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Abstract

This thesis is devoted to the problem of finding geometrically inspired discrete approxima-

tions to the equations of geophysical fluid dynamics. It is well known that these equations

admit a rich geometric structure, which can include the invariance under specific transformation

groups, numerous conservation laws, and a symplectic or Hamiltonian structure, just to name a

few. Unfortunately, these geometric properties are typically lost when discretizing these equa-

tions using standard numerical methods. Specialized numerical integrators, so-called geometric

numerical integrators, are needed.

We focus on the use of Lie symmetries and conservation laws for constructing tailored param-

eterization and discretization schemes for some of the important models of (geophysical) fluid

dynamics.

In particular, we construct invariant discretization schemes for Burgers’ equation, the Korte-

weg–de Vries equation and the shallow-water equations. A main characteristic of these invariant

schemes is that they require the use of adaptive moving meshes. Developing suitable strategies

for invariantly adapting moving meshes is hence a cornerstone for these integrators. While most

invariant integrators proposed so far are based on the finite difference methodology, we also hint

on using finite volume and meshless methods.

Parameterization is the procedure of approximately including processes into numerical models

that said models cannot resolve explicitly. Constructing parameterization schemes is a task of

immense practical relevance and one of the most active research directions in modern weather

and climate prediction. We propose several general methods for constructing parameterization

schemes that retain selected symmetries and conservation laws of their parent models. Particular

invariant and conservative parameterization schemes are constructed for the barotropic vorticity

equation on the beta-plane and the shallow-water equations.
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Zusammenfassung

Diese Schrift widmet sich des Problems geometrisch inspirierter diskreter Approximationen

der Gleichungen der geophysikalischen Fluiddynamik zu finden. Es ist wohlbekannt dass diese

Gleichungen reichhaltige geometrische Strukturen besitzen, die unter anderem die Invarianz un-

ter speziellen Transformationsgruppen, zahlreiche Erhaltungssätze und eine symplektische oder

Hamiltonsche Struktur beinalten, um nur wenige Beispiele zu nennen. Unglücklicherweise blei-

ben diese Strukturen typischerweise nicht erhalten wenn diese Gleichungen mit traditionellen

numerischen Verfahren diskretisiert werden. Spezielle numerische Verfahren, sogenannten geo-

metrischen numerischen Integratoren werden benötigt.

Wir konzentrieren uns auf die Verwendung von Lie-Symmetrien und Erhaltungssätzen für die

Konstruktion spezieller Parameterisierungen und Diskretisierungen für einige wichtige Modelle

der (geophysikalischen) Fluiddynamik.

Im Besonderen konstruieren wir invariante Diskretisierungen für Burgers’ Gleichung, die

Korteweg–de Vries Gleichung und die Flachwassergleichungen. Eine umfassende Charakteristik

dieser invarianten Verfahren ist die Notwendigkeit adaptive Gitter zu verwenden. Wir entwickeln

verschiedene Strategien für invariante adaptive Gitterverfahren. Obwohl die meisten invarianten

Integratoren auf Finiten Differenzenverfahren basieren geben wir doch Beispiele für die Verwen-

dung von Finiten Volumen und Finiten Elementen.

Parameterisierung widmet sich Annäherungen für unaufgelöste Prozesse zu finden, die in nu-

merische Modelle eingebaut werden können. Die Entwicklung von Parameterisierungen ist eine

Aufgabe großer praktischer Wichtigkeit un eine der aktivsten Forschungsrichtungen der moder-

nen Wetter- und Klimavorhersage. Wir schlagen zahlreiche allgemeine Methoden zur Konstruk-

tion invarianter und konservativer Parameterisierungen vor. Als Beispiel werden invariante und

konservative Parameterisierungen für die barotrope Vorticitygleichung auf der beta-Ebene und

die Flachwassergleichungen konstruiert.

ii



Contents

Abstract i

Zusammenfassung ii

1 Preface 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Structure-preserving parameterization 4

2 Invariant parameterization and turbulence modeling on the beta-plane 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Invariant parameterization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Lie symmetries of the vorticity equation . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Algorithm for the construction of differential invariants . . . . . . . . . . . . . . . 13

2.5 Differential invariants for the beta-plane vorticity equation . . . . . . . . . . . . . 15

2.6 Invariantization of parameterization schemes . . . . . . . . . . . . . . . . . . . . 16

2.7 Application of invariant parameterizations to

turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Conservative invariant parameterizations . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.A Symmetries of the vorticity equation on the beta-plane . . . . . . . . . . . . . . . 27

2.B Algebra of differential invariants for the vorticity equation . . . . . . . . . . . . . 28

3 Conservative parameterization schemes 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Conservative and invariant parameterization schemes . . . . . . . . . . . . . . . . 38

