$$
\leqslant r \sum_{m_{1}=1}^{r_{1}} \sum_{m=1}^{r_{1}} \frac{1}{m_{1} m d^{2}} \sum_{j=1}^{k\left(m_{1}, m\right)} 1=O\left(r \log ^{2} r / d \delta\right)=O(r / d) .
$$

The lemma is proved.
The proof of the estimate

$$
\Sigma_{m_{1}=-2}^{-r_{1}} \Sigma_{m i=1}^{r_{1}} S_{m_{1} m}=O(r / d)
$$

is almost a verbatim repetition of the proof of Lemma 4.
Combining the results of the last three lemmas, we obtain the estimate

$$
\sum_{m_{1}=-r_{1}}^{-r_{1}} \sum_{i m=0}^{r_{1}} S_{m_{1} m}=O\left(\frac{r}{d}+\frac{r}{\delta^{2}}\right)
$$

Consequently, if $u \in N_{r}$, then

$$
\left|R_{u}\right|=O\left(\frac{r}{d}+\frac{r}{\delta^{2}}+\frac{n \log r}{d}\right)
$$

It is now easy to see that under the conditions of the theorem we have

$$
\left|R_{u}\right|=o\left(n^{2} / r\right)
$$

At the same time, according to Lemma 1 ,

$$
r-\left|N_{r}\right|=o(r)
$$

The theorem is proved.

LITERATURE CITED

1. I. M. Vinogradov, Elements of Number Theory [in Russian], Nauka, Moscow (1972).
2. N. M. Korobov, Trigonometric Sums and Their Applications [in Russian], Nauka, Moscow (1989).
3. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press (1934).

SYMMETRIC REPRESENTATIONS OF ALGEBRAS WITH INVOLUTION
V. V. Sergeichuk

UDC 512.64

Suppose K is a field of characteristic $\neq 2$ with involution $k \rightarrow \bar{k}$ (possibly the identity mapping) and Λ is an algebra over K with involution, i.e., a mapping $\mathrm{t}: \Lambda \rightarrow \Lambda$ such that ($\lambda+$ $\mu)^{2}=\lambda^{2}+\mu^{2},(\lambda \mu)^{\iota}=\mu^{2} \lambda^{2},(k \lambda)^{\iota}=\bar{k} \lambda^{2}, \lambda^{\prime \prime}=\lambda$ for all $\lambda, \mu \models \Lambda, k \in K$.

By a representation of the algebra Λ by operators of a vector space V over K we mean a homeomorphism $\varphi: \Lambda \rightarrow$ End (\bar{V}). The representation is symmetric if to a conjugate element there is assigned the conjugate linear operator relative to a fixed scalar product in $V: \varphi\left(\lambda^{\prime}\right)=$ $\varphi(\lambda)^{\prime}$. If we introduce in V the multiplication $K, F(v, w)=\varepsilon \bar{F}(w, v)$ we obtain an ε-Hermitian module defined as follows.

Definition. By an ε-Hermitian module $(M, F),\left(M^{\prime}, F^{\prime}\right)$ we mean a pair (M, F), where M is a module over Λ that is finite-dimensional over $K, F(v, w)=\overline{\varepsilon F(w, v)}$ is a nondegenerate ε Hermitian form on the vector space K^{M} of the module M, and

$$
\begin{equation*}
F(\lambda v, w)=F\left(v, \lambda^{2} w\right), \quad \lambda \in \Lambda, v, w \in M \tag{1}
\end{equation*}
$$

Two ε-Hermitian modules (M, F), (M^{\prime}, F^{\prime}) are isomorphic if there exists a Λ-isomorphism φ : $M \leftrightharpoons M^{\prime}$, preserving the forms:

$$
\begin{equation*}
F(v, w)=F^{\prime}(\varphi v, \varphi w), \quad v, w \in M \tag{2}
\end{equation*}
$$

T. G. Shevchenko Kiev State University. Translated from Matematicheskie Zametki, Vol. 50, No. 4, pp. 108-113, October, 1991. Original article submitted December 7, 1989.

