{i} \bar{x}_{i} \mathrm{x}_{j}$ are equivalent Hermitian forms over the field K .
2. Classification of Representations of Quiver Q. Theorem 1 assumes that the classification of representations of quiver Q is known. This classification has been obtained in [2]. We will present it in the form suggested by [4].

We will introduce the notation: $\Phi_{n}(\lambda)$ is the Frobenius box with the characteristic polynomial $(x-\lambda)^{n}, E_{n+1}, n^{\uparrow}, E_{n+1}, n^{\downarrow}, E_{n, n+1}, E_{n, n+1} \rightarrow$ are matrices obtained from E_{n} by adding a null row or a null column from above, from below, from the left, and from the right, respectively.
2.1 A complete system ind (Q^{\prime}) of nonisomorphic indecomposable into a direct sum representations of the quiver
$q^{\prime}:$

contains exactly one representation for each dimension ($n, n, 2 n, n, n \pm 1$) , ($n, n, 2 n$, $\left.n \pm 1, n),(n, n \pm 1,2 n, n, n),(n \pm 1, n, 2 n, n, n), x_{1}, x_{2}, 2 n+1, x_{4}, x_{5}\right)$, where x_{1}, $x_{2}, x_{4}, x_{5} \in\{n, n+1\}$. These representations can be obtained from the following indecomposable representations $M=\left[M_{\alpha}, M_{\beta}, M_{\gamma}, M_{\delta}\right]$:

1) $\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\binom{E_{n}}{E_{n}}^{\mathrm{T}},\binom{E_{n, n-1}^{\dagger}}{E_{n, n-1}^{\dagger}}^{\mathrm{T}}$ or $\binom{E_{n, n+1}^{-}}{E_{n, n+1}^{+}}^{\mathrm{T}}$;
2) $\left.\binom{E_{n+1}}{O_{n, n+1}}, \begin{array}{l}O_{n+1, n} \\ E_{n}\end{array}\right),\binom{E_{n+1, n}^{\dagger}}{E_{n}}^{\top},\binom{E_{n+1, n}^{\downarrow}}{E_{n}}^{\top}$ or $\binom{E_{n+1}}{E_{n, n+1}^{-}}^{\top}$;
3) $\binom{E_{n+1}}{O_{n, n+1}},\binom{O_{n+1, n}}{E_{n}},\binom{E_{n+1}}{E_{n, n+1}^{-}}^{\mathrm{T}},\binom{E_{n+1}}{E_{n, n+1}}^{\mathrm{P}}$;

4) $\binom{E_{n+1, n}^{\dagger}}{E_{n}},\binom{O_{n+1, n}}{E_{n}},\binom{O_{n+1, n}}{E_{n}}^{\top} \cdot\binom{E_{n+1, n}^{\dagger}}{E_{n}}^{\boldsymbol{T}}$;
5) $\binom{E_{n+1}}{O_{n, n+1}},\binom{E_{n+1}}{E_{n, n+1}^{-}},\binom{E_{n+1}}{O_{n, n+1}}^{\top},\binom{E_{n+1}}{E_{n, n+1}}^{\boldsymbol{r}}$,
using transpositions of the matrices M_{α}, M_{β}, transpositions of matrices M_{γ}, M_{δ}, passage to the adjoint indecomposable representation $M^{0}=\left[M_{\gamma}{ }^{*}, M_{\delta}{ }^{*}, M_{\alpha}{ }^{*}, M_{\beta}{ }^{*}\right]$ of dimension (m_{4}, m_{5}, $\mathrm{m}_{3}, \mathrm{~m}_{1}, \mathrm{~m}_{2}$).

