CANONICAL FORM OF THE MATRIX OF A BILINEAR FORM

OVER AN ALGEBRAICALLY CLOSED FIELD OF CHARACTERISTIC 2

V. V. Sergeichuk

The field K is always assumed to be algebraically closed and of characteristic 2. For a nondegenerate Jordan block Φ with eigenvalue λ we denote by Φ^{-}a Jordan block of the same size with eigenvalue λ^{-1}, by Φ^{+}the matrix $\left(\begin{array}{ll}0 & \Phi \\ E & 0\end{array}\right)$, by the cosquare root $\bar{\Phi}$ of Φ we mean a fixed solution of the equation $X X^{\vee}=\Phi$, where $X^{\vee}=\left(X^{T}\right)^{-1}, X^{T}$ is the transposed matrix (we show in Lemma 1 that a solution exists only if Φ is of odd size with $\lambda=1$, and we find the form of $\hat{\Phi}$). By the direct sum we mean the matrix $A \oplus B=\left(\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right)$.

THEOREM. In a finite-dimensional vector space over a field K, for each bilinear form one can find a basis in which its matrix has the form

$$
\begin{equation*}
A=\Phi_{1}^{+} \oplus \ldots \oplus \Phi_{p}^{+} \oplus \hat{\Psi}_{1} \oplus \ldots \oplus \bar{\Psi}_{q} \oplus F_{1} \oplus \ldots \oplus F_{r} \tag{1}
\end{equation*}
$$

where Φ_{i}, Ψ_{j} are nondegenerate Jordan cells, $\Phi_{i} \neq \Psi_{j}$ for all i, j, F_{k} is a nondegenerate Jordan cell. The matrix A is determined uniquely by the bilinear form up to permutation of the summands and replacement of Φ_{i} by $\Phi_{i}{ }^{-}$.

Under a new choice of basis the matrix A of the bilinear form is replaced by a congruent matrix SAS ${ }^{T}$ (S being a nondegenerate matrix), so the theorem establishes the canonical form for a matrix with respect to congruences. We call a matrix congruently indecomposable if it is not congruent to a matrix of the form $A \oplus B$, where A and B are square matrices. The matrices $\Phi_{i}^{+}, \hat{\Psi}_{j}, F_{k}$ in the sum (1) are congruently indecomposable.

The problem of classification of a bilinear form over an arbitrary field was considered in [1-3], over a field of characteristic $\neq 2$ in [4-6]. If the field K in the formulation of the theorem is replaced by an algebraically closed field L of characteristic $\neq 2$, then the phrase " $\Phi_{i} \neq \Psi_{j}$ for all i and j " should be replaced by the phrase "there does not exist a $\widehat{\Phi}_{i}^{\prime \prime}$ (cf. [5, 6]). We note that over the field L each matrix is congruent to a direct sum of congruently indecomposable matrices, uniquely defined up to congruence of the direct summands. Over the field K even the number of summands of such a direct sum is not uniquely determined: the matrices $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus(1)$ and (1) $\oplus(1) \oplus(1)$ are congruent, although the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is congruently indecomposable.

To prove the theorem, we establish what form one can reduce a nondegenerate matrix A to by congruence transformations. Since its cosquare $\overline{\mathrm{A}}=A A^{\vee}$ can be reduced by similarity transformations $S \bar{A} S^{-1}=\left(S A S^{T}\right)\left(S A S^{T}\right)^{\vee}$, it can be reduced to Jordan normal form:

$$
\begin{equation*}
\vec{A}=\Phi_{1} \oplus \ldots \oplus \Phi_{t} \tag{2}
\end{equation*}
$$

T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol. 41, No. 6, pp. 781-788, June, 1987. Original article submitted December 25, 1985.
where Φ_{i} is a nondegenerate Jordan block. We shall only make congruence transformations for the matrix A which do not change its cosquare (2) (an analogous method was used in [2]). We divided the matrix A into blocks $A_{i j}$ such that the sizes of the blocks $A_{i i}$ and Φ_{i} coincide; then $A=\bar{A} A^{T}$,

$$
\begin{equation*}
A_{i j}=\Phi_{i} A_{j i}^{T}=\Phi_{i} A_{i j} \Phi_{j}^{T} \tag{3}
\end{equation*}
$$

