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The lemma i s  p r o v e d .  

The proof of the estimate 

I = 0 (r log ~ r/d6) = 0 (r/d). 

Y,2=, = o r 

is almost a verbatim repetition of the proof of Lemma 4. 

Combining the results of the last three lemmas, we obtain the estimate 

22_  Z .... : o ( + + + )  
Consequently, if u ~ N r ,  then 

IR,,I o ( +  + 

I t  i s  now e a s y  t o  s e e  t h a t  u n d e r  t h e  c o n d i t i o n s  o f  t h e  t h e o r e m  we have  

I/%, I = o ( n ~ / r ) .  

At t h e  same t i m e ,  a c c o r d i n g  t o  Lemma 1, 

r -  IN~ t = o ( r ) .  
The theorem is proved. 

i~ 
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SYMMETRIC REPRESENTATIONS OF ALGEBRAS WITH INVOLUTION 

V. V. Sergeichuk UDC 512.64 

Suppose K is a field of characteristic ~2 with involution k ~ k (possibly the identity 
mapping) and A is an algebra over K with involution, i.e., a mapping t: A-+A such that (X + 

~)~ = ~L + ~L,(X~)~= ~%~,(kk)~= k%~,~L= % for all%, ~A,k~K. 

By a representation of the algebra A by operators of a vector space V over K we mean a 

homeomorphism ~: A-+End (V). The representation is symmetric if to a conjugate element there 
is assigned the conjugate linear operator relative to a fixed scalar product in V: ~ (It) = 
(%)'. If we introduce in V the multiplication K, F (u, w) = eF (w,v) we obtain an e-Hermitian 

module defined as follows. 

Definition. By an c-Hermitian module (M, F),(TFf', F') we mean a pair (M, F), where M is 

a module over A that is finite-dimensional over K, F(v, w) = EF(w, v) is a nondegenerate e- 
Hermitian form on the vector space K M of the module M, and 

f ( ~ u ,  w) = F (u, Xtw), ~ A, v, w ~ M .  (1 )  

Two e - H e r m i t i a n  modules  (M, F ) ,  (M' ,  F ' )  a r e  i s o m o r p h i c  i f  t h e r e  e x i s t s  a A - i s o m o r p h i s m  ~: 
M--~.M', p r e s e r v i n g  t h e  f o r m s :  

F ( v , w )  : F'(qov, q~w), v, t o ~ M .  (2 )  
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Examples. i) A = K Ix], x ~ = x. The module M over h is the vector space K M with fixed 
linear operator v + xv. The problem of classifying s-Hermitian modules is that of classifying 
self-conjugate linear operators in a finite-dimensional vector space with a nondegenerate e- 
Hermitian form. 

2) A = K [x,x-l], x t = x-L The problem is to classify isometric operators in a space with 
a nondegenerate E-Hermitian form. 

3) A = KG is the group algebra of a group G with involution (~kgg) ~ =~#gg-~. The problem 

is to classify representations of G by isometric operators in a space with a nondegenerate 
r form. 

4) K = C with a nonidentity involution. Then a l-Hermitian module (M, F), where F is 
a positive definite Hermitian form, defines a symmetric representation of the algebra A by 
operators of the unitary space (cM, F) (see [i, Chap. 2, Sec. 2.6]). In particular, if A = 

CG with involution (~,kgg) ~ = ~#gg-~ , then such a module defines a unitary representation of 

G (see [I, Chap. 2, Sec. 2.8]). 

We will show (see the theorem) that the classification of r modules reduces 
to that of ordinary modules over A and Hermitian forms over a skew field. This follows from 
[2, Chap. 7, Theorem 10.9], but we will use [3, 4] in order to obtain the reduction in a 
more explicit form. We will apply the reduction to symmetric representations of algebras 
with involution in pseudo-unitary and pseudo-Euclidean spaces (see Corollary i) and in unitary, 
Euclidean, and complex Euclidean spaces (see Corollary 2). 

By the orthogonal sum of E-Hermitian modules we mean the e-Hermitian module (M, F)_L(M' ,  
F')---  (M @ M' ,  F @ F'). 

Suppose M is a module over A. We define the dual module M* over A as the module whose 
vector space is the space of semilinear forms f: K M + K, with multiplication by elements 
I~A defined by s =]D. We also define the E-Hermitian module M (e) = (MOM*,F), where 

F ( v O ] ,  w @ g )  = g(v) + el(w) (3) 

(all sesquilinear forms are regarded as semilinear in the first argument and linear in the 
second). 