The set ind (Q^{\prime}) contains also the following representations of dimension ($n, n, 2 n$, n, n):

$$
\begin{gathered}
\mu_{1}\left(\Phi_{n}\right)=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(E_{n} E_{n}\right),\left(E_{n} \Phi_{n}\right)\right], \\
\mu_{2}=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\Phi_{n}(0) E_{n}\right),\left(E_{n} E_{n}\right)\right], \\
\mu_{3}(\lambda)=\left[\binom{E_{n}}{\Phi_{n}(\lambda)},\binom{E_{n}}{E_{n}},\left(E_{n} O_{n}\right),\left(O_{n} E_{n}\right)\right], \lambda \in\{0,1\}, \\
\mu_{4}=\mu_{3}(0)^{0} .
\end{gathered}
$$

The set ind (Q^{\prime}) does not contain any other representations.
2.2 A complete system ind (Q) of nonisomorphic indecomposable into a direct sum represensations of the quiver Q consists of the representations
a) $\mathcal{N}_{1}(A)=\left[A_{\alpha}, A_{\beta}, E, A_{\gamma}, A_{\delta}\right]$, where $A=\left[A_{\alpha}, A_{\beta}, A_{\gamma}, A_{\delta}\right] \in$ ind (Q^{\prime}) is a representation of dimension $\neq(n, n, 2 n, n, n)$;
b) $\mathcal{N}_{2}(\mathrm{~A})=\left[A_{\alpha}, A_{\beta},\binom{A_{\gamma}}{A_{0}},\left(E_{n} O_{n}\right),\left(O_{n} E_{n}\right)\right]$, where $A \in$ ind $\left(Q^{\prime}\right)$ is a representation of dimen$\operatorname{sion}(n, n, 2 n, n, n)$, or $(n+i, n+j, 2 n+1, n, n)$ or $(n-i, n-j, 2 n-1, n, n)$, n, $j \in\{0,1\}$;
c) $\mathcal{N}_{3}(\mathrm{~A})=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(A_{\gamma}^{*} A_{\hat{\delta}}^{*}\right), A_{\alpha}^{*}, A_{\beta}^{*}\right]$, where $\mathrm{A}=\mu_{3}(1)$ or $\mathrm{A} \in$ ind $\left(Q^{\prime}\right)$ is a representation of dimension $(n+i, n+j, 2 n+1, n, n)$ or $(n-i, n-j, 2 n-1, n, n), i, j \in$ $\{0,1\}$.
3. Proof of Theorem 1. A representation adjoint to the representation $M=\left[M_{\alpha}, M_{\beta}\right.$, $\left.M_{\lambda}, M_{\gamma}, M_{\delta}\right]$ of quiver Q is the representation $M^{0}=\left[M_{\gamma}{ }^{*}, M_{\delta}{ }^{*}, \varepsilon M_{\lambda}{ }^{*}, M_{\alpha}{ }^{*}, M_{\beta}{ }^{*}\right]$ (ε is the same as in the quiver Q). An adjoint homomorphism to the homomorphism $\psi=\left(\Psi_{1}, \ldots, \Psi_{6}\right)$: $\mathrm{M} \rightarrow \mathrm{N}$ is the homomorphism $\psi^{0}=\left(\Psi_{5} *, \Psi_{6} *, \Psi_{4} *, \Psi_{3} *, \Psi_{1} *, \Psi_{2} *\right): N^{0} \rightarrow M^{0}$.

We will replace each representation from ind (Q), isomorphic to an adjoint one, by a self-adjoint representation and we will denote their set by ind (Q). We will include into ind $_{1}(Q)$ all representations from ind (Q) isomorphic with an adjoint but not self-adjoint one, and one from each pair $\{M, N\} \subset$ ind (Q), where $M \simeq N \simeq M^{0}$.

The ring of endomorphisms $\Lambda=$ End (N) of an indecomposable representation $N \in$ ind (Q) is local, the set R of its irreversible elements is the radical; therefore $T(N)=\Lambda / R$ is a field. By means of the representation $N \in i_{0}(Q)$ and its self-adjoint automorphism $\psi=\psi^{0}$ we will define the representation of the graph $G: N \psi=\left[N_{\alpha}, N_{\beta}, N_{\lambda} \Psi_{3}\right]$.

The following theorem is a particular case of Theorem 1 [7].
THEOREM 2. Every representation of graph G over field K of characteristic $\neq 2$ is decomposable into a direct sum of representations of the forms
a) M^{+}, where $M \in$ ind $_{1}(Q)$;
b) N^{ψ}, where $N \in$ ind ${ }_{0}(Q), \psi=\psi^{0} \in \operatorname{Aut}(N)$.