We clarify the form of the block $A_{i j}$. By $E_{m n}(m \leqslant n)$ we denote the matrix obtained from the identity of size $n \times n$ by crossing out its first ($n-m$) rows. We define the matrix $M_{n}=\left(a_{i j}\right)$ of size $n \times n$, where $a_{i j}=0$ for $i \leqslant n / 2, j \leqslant(n+1) / 2$ and for $i+j>n+1, a_{i j}=1$ for $i+j=n+1$, and the other $a_{i j}$ are found from the condition

$$
\begin{equation*}
a_{i, j+1}+a_{i+1, j+1}+a_{i+1, j}=0 \tag{4}
\end{equation*}
$$

We define the matrix. $N_{n}=M_{n}$ for odd $n, N_{n}=F M_{n}$ for even n, where F is a degenerate Jordan block. We always locate ones in a Jordan block over the eigenvalues.

LEMMA 1. Let Φ, Ψ be Jordan blocks of sizes $m \times m, n \times n$ with eigenvalues λ, μ.
(A) If $X=\Phi X \Psi \Psi^{T}, \lambda \mu \neq 1$, then $\mathrm{X}=0$.
(B) If $X=\Phi X \Psi T, \lambda=\mu=1, m \leqslant n$, then $X=f(\Phi) E_{m n} M_{n}(f(x) \in K[x])$, its elements $x_{1 m}=x_{2, m-1}=\ldots=x_{m 1} x_{i j}=0$ for $i+j>m+1$.
(C) If $X=\Phi X^{T}, \lambda=1$, then $X=f\left(\Phi+\Phi^{-1}\right) N_{m}, f(x) \in K[x]$. The cosquare root $\hat{\Phi}$ exists only for $\lambda=1$ and odd m, and in this case one can take $\hat{\Phi}=M_{m}$.

Proof. (A) By the s-th diagonal of the matrix $A=\left(a_{i j}\right)$ we mean the collection of elements $a_{i j}, i+j=s+1$. Let $A=\Phi A \Psi T$; then $a_{i j}=\lambda \mu a_{i j}+\lambda a_{i, j+1}+\mu a_{i+1, j}+a_{i+1, j+1}$ (we assume $a_{i, n+1}=a_{m+1, j}=0$). If $\lambda \mu \neq 1$, then $a_{m n}=0$, and provided all diagonals below the s-th are zero, then the $s-t h$ diagonal is also zero, so $A=0$.
(B) Let $\lambda=\mu=1, m \leqslant n$. Then (4) holds so the ($s+1$)-st diagonal and any element of the $s-t h$ diagonal determine the whole $s-t h$ diagonal. Since $a_{m+1,1}=\ldots=a_{m+1, n+1}=0$, all the diagonals below the m-th are zero, the matrix A is completely determined by representatives of the lst, $2 n d, \ldots, m$-th diagonals. Consequently, the set of matrices $A=$ $\Phi A \Psi^{T}$ forms an m-dimensional space. The elements of the matrix $E_{m n} M_{n}$ satisfy (4) so it is a solution of the equation $X=\Phi X \Psi \Psi^{T}$. The matrices $f(\Phi) E_{m n} M_{n}$, where $f(x) \in K\{x]$, are all its solutions, since they form a space of dimension m.
(C) For the elements of the matrix N_{m} (4) holds and $a_{i, j+1}=a_{j, i+1}$ (we assume $0 \leqslant i \leqslant m$, $1 \leqslant j \leqslant m, \quad$ setting $a_{0, j+1}=a_{j 1}$), so $a_{j, i+1}=a_{i+1, j}+a_{i+1, j+1}, N_{m}^{T}=N_{m} \Phi^{T}$. Consequently, $\mathrm{N}_{\mathrm{m}}{ }^{\mathrm{T}}=$ $\Phi N_{m} \Phi^{T}, N_{f}=f\left(\Phi+\Phi^{-1}\right) N_{m}=f\left(\Phi+\Phi^{-1}\right) \Phi N_{m}^{T}=\Phi N_{f}^{T}$, where $f(x) \in K[x]$.