Examples. 1) $\Lambda=K[x], x^{4}=x$. The module M over Λ is the vector space K^{M} with fixed linear operator $v \rightarrow x v$. The problem of classifying ε-Hermitian modules is that of classifying self-conjugate linear operators in a finite-dimensional vector space with a nondegenerate ε Hermitian form.
2) $\Lambda=K\left[x, x^{-1}\right], x^{t}=x^{-1}$. The problem is to classify isometric operators in a space with a nondegenerate ε-Hermitian form.
3) $\Lambda=K G$ is the group algebra of a group G with involution $\left(\sum k_{g} g\right)^{\prime}=\sum \bar{k}_{g} g^{-1}$. The problem is to classify representations of G by isometric operators in a space with a nondegenerate ε-Hermitian form.
4) $K=C$ with a nonidentity involution. Then a 1 -Hermitian module (M, F), where F is a positive definite Hermitian form, defines a symmetric representation of the algebra Λ by operators of the unitary space (c M, F) (see [1, Chap. 2, Sec. 2.6]). In particular, if $\Lambda=$ $\mathrm{C} G$ with involution $\left(\sum k_{g} g\right)^{\iota}=\sum \bar{k}_{k} g^{-1}$, then such a module defines a unitary representation of G (see [1, Chap. 2, Sec. 2.8]).

We will show (see the theorem) that the classification of ε-Hermitian modules reduces to that of ordinary modules over Λ and Hermitian forms over a skew field. This follows from [2, Chap. 7, Theorem 10.9], but we will use [3, 4] in order to obtain the reduction in a more explicit form. We will apply the reduction to symmetric representations of algebras with involution in pseudo-unitary and pseudo-Euclidean spaces (see Corollary 1) and in unitary, Euclidean, and complex Euclidean spaces (see Corollary 2).

By the orthogonal sum of ε-Hermitian modules we mean the ε-Hermitian module $(M, F) \dot{L}\left(M^{\prime}\right.$, $\left.F^{\prime}\right)^{-}=\left(M \oplus M^{\prime}, F \oplus F^{\prime}\right)$.

Suppose M is a module over Λ. We define the dual module M^{*} over Λ as the module whose vector space is the space of semilinear forms $f: K^{M} \rightarrow K$, with multiplication by elements $\lambda \in A$ defined by $\hat{\lambda} f=f \lambda^{\prime}$. We also define the ε-Hermitian module $\left.M^{\varepsilon}\right)=\left(M \oplus M^{*}, F\right)$, where

$$
\begin{equation*}
F(v \oplus f, w \oplus g)=g(v)+\overline{\varepsilon f(w)} \tag{3}
\end{equation*}
$$

(all sesquilinear forms are regarded as semilinear in the first argument and linear in the second).

Let ind (A) be a fixed complete system of nonisomorphic modules over A that are indecomposable into a direct sum and finite-dimensional over K . Let ind $\mathrm{a}_{0}^{\varepsilon}(\mathrm{A})$ denote the set of all $N \in \operatorname{ind}(\Lambda)$, for which there exists an ε-Hermitian module (N, F), and fix one such module (N, F_{N}) [in this case $\left.N \neq N^{*}, v \rightarrow F_{N}(?, v)\right]$. In the set $\operatorname{ind}_{1}^{\varepsilon}(\Lambda)$ we include all $M \in \operatorname{ind}(\Lambda), M^{*} \simeq$ $M \not \equiv \operatorname{ind}_{0}^{\varepsilon}(\Lambda)$, and one module from each pair $\{M, N\} \subset$ ind $(\Lambda), M \neq M^{*} \simeq N$.