3.2.1 General notions and statement of the problem . . . . . . . . . . . . . . . 38

3.2.2 Conservative parameterizations via direct classification . . . . . . . . . . . 42

3.2.3 Conservative parameterizations via inverse classification . . . . . . . . . . 43

3.2.4 Conservative and invariant parameterizations . . . . . . . . . . . . . . . . 45

3.3 Conservative closure schemes for the shallow-water equations . . . . . . . . . . . 50

3.3.1 Conservative parameterization schemes via direct classification . . . . . . 51

3.3.2 Conservative parameterization schemes via inverse classification . . . . . . 55

3.3.3 Conservative and invariant parameterization . . . . . . . . . . . . . . . . 58

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



II Structure-preserving integration 64

4 Invariant discretization schemes for the shallow-water equations 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Symmetries of the shallow-water equations . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Construction of invariant numerical discretization schemes . . . . . . . . . . . . . 68

4.4 Invariant numerical models for the one-dimensional

shallow-water equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Selection of symmetries using boundary conditions . . . . . . . . . . . . . 71

4.4.2 Classical invariant schemes and beyond . . . . . . . . . . . . . . . . . . . 73

4.4.3 Invariant discretization on equidistributing meshes . . . . . . . . . . . . . 77

4.5 Invariant numerical models for the two-dimensional

shallow-water equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Selection of symmetries using boundary conditions . . . . . . . . . . . . . 80

4.5.2 Invariant numerical schemes with double periodic boundary conditions:

Lagrangian scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.3 Invariant numerical schemes with double periodic boundary conditions:

Eulerian scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Invariant discretization schemes using evolution–projection techniques 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Construction of invariant discretization schemes . . . . . . . . . . . . . . . . . . . 97

5.2.1 Difference invariant method . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Invariant moving mesh method . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.3 Moving frame method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Lie symmetries of the heat equation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Moving frame and differential invariants for the heat equation . . . . . . . . . . . 103

5.5 Invariant discretization of the heat equation . . . . . . . . . . . . . . . . . . . . . 104

5.6 Numerical properties of the invariant scheme . . . . . . . . . . . . . . . . . . . . 107

5.7 Invariant interpolation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.8 Numerical verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8.1 Invariant scheme without projection . . . . . . . . . . . . . . . . . . . . . 113

5.8.2 Invariant scheme with non-invariant quadratic interpolation . . . . . . . . 114

5.8.3 Invariant scheme with invariant quadratic interpolation . . . . . . . . . . 114

5.8.4 Linearity preservation in the invariant numerical scheme . . . . . . . . . . 114

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Convecting reference frames and invariant numerical models 120

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Invariant finite difference schemes for Burgers equations . . . . . . . . . . . . . . 122

6.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iv



7 The Korteweg–de Vries equation and its symmetry-preserving

discretization 132

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 The continuous KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Lagrangian formulation of the KdV equation . . . . . . . . . . . . . . . . 134

7.2.2 Symmetry reduction and exact solutions . . . . . . . . . . . . . . . . . . . 135

7.3 Invariant discretization of the KdV equation . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Invariant discretization on a ten point stencil . . . . . . . . . . . . . . . . 139

7.3.2 Invariant Lagrangian discretization schemes . . . . . . . . . . . . . . . . . 142

7.3.3 Invariant evolution–projection discretization . . . . . . . . . . . . . . . . . 142

7.3.4 Invariant adaptive discretization schemes . . . . . . . . . . . . . . . . . . 143

7.3.5 Momentum preserving invariant discretization . . . . . . . . . . . . . . . . 145

7.3.6 Exact discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.1 Decaying cosine evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4.2 Exact algebraic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.3 Cnoidal wave and soliton solution . . . . . . . . . . . . . . . . . . . . . . 149

7.4.4 Double soliton solution and Galilean invariance . . . . . . . . . . . . . . . 150

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Invariant meshless discretization schemes 158

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2 Invariant meshless discretization schemes . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Invariant meshless scheme for a nonlinear diffusion equation . . . . . . . . . . . . 162

8.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Acknowledgments 170

Curriculum Vitae 171

v



Chapter 1

Preface

This monograph serves as my habilitation thesis at the University of Vienna, submitted in

September 2018. It is based on a selection of my work in the general area of geometric numerical

integration with application to geophysical fluid dynamics. The following Sections 1.1 and 1.2

present an overarching introduction and motivation for this work, as well as a guide through the

thesis.

1.1 Motivation

Geophysical fluid dynamics deals with the motion of fluids on rotating planets, in particular on

the planet Earth. The governing equations of these fluids are the governing equations of hydro-

thermodynamics in a rotating reference frame. These equations are intrinsically nonlinear and

hence can in general not be solved using analytical methods. Research on geophysical fluid

dynamics is hence strongly driven by numerical investigations.

A sub-field of geophysical fluid dynamics of immense practical relevance is the problem of

weather and climate prediction. While there are many facets to this problem, from the point of

view of solving the underlying governing partial differential equations numerically the main two

problems are discretization and parameterization.