Let $m=2 k-\alpha, \alpha \in\{0,1\}, g(x) \in K[x]$ be a polynomial of degree k such that $(x+1)^{2 k}=$ $x^{k} g\left(x+x^{-1}\right)$. Since $(x+1)^{m}$ is the characteristic polynomial of Φ and the matrix M_{m} is nondegenerate, one has $N_{f}=f\left(\Phi+\Phi^{-1}\right)(E+\Phi)^{1-\alpha} M_{m}=0$ only if $g(x)$ divides $f(x)$. Hence the dimension of the space of matrices $N_{f}=\Phi N_{f}^{T}$ is equal to k. On the other hand, if $A=\Phi A^{T}$, then $a_{i i}=a_{i i}+a_{i, i+1}, a_{i, i+1}=0, A=\Phi A \Phi^{T}$, so the matrix A is completely determined by representatives of the lst, $3 \mathrm{rd}, \ldots,(2 k-1)$-st diagonals [point (B) of the proof], the dimension of the space of such matrices does not exceed k. Consequently, $A=N_{f}$.

The matrix $\widehat{\Phi}=\Phi \hat{\Phi}^{T}=\Phi \hat{\Phi} \Phi^{T}$, so $\lambda=1$ [Lemma $\left.1(\mathrm{~A})\right]$ and $\widehat{\Phi}=f\left(\Phi+\Phi^{-1}\right) N_{m}$. Since $\hat{\phi}$ is nondegenerate, N_{m} is also nondegenerate and m is odd.

LEMMA 2. Let A be a congruently indecomposable nondegenerate matrix. Then A is congruent to $\hat{\Phi}$ or Φ^{+}, where Φ is a nondegenerate Jordan block.

Proof. Let the cosquare \bar{A} have the form (2), where Φ_{i} is a Jordan block of size $n_{i} \times n_{i}$ with eigenvalue λ_{i}. We can assume that $\lambda_{i}=1$. Assume that $\lambda_{1}=\ldots=\lambda_{q} \neq 1, \lambda_{1}^{-1}=\lambda_{q+1}=\ldots=\lambda_{r}$, $\lambda_{1} \neq \lambda_{i} \neq \lambda_{1}^{-1}$ - for $i>r$. By (3) and Lemma 1 (A), $A_{i j}=0$ in the following four cases: $i, j \in\{1, \ldots, q\} ; i, j \in\{q+1, \ldots, r\} ; i \leqslant r<j ; i\rangle r \geqslant j$. Hence, in view of the nondegeneracy and congruent indecomposability, $A=\left(\begin{array}{ll}0 & B \\ C & 0\end{array}\right)$, where B and C are nondegenerate blocks. Taking $S=R \oplus\left(R^{\vee} C^{-1}\right)$, we get a matrix $A^{\prime}=S A S^{T} \quad$ with blocks $B^{\prime}=R\left(B C^{\vee}\right) R^{-1}, C^{\prime}=E$. Since A^{\prime} is congruently indecomposable, we can make B^{\prime} a Jordan block Ψ; then $A^{\prime}=\Psi^{+}$.

In what follows we shall assume $\lambda_{1}=\ldots=\lambda_{t}=1, n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{t}$. We set $n=n_{1}, \Phi=$ Φ_{1}. Let us assume first that the block A_{11} is nondegenerate. In view of (3) and Lemma 1 (b), $A_{i_{1}}=f_{i}\left(\Phi_{i}\right) E_{n_{i} n} M_{n}$. We apply the transformation $A^{\prime}=S A S^{T}$ with block matrix S, in which $S_{i i}=E_{n_{i} n_{i}}(1 \leqslant i \leqslant t), \quad S_{i 1}=g_{i}\left(\Phi_{i}\right) E_{n_{i} n}\left(i \geqslant 2, \quad g_{i}(x) \in K[x]\right), \quad$ the remaining blocks being zero. We get $\mathrm{A}_{\mathrm{iI}_{1}}{ }^{\prime}=\left\{g_{i}\left(\Phi_{i}\right) f_{1}\left(\Phi_{i}\right)+f_{i}\left(\Phi_{i}\right)\right] E_{n_{i} n} M_{i n}$. In view of the nondegeneracy of the matrix $f_{1}\left(\Phi_{i}\right)$ one can choose $g_{i}\left(\Phi_{i}\right)$ so that $A_{i_{1}}^{\prime}=0(i \geqslant 2)$. By (3) and the congruent indecomposability, $A=A_{11}$.