Suppose $N \in \operatorname{ind}_{0}^{\varepsilon}(\Lambda)$. In the algebra End (N) of endomorphisms we define an involution $\varphi \rightarrow \Phi^{\swarrow}$, where φ^{\downarrow} is the conjugate endomorphism relative to F_{N} :

$$
F_{N}(\varphi v, w)=F_{N}\left(v, \varphi^{\prime} w\right), \quad v, w \in N .
$$

The algebra of endomorphisms of an indecomposable module is local, hence the quotient algebra by the radical, $\mathrm{T}(\mathrm{N})=\operatorname{End}(\mathrm{N}) / \mathrm{R}$, is a skew field with involution $(\varphi+R)^{\mathrm{t}}=\varphi^{\mathrm{t}}+R$. For each $0 \neq t=t^{\prime} \in T(N)$ we fix $\varphi_{t}=\varphi_{t}^{t} \in t$ [we can take $\varphi_{t}=1 / 2 \cdot\left(\varphi+\varphi^{\prime}\right)$, where $\varphi \in t$) and define an ε-Hermitian form $F_{N}^{t}(v, w)=F_{N}\left(v, \varphi_{t} w\right)$. For each Hermitian form $\varphi(x)=x_{1}^{l} t_{1} x_{1}+\ldots+x_{r}^{t} t_{r} x_{r}$ over the skew field $T(N)\left(0 \neq t_{i}=t_{i}^{\prime} \in T(N)\right)$ we put

$$
N^{\varphi(x)}=\left(N, F_{N}^{t_{1}}\right) \perp \cdots \perp\left(N, F_{N}^{t}\right) .
$$

THEOREM. Each ε-Hermitian module over Λ is isomorphic to an orthogonal sum

$$
M_{1}^{(\mathrm{e})} \perp \cdots \perp M_{m}^{(\mathrm{e})} \perp N_{1}^{\varphi_{1}^{(x)}} \perp \cdots \perp N_{n}^{\varphi_{n}(x)},
$$

where $M_{i} \in \operatorname{ind}_{1}^{\mathrm{e}}(\Lambda), \quad N_{j} \in \operatorname{ind}_{0}^{\mathrm{e}}(\Lambda), N_{j} \neq N_{i^{\prime}}$ for $\mathrm{j} \neq \mathrm{j}^{\prime}$. This orthogonal sum is uniquely determined to within a rearrangement of the summands and the replacement of $N_{j}^{\varphi_{i}(x)}$ by $N_{j}^{v_{j}(x)}$, where $\varphi_{j}(x), \psi_{j}(x)$ are equivalent Hermitian forms over the skew field $T\left(N_{j}\right)$.

Remarks. 1) Suppose M is a module over Λ and $A_{2}(\lambda \in \Lambda)$ is the matrix of the linear operator $v \mapsto \lambda v(v \in M)$ in the basis $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ of the space $K M$. Then in the dual basis $e_{1}^{*}, \ldots, e_{\mathrm{n}}^{*}$ of the space of the module M^{*} the operator $f \mapsto \lambda f\left(f \in M^{*}\right)$ is defined by the matrix
$A_{i, 1}^{*}$ [for each matrix $A=\left(a_{i j}\right)$ we define the matrix $\left.A^{*}=\left(\bar{a}_{j i}\right)\right)$.. In the basis $e_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$, $\mathrm{e}_{1}^{*}, \ldots, \mathrm{e}_{\mathrm{n}}^{*}$ of the space of the module $M^{(\varepsilon)}=\left(M \oplus M^{*}, F\right)$ the linear operator $w \mapsto \lambda w(w \in M \Theta$ M^{*}) and the ε-Hermitian form F are defined by the matrices $\left(\begin{array}{cc}A_{\lambda} & 0 \\ 0 & A_{i 1}^{*}\end{array}\right)$ and $\left(\begin{array}{cc}0 & E \\ \varepsilon E & 0\end{array}\right)$.
2) (See [2, Chap. 7, Theorem 4.5].) For each $N^{*} \simeq N \in$ ind (A) there exists a 1-Hermitian or (-1)-Hermitian module (N, F). Indeed, suppose $\varphi: N \underset{\leftrightarrows}{\leftrightarrows}, N \in$ ind (Λ). Consider the dual isomorphism $\varphi^{*}: N=N^{* *} \leftrightharpoons N^{*}, v=v^{* *} \mapsto v^{* *} \varphi$. Since the algebra End (Λ) of endomorphisms is local, the invertibility of $2 \varphi=\left(\varphi+\varphi^{*}\right)+\left(\varphi-\varphi^{*}\right)$ implies the invertibility of $\varphi+\varphi^{*}$ or $\varphi-\varphi^{*}$. Consequently, there exists an isomorphism $\psi=\varepsilon \psi^{*}: N=N^{*}, \varepsilon \in\{1,-1\}$, hence the module $(N, F), F(v, w)=\psi(w)(v)$ is ε-Hermitian.
3) If K is a field with a nonidentity involution, then ind (Λ) consists of all $N \in$ ind $(\Lambda), N \simeq N^{*}$. It suffices to use the preceding remark and the fact that over the field K each ε-Hermitian form can be made Hermitian by multiplying it by $1+\bar{\varepsilon}$ if $\varepsilon \neq-1$, or by $k-\bar{k} \neq 0(k \in K)$ if $\varepsilon=-1$.