Numerically solving partial differential equations requires to chose a suitable discretization

strategy, using e.g. finite differences, finite elements, finite volumes or spectral methods. Ir-

respective of the discretization methodology chosen, every numerical method has intrinsically

limited spatial and temporal resolutions. Since the processes described by the governing equa-

tions of geophysical fluid dynamics happen on vastly different scales, ranging from millimetres

to thousands of kilometres in space and milliseconds to years in time, resolving all processes

explicitly in a numerical model is computationally impossible. Therefore, one has to choose,

based on computational resources available, the resolution of the numerical method at hand.

This determines the overall grid resolution and thus the specific processes that can and that

cannot be resolved by the model. The unresolved processes, so-called subgrid-scale processes,

typically cannot be omitted since due to the nonlinear nature of the governing equations, effects

of these processes can have an influence on the resolved grid-scale processes. Approximately

including unresolved processes in the resolved dynamics of a numerical model is referred to as

parameterization.

Standard numerical approximations for differential equations typically do not explicitly aim to

preserve geometric properties of differential equations at the discrete level. Geometric properties,
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such as the invariance of an equation under specific coordinate transformations or conservation

laws, are among the most important qualitative features a system of differential equations can

possess. Several classical models of physics are built around these fundamental geometric prop-

erties. Thus, preserving them at the discrete level is an important task, which is the main aim of

geometric numerical integration. Geometric integrators are typically important when long term

integrations or statistical properties of differential equations are of concern, since preserving

geometric properties such as a Hamiltonian structure or conservation laws is known to guar-

antee or at least improve numerical stability of a discretization schemes. Therefore, geometric

numerical integration plays an eminent role in diverse fields such as astronomy, mathematical

biology, molecular dynamics, computer vision and climate modeling.

The purpose of this thesis is to collect several results on my work on discretization and pa-

rameterization schemes that preserve Lie symmetries and conservation laws in numerical models

related to geophysical fluid dynamics.

We formulate several new methods for preserving Lie symmetries in discretization schemes,

such as the invariant adaptive method, the invariant semi-Lagrangian method and the invariant

meshless method. The development of these methods was necessary since previously existing

methods for constructing invariant discretization schemes were of rather theoretical nature.

In particular, several existing invariant descretization schemes develop numerical instabilities

almost immediately due to mesh tangling. We illustrate the newly developed methods with

several examples, such as Burgers’ equation, the Korteweg–de Vries equation and the shallow-

water equations.

We also provide several methods for finding invariant and conservative parameterization

schemes. Proof-of-concept parameterization schemes are constructed for the barotropic vorticity

equation as needed for the simulation of geostrophic turbulence, and the shallow-water equations.

1.2 Structure of the thesis

This thesis is composed out of the following seven papers:

1. A. Bihlo, E.M. Dos Santos Cardoso-Bihlo and R.O. Popovych, 2014. Invariant parameter-

ization and turbulence modeling on the beta-plane. Phys. D 269, 48–62, arXiv:1112.1917.

2. A. Bihlo and G. Bluman, 2013. Conservative parameterization schemes. J. Math. Phys.

54, 083101 (24 pp), arXiv:1209.4279.

3. A. Bihlo and R.O. Popovych, 2012. Invariant discretization schemes for the shallow-water

equations. SIAM J. Sci. Comput. 34 (6), B810–B839, arXiv:1201.0498.

4. A. Bihlo and J.-C. Nave, 2013. Invariant discretization schemes using evolution-projection

techniques. SIGMA 9, 052, 23 pp, arXiv:1209.5028.

5. A. Bihlo and J.-C. Nave, 2014. Convecting reference frames and invariant numerical

models. J. Comput. Phys. 271, 656–663, arXiv:1301.5955.

6. A. Bihlo, X. Coiteux-Roy and P. Winternitz, 2015. The Korteweg–de Vries equation and

its symmetry-preserving discretization. J. Phys. A 48, 055201 (25 pp), arXiv:1409.4340.

7. A. Bihlo, 2013. Invariant meshless discretization schemes. J. Phys. A 46 (6), 062001

(12 pp), arXiv:1210.2762.
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Thematically, the first two paper are devoted to the problem of geometric parameterization,

the remaining five papers are devoted to the problem of geometric discretization.

Specifically, in the first paper (Chapter 2) we propose the use of equivariant moving frames

to invariantize existing parameterization schemes. Here we start with a given non-invariant

parameterization and map it to an invariant parameterization using a suitable moving frame.

The procedure is illustrated by invariantizing hyperdiffusion models for the barotropic vorticity

equation on the beta-plane.

In the second paper (Chapter 3) we lay out a theory for the construction of conservative

parameterization schemes. Here we identify the problem of conservative parameterization as a

classification problem for conservation laws. As an example, we propose conservative param-

eterization schemes for the shallow-water equations. A brief discussion on combined invariant

and conservative parameterization schemes is included as well.

The third paper (Chapter 4) discusses the construction of invariant discretization schemes

for both the (1+1)-dimensional shallow-water equations and the (1+2)-dimensional shallow-

water equations. The latter provides one of the first example of an invariant discretization

scheme for a system of multi-dimensional evolution equations.