In view of (3), Lemma 1 (C), and the nondegeneracy of $\mathrm{A}=f(N) \Phi$, where $N=\Phi+\Phi^{-1}$ is a nilpotent matrix, $f(x) \in K[x], f(0) \neq 0$. Let $S=a E+H(E+\Phi)$, where $a^{2}=f(0), \quad H=$ $b_{A} E+b_{1} N+b_{9} N^{2}+\ldots$ Since $\hat{\varphi}=\Phi \bar{\Phi} \Phi^{T}$, one has $S \hat{\Phi} S^{T}=[a E+H(E+\Phi)]\left[a E+H\left(E+\Phi^{-1}\right)\right] \tilde{\Phi}=$ $\left[a^{2} E+a H N+H^{2} N\right] \widehat{\Phi}=\left[a^{2} E+\left(a b_{0}+b_{0}^{2}\right) N+a b_{1} N^{2}+\left(a b_{2}+b_{1}^{2}\right) N^{3}+\ldots\right] \hat{\Phi}$. One can choose b_{0}, b_{1}, \ldots so that $S \hat{\Phi} S^{\mathrm{T}}=f(N) \Phi$, so $\hat{\Phi}$ is congruent to A .

Let the block A_{11} be degenerate. The matrix A is nondegenerate so one can find a block A_{il} with nonzero last column. By virtue of the relations $n_{i} \leqslant n$ (3), and Lemma 1 (B), such a block is nondegenerate. We shall assume $\mathrm{i}=2$. Then $n_{1}=n_{2}=n, \quad A_{i j}=f_{i j}\left(\Phi_{i}\right) E_{n_{i} n^{2}} M_{n}$ ($\mathrm{j} \leq 2$). We apply the transformation $A=S A S^{T}$ with block matrix S, in which $S_{i i}=E_{n_{i} n_{i}}$ $(1 \leqslant i \leqslant t), \quad S_{i j}=g_{i j}\left(\Phi_{i}\right) E_{n_{i} n} \quad\left(i \geqslant 3, j \leqslant 2, \quad g_{i j}(x) \in K[x]\right), \quad$ the remaining blocks being zero. We get $A_{i j}=\left[g_{i 1}\left(\Phi_{i}\right) f_{1 j}\left(\Phi_{i}\right)+g_{i 2}\left(\Phi_{i}\right) f_{z j}\left(\Phi_{i}\right)+f_{i j}\left(\Phi_{i}\right)\right] E_{n_{i} n} M_{n}(i \geqslant 3, j \leqslant 2)$. The matrix $\left(f_{\alpha \beta}\left(\Phi_{i}\right)\right)_{\alpha, \mathrm{s}=1,2}$ is nondegenerate, so one can choose $g_{i j}\left(\Phi_{i}\right)$ so that $A_{i_{1}}^{\prime}=A_{i_{2}}^{\prime}=0$ ($i \geqslant 3$). By (3), Lemma 1 (C), and the congruent indecomposability, $A=\left(A_{i j}\right)_{i, j=1,2}, A_{i i}=f_{i}\left(\Phi+\Phi^{-1}\right) N_{n} . \quad$ By the transformation $S A S^{T}, \quad S=E_{n n} \oplus f_{21}(\Phi)^{-1}$, we make $A_{21}=M_{n}, A_{12}=\Phi A_{21}^{T}=\Phi M_{n}^{T}$.

