CANONICAL FORM OF THE MATRIX OF A BILINEAR FORM OVER AN ALGEBRAICALLY CLOSED FIELD OF CHARACTERISTIC 2

V. V. Sergeichuk

The field K is always assumed to be algebraically closed and of characteristic 2. For a nondegenerate Jordan block Φ with eigenvalue λ we denote by Φ^- a Jordan block of the same size with eigenvalue λ^{-1} , by Φ^+ the matrix $\begin{pmatrix} 0 & \Phi \\ E & 0 \end{pmatrix}$, by the cosquare root $\hat{\Phi}$ of Φ we mean a fixed solution of the equation $XX^{\vee} = \Phi$, where $X^{\vee} = (X^T)^{-1}$, X^T is the transposed matrix (we show in Lemma 1 that a solution exists only if Φ is of odd size with $\lambda = 1$, and we find the form of $\hat{\Phi}$). By the direct sum we mean the matrix $A \oplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

THEOREM. In a finite-dimensional vector space over a field K, for each bilinear form one can find a basis in which its matrix has the form

$$A = \Phi_1^+ \oplus \dots \oplus \Phi_p^+ \oplus \hat{\Psi}_1 \oplus \dots \oplus \hat{\Psi}_q \oplus F_1 \oplus \dots \oplus F_r, \tag{1}$$

where Φ_i , Ψ_j are nondegenerate Jordan cells, $\Phi_i \neq \Psi_j$ for all i, j, F_k is a nondegenerate Jordan cell. The matrix A is determined uniquely by the bilinear form up to permutation of the summands and replacement of Φ_i by Φ_i .

Under a new choice of basis the matrix A of the bilinear form is replaced by a congruent matrix SAS^T (S being a nondegenerate matrix), so the theorem establishes the canonical form for a matrix with respect to congruences. We call a matrix congruently indecomposable if it is not congruent to a matrix of the form $A \oplus B$, where A and B are square matrices. The matrices Φ_i^+ , $\hat{\Psi}_j$, F_k in the sum (1) are congruently indecomposable.

The problem of classification of a bilinear form over an arbitrary field was considered in [1-3], over a field of characteristic $\neq 2$ in [4-6]. If the field K in the formulation of the theorem is replaced by an algebraically closed field L of characteristic $\neq 2$, then the phrase " $\Phi_i \neq \Psi_j$ for all i and j" should be replaced by the phrase "there does not exist a $\hat{\Phi}_i$ " (cf. [5, 6]). We note that over the field L each matrix is congruent to a direct sum of congruently indecomposable matrices, uniquely defined up to congruence of the direct summands. Over the field K even the number of summands of such a direct sum is not uniquely determined: the matrices $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus (1)$ and $(1) \oplus (1) \oplus (1)$ are congruent, although the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is congruently indecomposable.

To prove the theorem, we establish what form one can reduce a nondegenerate matrix A to by congruence transformations. Since its cosquare $\bar{A} = AA^{\vee}$ can be reduced by similarity transformations $S\bar{A}S^{-1} = (SAS^T)(SAS^T)^{\vee}$, it can be reduced to Jordan normal form:

$$\bar{A} = \Phi_1 \oplus \ldots \oplus \Phi_t, \qquad (2)$$

441

T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol. 41, No. 6, pp. 781-788, June, 1987. Original article submitted December 25, 1985.

where Φ_i is a nondegenerate Jordan block. We shall only make congruence transformations for the matrix A which do not change its cosquare (2) (an analogous method was used in [2]). We divided the matrix A into blocks A_{ij} such that the sizes of the blocks A_{ii} and Φ_i coincide; then $A = \bar{A}A^T$,

$$A_{ij} = \Phi_i A_{ji}^T = \Phi_i A_{ij} \Phi_j^T.$$
(3)

We clarify the form of the block A_{ij} . By E_{mn} $(m \le n)$ we denote the matrix obtained from the identity of size $n \le n$ by crossing out its first (n - m) rows. We define the matrix $M_n = (a_{ij})$ of size $n \le n$, where $a_{ij} = 0$ for $i \le n/2$, $j \le (n + 1)/2$ and for i + j > n + 1, $a_{ij} = 1$ for i + j = n + 1, and the other a_{ij} are found from the condition

$$a_{i,j+1} + a_{i+1,j+1} + a_{i+1,j} = 0.$$
⁽⁴⁾

We define the matrix $N_n = M_n$ for odd n, $N_n = FM_n$ for even n, where F is a degenerate Jordan block. We always locate ones in a Jordan block over the eigenvalues.