In the fourth paper (Chapter 5) we develop a new method for constructing invariant dis-

cretization schemes that is essentially an invariant version of a semi-Lagrangian discretization

method, consisting of an invariant evolution step and an invariant projection step. The new

method is illustrated for the (1+1)-dimensional linear heat equation.

The fifth paper (Chapter 6) continues the ideas of Chapter 5 and extends them to the

example of Burgers’ equation. Here we also present some numerical evidence showing that fully

invariant discretization schemes for Burgers’ equation outperform previously proposed semi-

invariant schemes.

In the sixth paper (Chapter 7) we apply various methods for finding invariant discretization

schemes for the Korteweg–de Vries (KdV) equation. This problem was timely since the invari-

ant discretization schemes previously proposed for the KdV equation in the literature would

almost immediately lead to mesh tangling and hence are not suitable for practical numerical

integrations.

In the seventh paper (Chapter 8) we propose a new method for finding invariant discretiza-

tion schemes, which we called the invariant meshless method. As an illustration to the general

idea, we construct an invariant numerical scheme for nonlinear diffusion equation and show that

this scheme outperforms a similar non-invariant scheme.

1.3 Further work

The results presented in this thesis represents only a cross-section of the research I carried out

since finishing my Ph.D. thesis in 2010. In particular, the large body of work on the development

of various techniques for the group classification of differential equations and conservation laws

has been omitted from this thesis. Likewise, my work on the use of domain decomposition for

adaptive grid generation, the development of numerical schemes for the shallow-water equations

as used in tsunami modeling, and the development of conservative discretization schemes is

not part of this manuscript. The decision for omission of this work was made to present only

one coherent stream of my activities—the use of geometric properties in the development of

numerical methods for the equations of fluid dynamics—in its entirety.
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Part I

Structure-preserving

parameterization
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Chapter 2

Invariant parameterization and

turbulence modeling on the

beta-plane

Alexander Bihlo†1, Elsa Dos Santos Cardoso-Bihlo‡2 and Roman O. Popovych‡§3

† Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-ville,

Montréal (QC) H3C 3J7, Canada

‡ Wolfgang Pauli Institute, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

§ Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01601 Kyiv, Ukraine

E-mail: 1bihlo@crm.umontreal.ca, 2elsa.cardoso@univie.ac.at, 3rop@imath.kiev.ua

Invariant parameterization schemes for the eddy-vorticity flux in the barotropic vorticity equation

on the beta-plane are constructed and then applied to turbulence modeling. This construction

is realized by the exhaustive description of differential invariants for the maximal Lie invariance

pseudogroup of this equation using the method of moving frames, which includes finding functional

bases of differential invariants of arbitrary order, a minimal generating set of differential invariants

and a basis of operators of invariant differentiation in an explicit form. Special attention is paid

to the problem of two-dimensional turbulence on the beta-plane. It is shown that classical hyper-

diffusion as used to initiate the energy–enstrophy cascades violates the symmetries of the vorticity

equation. Invariant but nonlinear hyperdiffusion-like terms of new types are introduced and then

used in the course of numerically integrating the vorticity equation and carrying out freely decay-

ing turbulence tests. It is found that the invariant hyperdiffusion scheme is closely reproducing

the theoretically predicted k−1 shape of enstrophy spectrum in the enstrophy inertial range. By

presenting conservative invariant hyperdiffusion terms, we also demonstrate that the concepts of

invariant and conservative parameterizations are consistent.

2.1 Introduction

As atmospheric and oceanic numerical models get increasingly complex, it becomes more and

more challenging to propose valuable conceptual paradigms for those processes that the model
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is still not able to capture owing to its limited spatial and temporal resolution. This problem

is common to all numerical models irrespectively of their eventual degree of sophistication [34,

35]. In the beginning of numerical modeling in geophysical fluid dynamics, it was often the

lack of computer power that dictated which processes had to be parameterized, even with a

concise understanding of these processes. As computers became more capable, the problem of

parameterization shifted to processes occurring on rather fine scales where it can be difficult to

retrieve accurate experimental data. Accordingly, for various processes that should be taken into

account in order to improve the forecast range of a numerical model, there is still no satisfactory

general understanding. This naturally makes it difficult to set up valuable parameterization

schemes, which for this reason is usually an elaborate task.

On the other hand, processes that occur in geophysical fluid dynamics and that can be de-

scribed using differential equations also might have certain structural or geometrical properties.

Such properties can be conservation of mass or energy or other fundamental conservation laws.

Real-world processes are generally also invariant under specific transformation groups, as e.g.

the Galilean group. This is why one can ask the question whether it is reasonable to con-

struct parameterization schemes for processes possessing certain structural features in a manner

such that these features are preserved in the closed model. In this way, even if a model is

not able to explicitly resolve processes, loosely speaking, it takes into account some of their

significant properties. This study was initiated in [20] for the problem of finding invariant

turbulence closure schemes for the filtered Navier–Stokes equations. In the present paper we

aim to give a further instance for invariant parameterization schemes by constructing closure

ansatzes that retain certain Lie point symmetries of the barotropic vorticity equation on the

beta-plane.