We show that by a congruence transformation one can make $A_{12}=A_{25}=0$, Let $f_{1}(x)=a_{0}+$ $a_{1} x+\ldots, f_{2}(x)=b_{0}+b_{1} x+\ldots, a_{n}=\ldots=a_{r-1}=0 \neq a_{r} \quad(r \geqslant 0)$. It suffices to prove that if the rank of A_{11} is not less than the rank of A_{22} (i.e., $b_{0}=\ldots=b_{r-1}=0$), then the rank of A_{12} can be lowered without changing A_{22}. We apply the transformation $1^{\prime}=S A S^{T}, S=$ $\left(\begin{array}{cc}E & g(\Phi) \\ 0 & E\end{array}\right)$; we get $A_{22}^{\prime}=A_{22}, A_{11}^{\prime}=f_{1}\left(\Phi+\Phi^{-1}\right) N_{n}+\Phi g\left(\Phi^{-1}\right) M_{n}^{T}+g(\Phi) M_{n}+g(\Phi) f_{2}\left(\Phi+\Phi^{-1}\right) g\left(\Phi^{-1}\right) N_{n}$. We introduce notation: $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x}+1), \mathrm{F}$ is a degenerate Jordan block $G=E+F+F^{2}+\ldots$, then $\Phi=E+F, \Phi^{-1}=G=E+F G, \Phi+\Phi^{-1}=F^{2} G$. Since $N_{n}=F^{1-\alpha} M_{n}, M_{n}=\Phi^{\alpha} M_{\pi}^{T}$, where $n=2 k+\alpha$,
$\alpha \in\{0,1\} \quad$ one has $A_{11}^{\prime}=\left[f_{1}\left(F^{2} G\right) F^{1-\alpha}+\left(E+F 1^{1-\alpha} h(F G)+h(F)+h(F) f_{2}\left(F^{2} G\right) h(F G) F^{1-\alpha}\right] M_{n}\right.$.
Let $\beta \in K$ be such that $a_{0}+\beta+\beta^{2} b_{0}=0$; we take $h(x)=\beta$ for $\mathrm{r}=0$ (then $\alpha=0$ due to the degeneracy of $\left.\mathrm{A}_{11}\right), h(x)=a_{n} x^{2 r-\alpha}$ for $\mathrm{r}>0$; we get $A_{1 \mathrm{l}}=\left(c_{1} F^{2 r+1}+c_{2} F^{2 r+1}+\ldots\right) F^{1-\alpha} M_{n}\left(c_{i} \in K\right)$, its rank is less than the rank of A_{11}.

Thus, one can make $A=\left(\begin{array}{cc}0 & \Phi M_{n}^{T} \\ M_{n} & 0\end{array}\right)$. Taking $S=E \oplus M_{n}^{-1}$, we get $S A S^{T}=\Phi^{+}$. The lemma is proved.

Proof of the Theorem. To classify bilinear forms, Gabriel [1] (cf. also [4-6]) proposed using the following result of Kronecker. The pair of matrices (A, B) of size $m \times n$ is called equivalent to the pair (SAR, SBR), where S and R are nondegenerate matrices of sizes $m \times m$, $n \times n$. By the direct sum one means the pair $(A, B) \oplus(C, D)=(A \oplus C, B \oplus D)$. By Kronecker's theorem (the bundle of matrices problem; cf. [7, Chap. XII]) a pair of matrices of the same size is equivalent to a direct sum of pairs of the form (Φ, E), (E, J_{n}), ($\left.G_{n}, H_{n}\right),\left(G_{n}^{T}, H_{n}^{\top}\right)$ uniquely determined up to permutation of the summands, where Φ is a Jordan block, J_{n} is a degenerate Jordan block of size $n \times n, G_{n}$ and H_{n} are gotten from the identity matrix of size $n \times n$ by crossing out the last and, respectively, first rows.