LEMMA 1. Let Φ , Ψ be Jordan blocks of sizes $m \times m$, $n \times n$ with eigenvalues λ , μ .

(A) If $X = \Phi X \Psi^T$, $\lambda \mu \neq 1$, then X = 0.

(B) If $X = \Phi X \Psi^T$, $\lambda = \mu = 1$, $m \leq n$, then $X = f(\Phi) E_{mn} M_p(f(x) \in K[x])$, its elements $x_{1m} = x_{2,m-1} = \ldots = x_{m1}, x_{ij} = 0$ for i+j > m+1.

(C) If $X = \Phi X^T$, $\lambda = 1$, then $X = f (\Phi + \Phi^{-1}) N_m$, $f(x) \in K[x]$. The cosquare root $\hat{\Phi}$ exists only for $\lambda = 1$ and odd m, and in this case one can take $\hat{\Phi} = M_m$.

<u>Proof.</u> (A) By the s-th diagonal of the matrix $A = (a_{ij})$ we mean the collection of elements $a_{ij}, i + j = s + 1$. Let $A = \Phi A \Psi^T$; then $a_{ij} = \lambda \mu a_{ij} + \lambda a_{i,j+1} + \mu a_{i+1,j} + a_{i+1,j+1}$ (we assume $a_{i,n+1} = a_{m+1,j} = 0$). If $\lambda \mu \neq 1$, then $a_{mn} = 0$, and provided all diagonals below the s-th are zero, then the s-th diagonal is also zero, so A = 0.

(B) Let $\lambda = \mu = 1$, $m \leq n$. Then (4) holds so the (s + 1)-st diagonal and any element of the s-th diagonal determine the whole s-th diagonal. Since $a_{m+1,1} = \ldots = a_{m+1,n+1} = 0$, all the diagonals below the m-th are zero, the matrix A is completely determined by representatives of the lst, 2nd, ..., m-th diagonals. Consequently, the set of matrices A = $\Phi A \Psi^T$ forms an m-dimensional space. The elements of the matrix $E_{mn}M_n$ satisfy (4) so it is a solution of the equation $X = \Phi X \Psi^T$. The matrices $f(\Phi) E_{mn}M_n$, where $f(x) \in K[x]$, are all its solutions, since they form a space of dimension m.

(C) For the elements of the matrix N_m (4) holds and $a_{i,j+1} = a_{j,i+1}$ (we assume $0 \le i \le m$, $1 \le j \le m$, setting $a_{0,j+1} = a_{j1}$), so $a_{j,i+1} = a_{i+1,j} + a_{i+1,j+1}$, $N_m^T = N_m \Phi^T$. Consequently, $N_m^T = \Phi N_m \Phi^T$, $N_f = f (\Phi + \Phi^{-1}) N_m = f (\Phi + \Phi^{-1}) \Phi N_m^T = \Phi N_f^T$, where $f(x) \in K[x]$.

Let $m = 2k - \alpha$, $\alpha \in \{0, 1\}$, $g(x) \in K[x]$ be a polynomial of degree k such that $(x + 1)^{2k} = x^k g(x + x^{-1})$. Since $(x + 1)^m$ is the characteristic polynomial of Φ and the matrix M_m is nondegenerate, one has $N_f = f(\Phi + \Phi^{-1})(E + \Phi)^{1-\alpha}M_m = 0$ only if g(x) divides f(x). Hence the dimension of the space of matrices $N_f = \Phi N_f^T$ is equal to k. On the other hand, if $A = \Phi A^T$, then $a_{ii} = a_{ii} + a_{i,i+1}, a_{i,i+1} = 0$, $A = \Phi A \Phi^T$, so the matrix A is completely determined by representatives of the lst, 3rd, ..., (2k - 1)-st diagonals [point (B) of the proof], the dimension of the space of such matrices does not exceed k. Consequently, $A = N_f$. The matrix $\hat{\Phi} = \Phi \hat{\Phi}^T = \Phi \hat{\Phi} \Phi^T$, so $\lambda = 1$ [Lemma 1 (A)] and $\hat{\Phi} = f (\Phi + \Phi^{-1}) N_m$. Since $\hat{\Phi}$ is nondegenerate, N_m is also nondegenerate and m is odd.