This possible stream of constructing geometrically motivated parameterization schemes in

some sense parallels the present general trend in numerical modeling to design specially adapted

discretizations of differential equations that capture a range of their qualitative or global fea-

tures, such as conservation laws, a Hamiltonian structure or symmetry properties. Especially

the possibility of constructing discretization schemes that have the same symmetries and/or

conservation laws as the original differential equations they are a model of, as proposed and

discussed e.g. in [6, 11, 12, 21, 22, 45, 50, 52], is of immediate relevance to the present work.

This is because, strictly speaking, a discretization of a system of differential equation is in prac-

tice not enough to set up a valuable numerical model. There always has to be a model for the

unresolved parts of the dynamics. (Neglecting them is in general not a good idea as for nonlinear

differential equations these parts will, sooner or later, spoil the numerical integration.) Then,

if one aims to construct an invariant discrete counterpart of some relevant physical model, care

should also be taken about the invariance characteristics of the processes that are not explicitly

resolved. This is where the method of finding invariant parameterization schemes comes into

play. The combination of invariant discretization schemes for the resolved part of the model

with invariant parameterization schemes for the unresolved parts yields a completely invariant

numerical description of a given system of differential equations. Such a fully invariant model

might be closer to a true geometric numerical integration scheme than solely a symmetry pre-

serving discretization without any closure for the subgrid-scale terms or with some non-invariant

closure.

Perhaps the most relevant usage of the barotropic vorticity equation is related to two-

dimensional turbulence. Turbulence on the beta-plane (or, more general, on the rotating sphere)
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is peculiar in that it allows for the combination of turbulent and wave-like effects. It is believed to

explain the emergence of strong jets and band-like structure on giant planets in our solar system

and is therefore the subject of intensive investigation, see e.g. [24, 32, 46, 49, 57] and references

therein. In the present paper we focus on freely decaying turbulence on the beta-plane by using

invariant hyperdiffusion terms to initiate the energy–enstrophy cascades. These cascades are

likely responsible for the emergence of coherent, stable structures (vortices) that are ubiquitous

in large-scale geophysical fluid dynamics. Note that the possibility of a development of coherent

structures causing the classical inverse cascade to break down is also discussed in the literature.

Energy can then be transferred between different scales without a non-linear cascade [47].

The outline of the paper is as follows. In the subsequent Section 2.2, we discuss and slightly

extend the concept of invariant parameterization schemes as introduced in [20] and [26]. Special

attention will be paid to methods related to invariant parameterization schemes and inverse

group classification. In Section 2.3 we present the maximal Lie invariance algebra g1 and the

maximal Lie invariance pseudogroup of the barotropic vorticity equation on the beta-plane. The

computation of the algebra g1 is briefly described in Appendix 2.A. A concise description of the

general method for computing differential invariants of Lie (pseudo)groups using the method

of moving frames is given in Section 2.4. In Section 2.5 the algebra of differential invariants

is determined for the maximal Lie invariance pseudogroup of the vorticity equation. The re-

lated computation can be found in Appendix 2.B. Two examples for invariant parameterization

schemes constructed out of existing schemes using the invariantization process are presented in

Section 2.6. Section 2.7 is devoted to the application of differential invariants in turbulence on

the beta-plane. In particular, invariant hyperdiffusion schemes are introduced. The vorticity

equation on the beta-plane is integrated numerically using both invariant and non-invariant hy-

perdiffusion and the corresponding enstrophy spectra are obtained. In Section 2.8 we discuss the

possibility of deriving invariant parameterization schemes that also respect conservation laws.

As an example, an invariant diffusion term is constructed that preserves the entire maximal

Lie invariance pseudogroup of the vorticity equation and also preserves conservation of energy,

circulation and momentum. The results are summarized and further discussed in the final Sec-

tion 4.6, in which we also indicate possible future research directions in the field of invariant

parameterization.

2.2 Invariant parameterization schemes

The problem of finding parameterization or closure schemes for subgrid-scale terms in averaged

differential equations that admit Lie symmetries of the original (unaveraged) differential equation

was first raised in [20], see also [34, 44]. Recently, we put this idea into the framework of

group classification [26], by showing that any problem of constructing invariant parameterization

schemes amounts in solving a (possibly complicated) group classification problem.

As for the classical group classification, there are two principal ways to construct parame-

terization schemes, the direct and the inverse one [26]. In the direct approach, one replaces

the terms to be parameterized with arbitrary functions depending on the mean variables and

derivatives thereof. This is in the line with the general definition of all physical parameterization

schemes, which are concerned to express the unknown subgrid-scale terms using the information

included in the grid-scale (mean) quantities. The form of dependency of the arbitrary functions

on the mean variables is guided by physical intuition. It determines the properties of all the

7



families of invariant parameterization schemes that can be derived (e.g. the highest order of

derivatives that can arise). Once the general form of the arbitrary function is chosen, one is left

with a possibly rather general class of differential equations, which is amenable with tools from

usual group classification, see e.g. [5, 14, 27]. This in particular will lead to a list of families

of mutually inequivalent parameterization schemes that admit different Lie invariance algebras.