It follows from the equivalence of the pairs (A, B) and (C, D) that the matrices ($A, B)^{+}$, $(C, D)^{+}$are congruent, where $(X, Y)^{+}=\left(\begin{array}{cc}0 & X \\ Y^{\top} & 0\end{array}\right)$. According to [1], a congruently indecomposable degenerate matrix is congruent to ($\left.J_{n}, E\right)^{+} \ldots$ or $\left(G_{n}, H_{n}\right)^{+}$. But $S\left(J_{n}, E\right)^{+} S^{T}=J_{2 n}, R\left(G_{n}, H_{n}\right)^{+} R^{T}=$ $J_{2 n-1}$, where $S=\left(s_{i j}\right), R=\left(r_{i j}\right), \quad s_{2 \alpha-1, n+\alpha}=s_{2 \alpha, \alpha}=r_{2 \alpha-1,2 n-\alpha}=r_{2 \beta, n-3}=1 \quad(1 \leqslant \alpha \leqslant n, 1 \leqslant \beta \leqslant n-1)$, the other $s_{i j}=r_{i j}=0$. It follows from this and Lemma 2 that each square matrix is congruent to a matrix of the form (1). One can impose the condition $\Phi_{i} \neq \Psi_{j}$ on its summands, since $S\left(\Psi^{+} \ominus \hat{\Psi}\right) S^{T}=\hat{\Psi} \oplus \hat{\Psi} \ominus \hat{\Psi}$, where $S=\left(\begin{array}{ccc}E & \hat{\Psi} & E \\ E & 0 & E \\ 0 & \hat{\Psi} & E\end{array}\right)$.

It follows from the congruence of the matrices A and B that the pairs (A, A^{T}), (B, B^{T}) are equivalent (the converse is also true over an algebraically closed field of characteristic $\neq 2$; cf. [4]). The pair (A, A^{T}) for the matrix (1) is equivalent to the direct sum of pairs $\left(\Phi_{i}, E\right) \oplus\left(\Phi_{i}^{-}, E\right),\left(\Psi_{j}, E\right), P_{k}$, where $P_{k}=\left(J_{n}, E\right) \oplus\left(E, J_{n}\right) \quad$ for $F_{k}=J_{2_{n}}, \quad P_{k}=\left(G_{n}, H_{n}\right) \ominus$ $\left(G_{n}^{T}, H_{n}^{r}\right)$ for $F_{k}=J_{2 n-1}$. By Kronecker's theorem two direct sums of the form (1) can be congruent only if one is gotten from the other by replacing some summands of the form Φ^{+}by $\left(\Phi^{-}\right)^{+}$ or $\hat{\Phi} \oplus \hat{\Phi}$ and some summands of the form $\hat{\Psi} \oplus \hat{\Psi}$ by $\Psi^{+}\left(\Phi=\Phi^{-}\right.$, provided $\hat{\Phi}$ exists; cf. Lemma 1 (C)).

Replacing Φ^{+}by $\left(\Phi^{-}\right)^{+}$leads to a congruent direct sum, since $S \Phi^{+} S^{T}=\left(\Phi^{-}\right)^{+}$, where $\mathrm{S}=(\mathrm{R}$, $\left.\Phi^{\vee} R^{-1}\right)^{+}, R \Phi^{\vee} R^{-1}=\Phi^{-}$. We show that if $\Phi_{i} \neq \Psi_{j}$ replacement of Φ_{i}^{+}by $\widehat{\Phi}_{i} \varrho \hat{\Phi}_{i}$ in the direct sum (1) leads to a noncongruent matrix.

By contradiction, let $S A S^{T}=B$, where $A=A_{1} \oplus \ldots \oplus A_{n},(n=p+q+r)$ is the matrix (1) , $B=\widehat{\Phi}$ 兮 $C, ~ \Phi$ being one of the matrices $\Phi_{1}, \ldots, \Phi_{p}$. We divide the matrices S, S^{\vee} into n vertical and two horizontal strips corresponding to the partitions of A and B , and let $\left(S_{1}|\ldots| S_{n}\right),\left(R_{1}|\ldots| R_{n}\right)$ be the upper horizontal strips of the matrices $S, R=S^{\vee}$. Then $S_{1} A_{1} S_{1}^{T}+\ldots+S_{n} A_{n} S_{n}^{T}=\hat{\Phi}$.