Proof of the Theorem. It is only in proving the theorem that we will assume as known the definitions and notation of [4].

We represent Λ as a quotient algebra of a free algebra with generators x_{1}, x_{2}, \ldots :

$$
\Lambda=K\left\langle x_{1}, x_{2}, \ldots\right\rangle / K\left\langle f_{1}, f_{2}, \ldots\right\rangle
$$

where the $f_{i}\left(x_{1}, x_{2}, \ldots\right)$ are certain noncommutative polynomials. Then the $\lambda_{j}=x_{j}+K<f_{1}$, $f_{2}, \ldots>$ are generators of Λ. The involution in Λ is defined by certain relations

$$
\begin{equation*}
\lambda_{j}^{\iota}=g_{j}\left(\lambda_{1}, \lambda_{2}, \ldots\right) \tag{4}
\end{equation*}
$$

Suppose (M, F) is an ε-Hermitian module over Λ. Fix a basis of the vector space K^{M}. Let A_{j} be the matrix of the linear operator $v \mapsto \lambda_{j} v(v \in M)$, and $B=\varepsilon B^{*}$ the matrix of the ε-Hermitian form F. The set of matrices A_{j} must satisfy the relations satisfied by the elements λ_{j} of Λ, hence

$$
\begin{equation*}
f_{i}\left(A_{1}, A_{2}, \ldots\right)=0 \tag{5}
\end{equation*}
$$

It follows from these relations [1, 4] that

$$
\begin{equation*}
A_{j}^{*} B=B g_{j}\left(A_{1}, A_{2}, \ldots\right) \tag{6}
\end{equation*}
$$

Conversely, any set consisting of a nondegenerate ε-Hermitian matrix $B=\varepsilon B^{*}$ and square matrices A_{j} of the same size satisfying relations (5) and (6) defines some ε-Hermitian module (M, F).

Consequently, an ε-Hermitian module (M, F) defines a representation of a digraph with relations (cf. [4, digraph (9)])
$S:$

$$
\begin{aligned}
& f_{i}\left(\lambda_{1}, \lambda_{2}, \ldots\right)=0 \\
& \lambda_{j}^{*} \beta=\beta g_{j}\left(\lambda_{1}, \lambda_{2}, \ldots\right) \\
& \beta=\varepsilon \beta^{*}, \gamma \beta=1_{a}, \beta \gamma=1_{a^{*}}
\end{aligned}
$$

and each such representation defines an ε-Hermitian module.
The quiver with involution of the digraph S is

$$
\begin{align*}
& f_{i}\left(\lambda_{1}, \lambda_{2}, \ldots\right)=0 \\
& \lambda_{j}^{*} \beta=\beta^{3} \mathrm{~g}_{j}\left(\lambda_{1}, \lambda_{2}, \ldots\right) \tag{7}\\
& \beta=\varepsilon \beta^{*}, \gamma \beta=1_{\alpha}, \beta \gamma=1_{\alpha^{*}}
\end{align*}
$$

We do not include in (7) the conjugate relations, but they follow from the relations (7) since the involution $\lambda \rightarrow \lambda^{\prime}$ in Λ is compatible with addition and multiplication.