One can then select those families that preserve the most essential symmetry features of the pro-

cess to be parameterized. The final step is to suitably narrow the selected families by including

other desirable physical properties into the invariant parameterization scheme.

In the present paper, however, we will be solely concerned with the inverse approach, which

is why we will discuss it in a more extended manner. The inverse approach rests on the fact

that any system of differential equations can be rewritten in terms of differential invariants of its

maximal Lie invariance group, provided that the prolongation of the group to the corresponding

jet space acts semi-regularly [42]. This property can be used in the course of the parameterization

problem in the following way: Suppose that we are given a Lie group G regarded as important

to be preserved for valuable parameterization schemes as a Lie symmetry group. Computing

a basis of differential invariants of G along with a complete set of its independent operators of

invariant differentiation, see e.g. [9, 10, 18, 30], serves to exhaustively describe the entire algebra

of differential invariants of G. As any combination of these differential invariants will necessarily

be invariant with respect to G, assembling them together to a parameterization will immediately

lead to a closure scheme admitting G as a Lie symmetry group.

The key question hence lies in the correct selection of a suitable symmetry group. The initial

point for the selection is given by symmetry properties of the model to be parameterized. In

the course of the parameterization one can intend to preserve the whole Lie symmetry group

of the initial model or its proper subgroups. The choice for an invariance group for parame-

terization obviously should not solely be justified using mathematical arguments. Sometimes,

it can be motivated from obvious physical reasons. If the process to be parameterized can be

described within the framework of classical mechanics then any reasonable parameterization for

that process should be invariant under the Galilean group. Moreover, for turbulence closure

schemes, scale invariance might be of particular importance. For processes that can be de-

scribed within the framework of a variational principle and respect certain conservation laws, it

might be reasonable that the parameterization scheme to be developed respects the associated

Noether symmetries. See [6, Chapter 6] for similar studies of discretization schemes within the

variational framework.

There are several processes in fluid mechanics that are intimately linked to the presence of

certain boundary conditions (e.g., turbulence near walls, boundary layer convection, etc.). For

such processes the inclusion of the particular boundaries is an integral part in the formulation of

a parameterization scheme. At first glance, to find invariant parameterization schemes for such

processes it is inevitable to single out those subgroups of the maximal Lie invariance group G

of the system L of differential equations describing the process of interest that are compatible

with a particular boundary value problem. The main complication with this approach is that

most of boundary value problems admit no symmetries, see e.g. [4]. At the same time, it is

more natural to assume that symmetries of L act as equivalence transformations on a joint

class of physically relevant boundary value problems for L, i.e., these transformations send a

particular boundary value problem to another problem from the same class [4]. Even the basic

physical symmetries including shifts in space and time, rotations, scalings, Galilean boosts or
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Lorentz transformations, which are related to fundamental properties of the space and the time

(homogeneity, isotropy, similarity, Galilean or special relativity principle, respectively), usually

act on boundary value problems in much the same way as equivalence transformations. This

is why it is the generation of a group of well-defined equivalence transformations on a properly

chosen class of boundary value problems that can serve as a criterion for selecting a subgroup

of G to be taken into account in the course of invariant parameterization of L.

Employing techniques of inverse group classification does not automatically lead to ready-to-

use parameterizations, but it gives a frame in which parameterizations can be defined without

the violation of basic invariance properties. Examples of the violation have been reported in

the recent literature. See, e.g., [20] for a discussion about the Smagorinsky model in the filtered

Navier–Stokes equations violating scale invariance and [26] for a note on the Kuo convection

schemes that describes a Galilean invariant process in a non-invariant fashion. The construction

of parameterization schemes that fail to preserve essential symmetries can be easily avoided

by applying the above methods of inverse group classification. This may help to restrict the

large number of possible closure schemes using geometrical reasoning and thereby may assist in

finding a proper description of unresolved subgrid-scale processes.

There is yet a second possibility to construct invariant parameterization schemes using the

inverse group classification approach, which has not been reported in [26]. It rests on the

construction of moving frames for the Lie group G with respect to which parameterizations under

study should be invariant. It is a general feature of a moving frame that it allows constructing

of invariant counterparts of differential functions. This property enables the construction of an

invariant parameterization scheme out of a non-invariant one. It is simply necessary to apply

the moving frame corresponding to the selected Lie group G to the specific closed differential

equation. More precisely, consider a system L of differential equations

Ll(x, u(n)) = 0, l = 1, . . . ,m.