We get a contradiction with the nondegeneracy of $\hat{\Phi}$, if we prove that the last row of all the matrices $S_{i} A_{i} S_{i}^{T}$ is zero. Since $S A=B S^{\vee}$ and $S A^{T}=B^{r} S^{\vee}$ we get $S_{i} A_{i}=\widehat{\Phi} R_{i}$ and $S_{i} A_{i}^{T}=\hat{\Phi}^{T} R_{i}$. From this, $S_{i} A_{i}=\Phi \bar{\Phi} \vee S_{i} A_{i}^{T}=\Phi S_{i} A_{i}^{T}, S_{i} \bar{A}_{i}=\Phi S_{i}$ (where $\bar{A}_{i}=A_{i} A_{i}^{\vee}$) for nondegenerate A_{i}.

If isp, then $A_{i}=\Phi_{i}^{+}, \bar{A}_{i}=\Phi_{i} \oplus \Phi_{i}^{\vee}$. From $S_{i} \bar{A}_{i}=\Phi S_{i}$ it follows that $P \Phi_{i}=\Phi P$, $Q \Phi_{i}^{\vee}=\Phi Q$, where $S_{i}=(P \mid Q)$. From this $\Phi Q P^{T} \Phi^{T}=Q P^{T}$ and by Lemma 1 (B), $Q P^{T}=f(\Phi) \widehat{\Phi}$. Hence

$$
P \Phi_{i} Q^{r}=\Phi P Q^{T}=\bar{\Phi} f\left(\Phi^{T}\right),
$$

the matrix

$$
S_{i} A_{i} S_{i}^{T}=P \Phi_{i} Q^{T}+Q P^{T}=\left(f\left(\Phi^{-1}\right)+f(\Phi)\right) \hat{\Phi}
$$

has last row zero.
If $i=p+j(j \leqslant q)$, then $A_{i}=\hat{\Psi}_{j}, \bar{A}_{i}=\Psi_{j}$. Since $\Phi_{i} \neq \Psi_{j}$ for all i and j, one has $\Phi \neq \Psi_{j}$. By Lemma 1 (C) the eigenvalues of the blocks Φ, Ψ_{j} are equal to 1 , so Φ and Ψ_{j} are of different sizes. Let the size of Φ be greater than the size of Ψ_{j}; then since $S_{i} \Psi_{j}=\Phi S_{i}$, the last row of the matrix S_{i}, and hence also $S_{i} \hat{\Psi}_{j} S_{i}^{T}$, is zero. Let the size of Φ be smaller than the size of Ψ_{j}; then the last row of the matrices $S_{i}, \hat{\Psi}_{j}$ and the first row of the matrix $S_{i}{ }^{T}$ have the forms, respectively, $(0 \ldots 0 a),(10 \ldots 0),(0 \ldots 0)$, so the last row of the matrix $S_{i} \widehat{W}_{j} S_{i}^{T}$ is zero.

If $i=p+q+k(k \leqslant r)$, then $A_{i}=F_{k}$. It follows from the relation $S_{i} F_{k}=\Phi S_{i} F_{k}^{T}$ that the columns with even indices of the matrix S_{i} are zero, so $S_{i} F_{k} S_{i}^{T}=0$. The theorem is proved.

LITERATURE CITED

1. P. Gabriel, "Degenerate bilinear forms," J. Algebra, 31, 67-72 (1974).
2. C. Riehm, "The equivalence of bilinear forms," J. Algebra, 31, 45-66 (1974).
3. R. Scharlau, "Zur Klassifikation von Bilinearformen und von Isometrien über Körpern," Math. Z., 178, 359-373 (1981).
4. A. V. Roiter, in: Representations and Quadratic Forms [in Russian], Inst. Mat. Akad. - Nauk UkrSSR (1979), pp. 124-126.
5. V. V. Sergeichuk, in: Linear Algebra and Representation Theory [in Russian], Inst. Mat. Akad. Nauk UkrSSR (1983), pp. 110-134.
6. V. V. Sergeichuk, "Classification problems for systems of linear maps and sesquilinear forms," Kiev University, 2983; deposited in UkrNIINTI, No. 196 UK-D 84.
7. F. R. Gantmakher, Theory of Matrices, Chelsea Publ. (1960).