LEMMA 2. Let A be a congruently indecomposable nondegenerate matrix. Then A is congruent to $\hat{\Phi}$ or Φ^+ , where Φ is a nondegenerate Jordan block.

<u>Proof.</u> Let the cosquare \bar{A} have the form (2), where Φ_i is a Jordan block of size $n_i \times n_i$ with eigenvalue λ_i . We can assume that $\lambda_i = 1$. Assume that $\lambda_1 = \ldots = \lambda_q \neq 1$, $\lambda_1^{-1} = \lambda_{q+1} = \ldots = \lambda_r$, $\lambda_1 \neq \lambda_i \neq \lambda_1^{-1}$ for i > r. By (3) and Lemma 1 (A), $A_{ij} = 0$ in the following four cases: $i, j \in \{1, \ldots, q\}$; $i, j \in \{q+1, \ldots, r\}$; $i \leq r < j$; i > r > j. Hence, in view of the nondegeneracy and congruent indecomposability, $A = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$, where B and C are nondegenerate blocks. Taking $S = R \oplus (R^{\vee}C^{-1})$, we get a matrix $A' = SAS^T$ with blocks $B' = R(BC^{\vee})R^{-1}$, C' = E. Since A' is congruently indecomposable, we can make B' a Jordan block Ψ ; then A' = Ψ^+ .

In what follows we shall assume $\lambda_1 = \ldots = \lambda_t = 1$, $n_1 \ge n_2 \ge \ldots \ge n_t$. We set $n = n_1$, $\Phi = \Phi_1$. Let us assume first that the block A_{11} is nondegenerate. In view of (3) and Lemma 1 (b), $A_{i1} = f_i(\Phi_i) E_{n,n}M_n$. We apply the transformation $A' = SAS^T$ with block matrix S, in which $S_{ii} = E_{n_i n_i}$ ($1 \le i \le t$), $S_{i1} = g_i(\Phi_i) E_{n_i n}$ ($i \ge 2$, $g_i(x) \ge K[x]$), the remaining blocks being zero. We get $A_{11}' = [g_i(\Phi_i)f_1(\Phi_i) + f_i(\Phi_i)] E_{n_i n}M_n$. In view of the nondegeneracy of the matrix $f_1(\Phi_i)$ one can choose $g_i(\Phi_i)$ so that $A'_{i1} = 0$ ($i \ge 2$). By (3) and the congruent indecomposability, $A = A_{11}$.

In view of (3), Lemma 1 (C), and the nondegeneracy of $A = f(N)\hat{\Phi}$, where $N = \Phi + \Phi^{-1}$ is a nilpotent matrix, $f(x) \in K[x]$, $f(0) \neq 0$. Let $S = aE + H(E + \Phi)$, where $a^2 = f(0)$, $H = b_{\theta}E + b_1N + b_9N^2 + \ldots$ Since $\hat{\Psi} = \Phi\hat{\Phi}\Phi^T$, one has $S\hat{\Phi}S^T = [aE + H(E + \Phi)][aE + H(E + \Phi^{-1})]\hat{\Phi} = [a^2E + aHN + H^2N]\hat{\Phi} = [a^2E + (ab_0 + b_0^2)N + ab_1N^2 + (ab_2 + b_1^2)N^3 + \ldots]\hat{\Phi}$. One can choose b_0 , b_1 , ... so that $S\hat{\Phi}S^T = f(N)\Phi$, so $\hat{\Phi}$ is congruent to A.