The components are determined as follows: of the form a) uniquely; of the form b) up to the exchange of the whole group of components $\oplus_{i} N_{i}^{\psi}$ with the same N for $\oplus_{i} N^{\Phi_{i}}$, where $\sum_{i}\left(\psi_{i}+R\right) x_{i}{ }^{0} x_{i}$ and $\sum_{i}\left(\varphi_{i}+R\right) x_{i}{ }^{0} x_{i}$ are equivalent Hermitian forms over the field $\mathrm{T}(\mathrm{N})=\Lambda / R$ with the involution $(\psi+\mathrm{R})^{0}=\psi^{0}+\mathrm{R}$.

We will use Theorem 2 to prove Theorem 1 . The set ind (Q) has been introduced in subsection 2.2. If $z=\left(z_{1}, \ldots, z_{6}\right)$ is the dimension of the representation M, then $z^{0}=$ $\left(z_{5}, z_{6}, z_{4}, z_{3}, z_{1}, z_{2}\right)$ is the dimension of the adjoint representation M^{0}.

Representations of dimensions $z \neq z^{0}$ from ind (Q) are fully determined by their dimensions and they are not isomorphic to self-adjoint ones. We will divide them into pairs of representations of mutually adjoint dimensions z, z^{0} and from each pair we will choose one representation. We will obtain all representations of M from ind (Q) of nonself-adjoint dimensions. Passing to representations of M^{+}, we will obtain all representations $1-2$ in Theorem 1.

The representations $\mathcal{N}_{2}\left(\mu_{3}(\lambda)\right), \lambda \in\{0,1\}$ (see 2.2) are not isomorphic to self-adjoint ones since $\mathcal{N}_{2}\left(\mu_{3}(0)\right)^{0} \simeq \mathcal{N}_{2}\left(\mu_{4}\right), \mathcal{N}_{2}\left(\mu_{3}(1)\right)^{0} \simeq \mathcal{N}_{3}\left(\mathcal{M}_{3}(1)\right)$. We obtain representations 3 in Theorem 1.

Let us consider the representation

$$
\mathcal{N}_{2}\left(\mu_{1}\left(\Phi_{n}\right)\right)=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\begin{array}{ll}
E_{n} & E_{n} \\
E_{n} & \Phi_{n}
\end{array}\right),\left(E_{n} O_{n}\right),\left(O_{n} E_{n}\right)\right] .
$$

Obviously, $\mathcal{N}_{2}\left(\mathcal{M}_{1}\left(\Phi_{n}\right)\right)^{0} \simeq \mathcal{N}_{2}\left(\mathcal{M}_{1}\left(\bar{\Phi}_{n}\right)\right)$.
Let $\varphi: \mathcal{N}_{2}\left(\mathcal{M}_{1}\left(\Phi_{n}\right)\right) \rightarrow B=B^{0}$ be an isomorphism into a self-adjoint representation. Replacing B by an isomorphic self-adjoint representation we can write

$$
B=\left[\binom{E_{n}}{O_{n}},\binom{O_{n}}{E_{n}},\left(\begin{array}{ll}
M & E_{n} \\
\varepsilon E_{n} & N
\end{array}\right),\left(E_{n} O_{n}\right),\left(O_{n} E_{n}\right)\right],
$$

$M=\varepsilon M^{*}, N=\varepsilon N^{*}$. Then the isomorphism takes the form

$$
\begin{equation*}
\varphi=\left(S_{1}, S_{2}, S_{1} \oplus S_{2}, S_{2} \oplus \varepsilon S_{1}, S_{2}, \varepsilon S_{1}\right) \tag{1}
\end{equation*}
$$