Let ind (A) be a fixed complete system of nonisomorphic modules over A that are indecom- 
posable into a direct sum and finite-dimensional over K. Let ind,(A) denote the set of all 
N~ind (A), for which there exists an e-Hermitian module (N, F), and fix one such module (N, 
F N) [in this case N--~N*,v~+F~(?,v)]. In the set ind,(A) we include all M~ind (A), M*--~ 

M ~ind~ (A), and one module from each pair {M,N}~ind (A), M~/=M*~--N. 

Suppose N~ind~(A). In the algebra End(N) of endomorphisms we define an involution 
~--~t , where %O~ is the conjugate endomorphism relative to FN: 

F~v (qw, w) = Fly (v, q~w), v, w ~ N. 

The algebra of endomorphisms of an indecomposable module is local, hence the quotient algebra 
by the radical, T(N) = End (N)/R, is a skew field with involution (%O + R) ~= %O~ + B. For each 
O=/=t = tL~T(N) we fix %or =%o~t [we can take~t = I/2"(~-+%O~), where ~t) and define an 
e-Hermitian form F~ (v, w) =FN (v, %or w) . For each Hermitian form %o (x) ---- x~tlxl + . . . + x~t~x~ over 
the skew field T (N) (0~ t~ ---- t~ T (N)) we put 

N 'p~ = (N, F~) i--- _L (N, F~). 

THEOREM. Each r module over A is isomorphic to an orthogonal sum 

I ~ )  N1 ~ ' ( ~ ) l . . .  ' . % ( x )  M~) J _ . . .  ~ ...... j_ _L lV, , 

where Mi ~ ind~ (A), N i ~ ind~ (A), N~ ~ Nj, f o r  j ~ j '  This o r thogona l  sum is  un ique ly  de- 
IVY.t(x) .~l,flx) 

termined to within a rearrangement of the summands and the replacement of -'~ by 7V I , 
where ~] (x),~ (x) are equivalent Hermitian forms over the skew field T(Nj). 

Remarks. i) Suppose M is a module over A and A>. (~ ~ A) is the matrix of the linear 

operator v ~ %v (v ~ M) in the basis e I .... ,e n of the space KM. Then in the dual basis 
e~ ..... e* of the space of the module M* the operator ] ~+ ~I (I ~ M*) is defined by the matrix 
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Az*t [for each matrix A = (aij) we define the matrix A* = (a~0).. In the basis e I ..... e n, 

e~ .... ,e n of the space of the module M (e) " (M ~ M*,F) the linear operator w ~ %w (m~M Q 

M*) and the ~-Hermitian form F are defined by the matrices .4* and eE " 
JL 

2) (See [2, Chap. 7, Theorem 4.5].) For each 2(* ___ N ~ind(A) there exists a l-Hermitian 
or (-l)-Hermitian module (N, F). Indeed, suppose ~: N ~ N*, N ~ indiA).. Consider the dual 
isomorphism q~*: N = N** -~ N*, u = u** ~ v**% Since the algebra End (A) of endomorphisms is 
local, the invertibility of 2~ = (%0 ~- ~*) ~- (qD -- ~*) implies the invertibility of q0 ~- ~* or 
q0 -- ~* Consequently, there exists an isomorphism ~ = ~*: N --~ N*, ~ ~ {I, --I}, hence the 
module iN, F), F(v, w) = ~(w)(v) is e-Hermitian. 

3) If K is a field with a nonidentity involution, then ind 0 (A) consists of all N 
ind (A), N = N*. It suffices to use the preceding remark and the fact that over the field 
K each g-Hermitian form can be made Hermitian by multiplying it by 1 + e if e ~ -i, or by 
k--k=/=O (k~K) if c = -i. 

Proof of the Theorem. It is only in proving the theorem that we will assume as kno~rn 
the definitions and notation of [4]. 