Let the block A_{11} be degenerate. The matrix A is nondegenerate so one can find a block A_{11} with nonzero last column. By virtue of the relations $n_i \leq n$ (3), and Lemma 1 (B), such a block is nondegenerate. We shall assume i = 2. Then $n_1 = n_2 = n$, $A_{ij} = f_{ij}(\Phi_i) E_{n_i n} M_n$ $(j \leq 2)$. We apply the transformation $A = SAS^T$ with block matrix S, in which $S_{ii} = E_{n_i n_i}$ $(1 \leq i \leq t)$, $S_{ij} = g_{ij}(\Phi_i) E_{n_i n}$ $(i \geq 3, j \leq 2, g_{ij}(x) \in K[x])$, the remaining blocks being zero. We get $A_{ij} = [g_{i1}(\Phi_i) f_{1j}(\Phi_i) + g_{i2}(\Phi_i) f_{2j}(\Phi_i) + f_{ij}(\Phi_i)] E_{n_i n} M_n (i \geq 3, j \leq 2)$. The matrix $(f_{a\beta}(\Phi_i))_{\alpha,\beta=1,2}$ is nondegenerate, so one can choose $g_{ij}(\Phi_i)$ so that $A_{i1} = A_{i2} = 0$ $(i \geq 3)$. By (3), Lemma 1 (C), and the congruent indecomposability, $A = (A_{ij})_{i,j=1,2}, A_{ii} = f_i(\Phi + \Phi^{-1}) N_n$. By the transformation SAS^T , $S = E_{nn} \oplus f_{21}(\Phi)^{-1}$, we make $A_{21} = M_n$, $A_{12} = \Phi A_{21}^T = \Phi M_n^T$.

We show that by a congruence transformation one can make $A_{11} = A_{22} = 0$. Let $f_1(x) = a_0 + a_1x + \ldots$, $f_2(x) = b_0 + b_1x + \ldots$, $a_6 = \ldots = a_{r-1} = 0 \neq a_r$ $(r \ge 0)$. It suffices to prove that if the rank of A_{11} is not less than the rank of A_{22} (i.e., $b_0 = \ldots = b_{r-1} = 0$), then the rank of A_{11} can be lowered without changing A_{22} . We apply the transformation $1' = SAS^T$, $S = \begin{pmatrix} E & g(\Phi) \\ 0 & E \end{pmatrix}$; we get $A'_{22} = A_{22}$, $A'_{11} = f_1(\Phi + \Phi^{-1})N_n + \Phi g(\Phi^{-1})M_n^T + g(\Phi)M_n + g(\Phi)f_2(\Phi + \Phi^{-1})g(\Phi^{-1})N_n$. We introduce notation: h(x) = g(x + 1), F is a degenerate Jordan block $G = E + F + F^2 + \ldots$, then $\Phi = E + F$, $\Phi^{-1} = G = E + FG$, $\Phi + \Phi^{-1} = F^2G$. Since $N_n = F^{1-\alpha}M_n$, $M_n = \Phi^{\alpha}M_n^T$, where $n = 2k + \alpha$,

 $\alpha \in \{0, 1\} \quad \text{one has } A'_{11} = [f_1 (F^2G) F^{1-\alpha} + (E + F)^{1-\alpha}h (FG) + h (F) + h (F) f_2 (F^2G) h (FG) F^{1-\alpha}] M_n.$ Let $\beta \in K$ be such that $a_0 + \beta + \beta^2 b_0 = 0$; we take $h(x) = \beta$ for r = 0 (then $\alpha = 0$ due to the degeneracy of A_{11}), $h(x) = a_r x^{2r-\alpha}$ for r > 0; we get $A_{11} = (c_1 F^{2r+1} + c_2 F^{2r+2} + \ldots) F^{1-\alpha} M_n (c_i \in K)$, its rank is less than the rank of A_{11} .

Thus, one can make $A = \begin{pmatrix} 0 & \Phi M_n^T \\ M_n & 0 \end{pmatrix}$. Taking $S = E \oplus M_n^{-1}$, we get $SAS^T = \Phi^+$. The lemma is proved.