Replacing M, N, S_{1}, S_{2} by $S_{2}{ }^{-1} M_{2} *-1, S_{2} * N S_{2}, S_{2} * S_{1}$, E_{n} we obtain an isomorphism φ of the form (1) in which $S_{2}=E_{n}$ and by the definition of an isomorphism $M S_{1}=E_{n}, N=\varepsilon S_{1} \Phi_{n}$. Since $M=\varepsilon M^{*}, N=\varepsilon N^{*}$, then $S_{1}=\varepsilon S_{1} *, S_{1} \Phi_{n}=\varepsilon\left(S_{1} \Phi_{n}\right) \%$. By [7, Lemma 8, Theorem 8] $\varepsilon=$ $1, \Phi_{\mathrm{n}}=\bar{\Phi}_{\mathrm{n}}$ and, therefore, we can put $\mathrm{S}_{1}=\Phi_{\mathrm{n}}{ }^{\prime}, \mathrm{M}=\left(\Phi_{\mathrm{n}}{ }^{\prime}\right)^{-1}, N=\Phi_{\mathrm{n}}{ }^{\prime} \Phi_{\mathrm{n}}$ ($\Phi_{\mathrm{n}}{ }^{\prime}$ has been defined in Sec. 1).

Let $\psi: B \rightarrow B$ be an endomorphism. Then $\eta=\varphi^{-1} \psi \varphi$ is an endomorphism of the representation $\mathcal{N}_{2}\left(\mathcal{M}_{1}\left(\Phi_{n}\right)\right)$. By the definition of a homomorphism $\eta=(H, H, H \oplus H, H \in H, H$, H). A matrix commuting with a Frobenius box is a polynomial with respect to this box and therefore $H=f\left(\Phi_{n}\right), f \in K[x]$. Since $\Phi_{n}{ }^{\prime} H\left(\Phi_{n}^{\prime}\right)^{-1}=f\left(\Phi_{n}^{\prime} \Phi_{n}\left(\Phi_{n}^{\prime}\right)^{-1}\right)=f\left(\Phi_{n}^{*}\right)$, then $\psi=$
 \ldots, , and the field $T(B)=$ End $(B) / R$ can be identified with the field $K(\omega)=K[x] / p_{\Phi_{n}}(x)$ with the involution $f(\omega)^{0}=\bar{f}(\omega)$. By Theorem 2 we obtain the components 4 and 4^{1} of Theorem 1. By representation $\mathcal{N}_{2}\left(\mathcal{M}_{2}\right)$ we obtain the components 5 and 5^{\prime}.

In the set ind (Q) there are still not considered representations of the dimensions $(n+i, n+j, 2 n+1 ; 2 n+1, n+i, n+j)$, where $i, j \in\{0,1\}$. It is easy to verify that these representations are isomorphic to the representations $\left[A_{i}, B_{j}, C, A_{i} T, B_{j} T\right]$ (see 6 in Theorem 1), which are self-adjoint for $\varepsilon=1$. Thus, we obtain the components 6 and 6^{\prime} of Theorem 1. An application of Theorem 2 concludes the proof of Theorem 1.

LITERATURE CITED

1. L. A. Nazarova, "Representations of a quadruple," Izv. Akad. Nauk SSSR, Ser. Mat., 31, No. 6, 1361-1378 (1967).
2. L. A. Nazarova, "Representations of quivers of infinite type," Izv. Akad. Nauk SSSR, Ser. Mat., 37, No. 4, 752-791 (1973).
3. I, M. Gel'fand and V. A. Ponomarev, "Problems of linear algebra and classification of quadruples of subspaces of a finite dimensional vector space," Preprint, No. 71.06, Institute of Applied Mathematics, Akad. Nauk SSSR, Moscow (1971).
4. I. M. Gel'fand and V. A. Ponomarev, "Quadruples of subspaces of a finite dimensional vector space," Dokl. Akad. Nauk SSSR, 197, No. 4, 762-765 (1971).
5. V. V. Sergeichuk, "Classification problems for systems of linear mappings and semilinear forms," submitted to Ukr.NIINTI, No. 196Uk-D84.
6. A. V. Roiter, "Boxes with involution," in: Representations and Quadratic Forms [in Russian], Kiev Institute of Mathematics, Academy of Sciences, UkrSSR, 124-126 (1979).
7. V. V. Sergeichuk, "Classification problems for systems of forms and linear mappings," Izv. Akad. Nauk SSSR, Ser. Mat., 51, No. 6, 1170-1190 (1987).

[^0]: Kiev Institute. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 4, pp. 549-554, April, 1990. Original article submitted September 13, 1988.