defining modules over Λ. We extend each representation $A \in$ ind (Q) to a representation of the quiver \bar{S} by putting $A_{\beta}=A_{\beta^{*}}=A_{\gamma}=A_{\gamma^{*}}=1, A_{\lambda_{j}^{*}}=g_{j}\left(A_{\lambda_{1}}, A_{\lambda_{2}}, \ldots\right)$, the resulting representations form a set ind (\bar{S}). We can therefore identify ind (Q) and ind (\bar{S}). Furthermore, the dual module M^{*} can be identified with the conjugate representation A^{0}, the module $M(E)$ with the representation A^{+}, and the set ind $d_{\dot{1}}^{\varepsilon}(\Lambda)$ with the set ind ${ }_{i}(\bar{S})$, $i=0,1$. To prove the theorem we need only use $[4$, Theorem 1].

COROLLARY 1. Suppose K is one of the following fields of characteristic $\neq 2$:
a) an algebraically closed field with the identity involution;
b) an algebraically closed field with a nonidentity involution;
c) a maximal ordered field [i.e., $1<\left(K_{a l g}: K\right)<\infty$, where $K_{a l g}$ is an algebraic closure of K , e.g., $K=\mathbf{R}$);
d) a finite field.

Then each ε-Hermitian module is isomorphic to a uniquely defined (to within a rearrangement of the summands) orthogonal sum of ε-Hermitian modules of the form $\left(M \in \operatorname{ind}_{1}^{e}(\Lambda), N \in\right.$ $\operatorname{ind}_{0}^{\varepsilon}(\Lambda)$
a) $M^{(\varepsilon)},\left(N, F_{N}\right)$;
b) $M(\varepsilon),\left(N, F_{N}\right),\left(N,-F_{N}\right)$;
c) $M(\varepsilon),\left(N, t F_{N}\right)$, where $t=1$ if $T(N)$ is an algebraically closed field with the identity involution or the skew field of quaternions with involution different from $a+b i+$ $\mathrm{cj}+\mathrm{dk} \rightarrow \mathrm{a}-\mathrm{bi}-\mathrm{cj}-\mathrm{dk}$, and $t \in\{-1,1\}$ otherwise;
d) $M(\varepsilon),\left(N, t F_{N}\right)$, where $t=1$ for a nonidentity involution on the field $T(N)$, t is equal to 1 or a fixed nonsquare in $T(N)$ for the identity involution, and for each N the orthogonal sum contains at most one summand ($N, t F_{N}$) with $t \neq 1$.
The proof follows from the theorem and [2, Theorem 2].
COROLLARY 2. Suppose (M, F), (M^{\prime}, F^{\prime}) are 1-Hermitian modules in which (K^{M}, F), ($K^{M^{\prime}}$, F^{\prime}) are Euclidean, or unitary, or complex Euclidean spaces ($K=\mathbf{R}$, or $K=C$ with a nonidentity involution, or $K=C$ with the identity involution, respectively).

1) $(M, F) \simeq\left(M^{\prime}, F^{\prime}\right)$ if and only if $M \simeq M^{\prime}$.
2) (M, F) is uniquely (to within isomorphism of summands) decomposable into an orthogonal sum of orthogonally indecomposable 1 -Hermitian modules.
3) If (M, F) is indecomposable into an orthogonal sum, then either M is indecomposable into a direct sum, or (only in the case of a complex Euclidean space) $M \simeq N \oplus N^{*}$, where N is indecomposable into a direct sum.
The proof follows easily from the law of inertia for Hermitian forms and Corollary 1.

LITERATURE CITED

1. M. A. Naimark, Theory of Group Representations [in Russian], Nauka, Moscow (1976).
2. W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin (1985).
3. A. V. Roiter, "Boxes with involution," in: Representations and Quadratic Forms [in Russian], Inst. Mat., Akad. Nauk UkrSSR, Kiev (1979), pp. 124-126.
4. V. V. Sergeichuk, "Classification problems for systems of forms and linear mappings," Izv. Akad. Nauk SSSR, Ser. Mat., 51, No. 6, 1170-1190 (1987).