<u>Proof of the Theorem</u>. To classify bilinear forms, Gabriel [1] (cf. also [4-6]) proposed using the following result of Kronecker. The pair of matrices (A, B) of size $m \times n$ is called equivalent to the pair (SAR, SBR), where S and R are nondegenerate matrices of sizes $m \times m$, $n \times n$. By the direct sum one means the pair $(A, B) \oplus (C, D) = (A \oplus C, B \oplus D)$. By Kronecker's theorem (the bundle of matrices problem; cf. [7, Chap. XII]) a pair of matrices of the same size is equivalent to a direct sum of pairs of the form $(\Phi, E), (E, J_n), (G_n, H_n), (G_n^T, H_n^T)$ uniquely determined up to permutation of the summands, where Φ is a Jordan block, J_n is a degenerate Jordan block of size $n \times n$, G_n and H_n are gotten from the identity matrix of size $n \times n$

It follows from the equivalence of the pairs (A, B) and (C, D) that the matrices $(A, B)^+$, $(C, D)^+$ are congruent, where $(X, Y)^+ = \begin{pmatrix} 0 & X \\ Y^T & 0 \end{pmatrix}$. According to [1], a congruently indecomposable degenerate matrix is congruent to $(J_n, E)^+$ or $(G_n, H_n)^+$. But $S(J_n, E)^+S^T = J_{2n}$, $R(G_n, H_n)^+R^T = J_{2n-1}$, where $S = (s_{ij})$, $R = (r_{ij})$, $s_{2\alpha-1, n+\alpha} = s_{2\alpha,\alpha} = r_{2\alpha-1, 2n-\alpha} = r_{2\beta, n-\beta} = 1$ ($1 \leq \alpha \leq n, 1 \leq \beta \leq n-1$), the other $s_{ij} = r_{ij} = 0$. It follows from this and Lemma 2 that each square matrix is congruent to a matrix of the form (1). One can impose the condition $\Phi_i \neq \Psi_j$ on its summands, since $S(\Psi^+ \oplus \hat{\Psi}) S^T = \hat{\Psi} \oplus \hat{\Psi} \oplus \hat{\Psi}$, where $S = \begin{pmatrix} E & \hat{\Psi} & E \\ E & 0 & E \\ 0 & \hat{\Psi} & E \end{pmatrix}$.

It follows from the congruence of the matrices A and B that the pairs (A, A^T) , (B, B^T) are equivalent (the converse is also true over an algebraically closed field of characteristic $\neq 2$; cf. [4]). The pair (A, A^T) for the matrix (1) is equivalent to the direct sum of pairs $(\Phi_i, E) \oplus (\Phi_i^-, E)$, (Ψ_j, E) , P_k , where $P_k = (J_n, E) \oplus (E, J_n)$ for $F_k = J_{2n}$, $P_k = (G_n, H_n) \oplus$ (G_n^T, H_n^T) for $F_k = J_{2n-1}$. By Kronecker's theorem two direct sums of the form (1) can be congruent only if one is gotten from the other by replacing some summands of the form Φ^+ by $(\Phi^-)^+$ or $\hat{\Phi} \oplus \hat{\Phi}$ and some summands of the form $\hat{\Psi} \oplus \hat{\Psi}$ by $\Psi^+ (\Phi = \Phi^-, \text{ provided } \hat{\Phi} \text{ exists; cf. Lemma}$ 1 (C)).

Replacing Φ^+ by $(\Phi^-)^+$ leads to a congruent direct sum, since $S\Phi^+S^T = (\Phi^-)^+$, where $S = (R, \Phi^\vee R^{-1})^+$, $R\Phi^\vee R^{-1} = \Phi^-$. We show that if $\Phi_i \neq \Psi_j$ replacement of Φ_i^+ by $\hat{\Phi}_i \oplus \hat{\Phi}_i$ in the direct sum (1) leads to a noncongruent matrix.