The dependent variables u can be represented according to u = ū+u′, where ū is the averaged or

filtered part of the dynamics (i.e. the resolved or grid-scale part) and u′ denotes the departure of

u from the mean or filtered part ū (i.e. the subgrid-scale part). Numerical models in geophysical

fluid dynamics are formulated as equations for the resolved part, which are obtained from Ll = 0

by averaging or filtering, leading to

L̃l(x, ū(n), w) = 0, l = 1, . . . ,m,

where L̃l are smooth differential functions of their arguments. The particular form of L̃l depends

on the actual averaging rule chosen and the form of the initial system L. The unknown subgrid-

scale terms that arise in the course of averaging (e.g. by using the Reynolds averaging rule for

products, ab = āb̄ + a′b′) are collected in the tuple w. These terms have to be parameterized

in order to close the above system of averaged differential equations. A local parameterization

scheme establishes a particular functional relation

w = θ(x, ū(r))

between the subgrid-scale and grid-scale quantities. Let there be given a moving frame ρ(j) of or-

der j = max(r, n) for the selected Lie group G, see Section 2.4. Any particular parameterization

scheme can then be invariantized via replacing L̃l and θ by their invariantized counterparts,

ι(L̃l(x, ū(n), w)) = L̃l(ρ(j) · x, ρ(j) · ū(n), w) and ι(θ(x, ū(r))) = θ(ρ(j) · x, ρ(j) · ū(r)).
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Example 1. It is instructive to illustrate this idea with a simple example. Let us consider the

famous Korteweg–de Vries (KdV) equation,

ut + uux + uxxx = 0.

Its maximal Lie invariance group GKdV is four-dimensional and the most general transformation

leaving the KdV equation invariant is

(T,X,U) = (e3ε4(t+ ε1), eε4(x+ ε2 + ε1ε3 + ε3t), e
−2ε4(u+ ε3)), (2.1)

where ε1, . . . ε4 are arbitrary constants. Let us now apply the classical Reynolds averaging to

the KdV equation. This yields

ūt + ūūx + ūxxx = −1

2
(u′2)x,

where the right-hand side is the term we seek closure for. A simple closure ansatz is the down-

gradient parameterization, i.e. we close the above equation by setting u′2/2 = −κūx, where for

the sake of simplicity we use κ = const. This yields the closed KdV equation

ūt + ūūx + ūxxx = κūxx. (2.2)

However, it is easily verified that this equation is not invariant under the transformation (2.1).

Namely, the scale invariance is lost, i.e. the closed KdV equation is invariant only under the

three-parameter group of transformations associated with the group parameters ε1, ε2 and ε3.

To restore scale invariance, we can invariantize the closed KdV equation (2.2) using the moving

frame associated with the group GKdV.

Moving frames for the group GKdV were constructed in [9, 18]. It is convenient to invariantize

Eq. (2.2) using the moving frame with

ε1 = −t, ε2 = −x, ε3 = −ū, ε4 =
1

3
ln ūx.

This is done by firstly applying the transformations (2.1) to (2.2) which yields

ūt + ūūx + ūxxx = κeε4 ūxx,

showing explicitly that this equation fails to be scale invariant. The invariantization is completed

upon substituting the moving frame for ε4 giving

ūt + ūūx + ūxxx = κ 3
√
ūxūxx.

It is readily checked that this closed equation is invariant under the same symmetry group

GKdV as is the original KdV equation. The price for restoring scale invariance of the closed

KdV equation invoking the simple down-gradient parameterization is that the closure scheme

becomes nonlinear. We will observe the same effect when invariantizing linear hyperdiffusion

models for the vorticity equation on the beta-plane, which will be shown in detail below.

2.3 Lie symmetries of the vorticity equation

The barotropic vorticity equation on the beta-plane is a simple but still genuine meteorological

model. It has the form

ζt + ψxζy − ψyζx + βψx = 0, or ζa
t + J(ψ, ζa) = 0. (2.3)
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Here J(a, b) := axby − aybx, ψ = ψ(t, x, y) is the stream function, ζ = ψxx + ψyy is the vorticity

and ζa = ζ+ f = ζ+ f0 +βy is the absolute vorticity under the β-plane approximation f = f0 +βy

of the Coriolis parameter f, β is a nonzero constant parameter (the differential rotation). The

constant f0 is dynamically inessential and can be neglected.

The maximal Lie invariance algebra g1 of Eq. (2.3) is spanned by the vector fields

D = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, ∂y, X (f̃) = f̃(t)∂x − f̃t(t)y∂ψ Z(g̃) = g̃(t)∂ψ,

where the parameters f̃ and g̃ run through the set of smooth functions of t [5, 31]. More

details on how the above vector fields are obtained can be found in Appendix 2.A. The vorticity

equation (2.3) also admits two independent discrete symmetries, which alternate signs of the

pairs (t, x) and (y, ψ), see [9] for more details. Such discrete symmetries will not be taken into

account in the course of construction of differential invariants. Any nonzero value of β can be

gauged to one by a scaling transformation.

The one-parameter Lie (pseudo)groups generated by the above vector fields read

Γε1 : (t, x, y, ψ) 7→ (eε1t, e−ε1x, e−ε1y, e−3ε1ψ)

Γε2 : (t, x, y, ψ) 7→ (t+ ε2, x, y, ψ)

Γε3 : (t, x, y, ψ) 7→ (t, x, y + ε3, ψ)

Γf : (t, x, y, ψ) 7→ (t, x+ f(t), y, ψ − ft(t)y)

Γg : (t, x, y, ψ) 7→ (t, x, y, ψ + g(t)),

where εi ∈ R and f(t) := ε4f̃(t) and g(t) := ε5g̃(t). Accordingly, the admitted Lie symmetries of

the barotropic vorticity equation on the beta-plane are scalings, time translations, translations

in y-direction, generalized Galilean boosts in the x-direction and gaugings of the stream function

with smooth time-dependent summands.