We represent A as a quotient algebra of a free algebra with generators xz, x~,...: 

A = K <x~, x2 . . . .  > / K  < f i , / 2  . . . .  >, 

where the fi(xz, x 2 .... ) are certain noncommutative polynomials. Then the ~j = xj + K<fl, 
f=,...> are generators of A. The involution in A is defined by certain relations 

l )  = g./ ()~, ~2 . . . .  ). (4) 

Suppose (M, F) is an g-Hermitian module over A. Fix a basis of the vector space K M. 
Let Aj be the matrix of the linear operator u ~ %7v (u ~ M), and B = s the matrix 
of the ~-Hermitian form F. The set of matrices Aj must satisfy the relations satisfied by 
the elements %j of A, hence 

/~ (A~, A2 . . . .  ) = O. ( 5 )  

It follows from these relations [i, 4] that 

A~*B = Bg~ (A,,  Az  . . . .  ). ( 6 )  

Conversely, any set consisting of a nondegenerate ~-Hermitian matrix B = ~B* and square 
matrices Aj of the same size satisfying relations (5) and (6) defines some e-Hermitian module 
(M, F). 

Consequently, an e-Hermitian module (M, F) defines a representation of a digraph with 
relations (cf. [4, digraph (9)]) 

)'.! 

% 
�9 y 

f t ( ? . , .  Z.: . . . .  ) = O.  

~.~P = 13~j (~. , .  ?.~ . . . .  J, 

p : ~ I f ,  "r l~--L,  13~, --- I o . .  

and each such representation defines an s-Hermitian module. 

The quiver with involution of the digraph S is 

i z ]i ( ~,- ~ ...... ) = 0 

9 : ~ . , ~ ' , / C " - q ~ , , f � 9  _ _ _ I  ." fo~ ~ li~ = i ~ ~j' ~ , ,  ~ . . . .  ) , 

~ "" ~ " I~ =~I~". ~'l~--t. .  lh' : I r  : u 

We do not include in (7) the conjugate relations, but they follow from the relations (7) 
since the involution k ~ )t in A is compatible with addition and multiplication. 

( 7 )  
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Consider the quiver 

a ( ~ l '  Az . . . .  ) = 0 

defining modules over A. We extend each representation A~ind (Q) to a representation of the 
quiver S by putting A~ = A~, = A v = Av, = I, Az; = gj(A~,, A~ ..... ), the resulting representa- 

tions form a set ind (S). We can therefore identify ind (Q) and ind (S). Furthermore, the 
dual module M* can be identified with the conjugate representation A ~ the module M (E) with 
the representation A +, and the set ind~ (A) with the set indi(S), i = 0, i. To prove the 
theorem we need only use [4, Theorem i]. 

COROLLARY I. Suppose K is one of the following fields of characteristic ,2: 

a) an algebraically closed field with the identity involution; 

b) an algebraically closed field with a nonidentity involution; 

c) a maximal ordered field [i.e., i < (Kalg:K) < ~, where Kalg is an algebraic closure 
of K, e.g., K =R); 

d) a finite field. 

Then each e-Hermitian module is isomorphic to a uniquely defined (to within a rearrange- 
ment of the summands) orthogonal sum of e-Hermitian modules of the form (M~ind~(A), N~ 
ind~ (A) 

a) M (~), (N, FN); 

b) M (6), (N, FN), (N, -FN); 

c) M (g), (N, tFN), where t = 1 if T(N) is an algebraically closed field with the identity 
involution or the skew field of quaternions with involution different from a + bi + 
cj + dk + a - bi - cj - dk, and t~{--l,l} otherwise; 

d) M (~), (N, tFN), where t = i for a nonidentity involution on the field T(N), t is equal 
to i or a fixed nonsquare in T(N) for the identity involution, and for each N the 
orthogonal sum contains at most one summand (N, tF N) with t ~ i. 

The proof follows from the theorem and [2, Theorem 2]. 

COROLLARY 2. Suppose (M, F), (M', F') are l-Hermitian modules in which (K M, F), (K M' , 
F') are Euclidean, or unitary, or complex Euclidean spaces (K = R, or K = C with a noniden- 
tity involution, or K = C with the identity involution, respectively). 

i) (M, F) = (M', F') if and only if M = M'. 

2) (M, F) is uniquely (to within isomorphism of summands) decomposable into an orthogonal 
sum of orthogonally indecomposable l-Hermitian modules. 

3) If (M, F) is indecomposable into an orthogonal sum, then either M is indecomposable 
into a direct sum, or (only in the case of a complex Euclidean space) M"~NON *, 
where N is indecomposable into a direct sum. 

The proof follows easily from the law of inertia for Hermitian forms and Corollary i. 
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