By contradiction, let $SAS^T = B$, where $A = A_1 \oplus \ldots \oplus A_n$, (n = p + q + r) is the matrix (1), $B = \hat{\Phi} \oplus C$, Φ being one of the matrices Φ_1, \ldots, Φ_p . We divide the matrices S, S^{\vee} into n vertical and two horizontal strips corresponding to the partitions of A and B, and let $(S_1 | \ldots | S_n)$, $(R_1 | \ldots | R_n)$ be the upper horizontal strips of the matrices S, $R = S^{\vee}$. Then $S_1A_1S_1^T + \ldots + S_nA_nS_n^T = \hat{\Phi}$. We get a contradiction with the nondegeneracy of $\hat{\Phi}$, if we prove that the last row of all the matrices $S_i A_i S_i^T$ is zero. Since $SA = BS^{\vee}$ and $SA^T = B^T S^{\vee}$ we get $S_i A_i = \hat{\Phi} R_i$ and $S_i A_i^T = \hat{\Phi}^T R_i$. From this, $S_i A_i = \hat{\Phi} \hat{\Phi}^{\vee} S_i A_i^T = \Phi S_i A_i^T$, $S_i \bar{A}_i = \Phi S_i$ (where $\bar{A}_i = A_i A_i^{\vee}$) for nondegenerate A_i .

If i $\leq p$, then $A_i = \Phi_i^{\dagger}$, $\bar{A}_i = \Phi_i \oplus \Phi_i^{\lor}$. From $S_i \bar{A}_i = \Phi S_i$ it follows that $P\Phi_i = \Phi P$, $Q\Phi_i^{\lor} = \Phi Q$, where $S_i = (P \mid Q)$. From this $\Phi Q P^T \Phi^T = Q P^T$ and by Lemma 1 (B), $QP^T = f(\Phi) \hat{\Phi}$. Hence

$$P\Phi_i Q^T = \Phi P Q^T = \widehat{\Phi} f (\Phi^T),$$

the matrix

$$S_i A_i S_i^T = P \Phi_i Q^T + Q P^T = (f (\Phi^{-1}) + f (\Phi)) \hat{\Phi}$$

has last row zero.

If i = p + j $(j \leq q)$, then $A_i = \hat{\Psi}_j$, $\bar{A}_i = \Psi_j$. Since $\Phi_i \neq \Psi_j$ for all i and j, one has $\Phi \neq \Psi_j$. By Lemma 1 (C) the eigenvalues of the blocks Φ , Ψ_j are equal to 1, so Φ and Ψ_j are of different sizes. Let the size of Φ be greater than the size of Ψ_j ; then since $S_i\Psi_j = \Phi S_i$, the last row of the matrix S_i , and hence also $S_i\hat{\Psi}_jS_i^T$, is zero. Let the size of Φ be smaller than the size of Ψ_j ; then the last row of the matrices S_i , $\hat{\Psi}_j$ and the first row of the matrix S_i^T have the forms, respectively, $(0 \dots 0 a)$, $(1 \ 0 \dots 0)$, $(0 \dots 0)$, so the last row of the matrix $S_i\hat{\Psi}_jS_i^T$ is zero.

If i = p + q + k ($k \leq r$), then $A_i = F_k$. It follows from the relation $S_i F_k = \Phi S_i F_k^T$ that the columns with even indices of the matrix S_i are zero, so $S_i F_k S_i^T = 0$. The theorem is proved.

LITERATURE CITED

- 1. P. Gabriel, "Degenerate bilinear forms," J. Algebra, <u>31</u>, 67-72 (1974).
- 2. C. Riehm, "The equivalence of bilinear forms," J. Algebra, <u>31</u>, 45-66 (1974).
- 3. R. Scharlau, "Zur Klassifikation von Bilinearformen und von Isometrien über Körpern," Math. Z., <u>178</u>, 359-373 (1981).
- A. V. Roiter, in: Representations and Quadratic Forms [in Russian], Inst. Mat. Akad.
 Nauk UkrSSR (1979), pp. 124-126.
- V. V. Sergeichuk, in: Linear Algebra and Representation Theory [in Russian], Inst. Mat. Akad. Nauk UkrSSR (1983), pp. 110-134.
- V. V. Sergeichuk, "Classification problems for systems of linear maps and sesquilinear forms," Kiev University, 1983; deposited in UkrNIINTI, No. 196 UK-D 84.
- 7. F. R. Gantmakher, Theory of Matrices, Chelsea Publ. (1960).