We will compose transformations from these one-parameter Lie (pseudo)groups in the fol-

lowing way Γ = Γε1 ◦ Γε2 ◦ Γε3 ◦ Γf ◦ Γg to a transformation Γ from the maximal Lie symmetry

pseudogroup G1 of the vorticity equation (2.3). Any transformation of G1 then has the form

(T,X, Y,Ψ) =
(
eε1(t+ ε2), e−ε1(x+ f(t)), e−ε1(y + ε3), e−3ε1(ψ + g(t)− ft(t)y)

)
. (2.4)

In what follows, we set h(t, y) = g(t)−ft(t)y for convenience and use the substitution hy = −ft,
whenever hy occurs.

Note that the maximal Lie invariance algebra g0 of the usual vorticity equation, which is also

called the barotropic vorticity equation on the f-plane and corresponds to the value β = 0, is

much wider than the algebra g1 and contains g1 as a proper subalgebra [1, 2]. The algebra g0 is

spanned by the vector fields from g1 jointly with the vector fields

t∂t − ψ∂ψ, −y∂x + x∂y, −ty∂x + tx∂y + 1
2(x2 + y2)∂ψ, h̃(t)∂y + h̃t(t)x∂ψ,

where the parameter h̃ runs through the set of smooth functions of t. This means that in addition

to the transformations from G1 the maximal Lie symmetry pseudogroup G0 of the usual vorticity

equation also contains one more family of scalings, usual rotations in the (x, y)-plane, rotations

depending on t with constant angle velocities and generalized Galilean boosts in the y-direction.

Remark 2.1. In order to set up a numerical model, a decision has to be taken about which

boundary conditions should be implemented. The numbers of symmetries admitted by a differ-

ential equation is almost always reduced for an associated boundary value problem. The most
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immediate boundary conditions in the atmospheric sciences are periodic ones. However, a peri-

odic domain implies a fixed domain size and therefore breaks the scale invariance of Eq. (2.3).

On the other hand, scale invariance is an equivalence transformation of the class of all periodic

boundary value problems of the vorticity equation, see also Section 4.1 in [4]. A more serious

problem is that the periodicity in y-direction is not natural for the beta-plane from the physical

point of view. At the same time, using a channel model (rigid walls in the North and in the

South of the domain) breaks also the translational invariance in y-direction thereby reducing the

admitted Lie symmetry group even stronger than in the presence of doubly periodic boundary

conditions (though, in contrast to usual hyperdiffusion, it would not be necessary to define an

additional boundary condition for the invariant hyperdiffusion as by definition ψx = 0 at the

walls of the channel and the diffusion term therefore vanishes there). This is why we will use

doubly periodic boundary conditions although β 6= 0 here. Despite this slight inconsistency, dou-

bly periodic boundary conditions are used quite extensively in studying turbulence properties

on the beta-plane [32, 46, 57].

The above form (2.3) of the vorticity equation is not particularly useful for a numerical

evaluation. The reason is, of course, that any numerical model can be run only at a finite

resolution, which requires a suitably chosen averaging or filtering of Eq. (2.3). As from the

point of view of invariant parameterization schemes the precise type of averaging is only of

secondary importance, we will employ a classical Reynolds averaging to Eq. (2.3) in the paper.

This leads to the averaged vorticity equation

ζ̄t + ψ̄xζ̄y − ψ̄y ζ̄x + βψ̄x = (ζ ′ψ′y)x − (ζ ′ψ′x)y, (2.5)

where the right-hand side of this equation denotes the eddy-vorticity flux, which we aim to

parameterize subsequently. For the sake of notational simplicity, we will omit bars over the

mean quantities from now on.

Slightly more generally, the vorticity equation (2.3) can be augmented with external forc-

ings F and dissipative terms D yielding a general expression of the form

ζt + ψxζy − ψyζx + βψx = F +D. (2.6)

A further question we aim to address is whether symmetries might be helpful in deriving invariant

expressions for F and D. As by definition F denotes external forcing terms, it is not immediately

clear why symmetries of the vorticity equation should place restrictions on the form of F .

However, as we shall show, symmetries are valuable in finding invariant diffusion terms D that

can be used in the course of turbulence modeling. For the sake of simplicity we therefore will use

Eq. (2.6) for the case of F = 0 and D 6= 0, i.e. we assume that no external forcing acts on the

system to which a damping is attached. Physically, the presence of F and D can be interpreted

as symmetry breaking in the vorticity equation (2.3). Which symmetries are to be broken and

which are to be preserved can be controlled upon expressing the term D via differential invariants

derived in Section 2.5. This is a comprehensive problem and not all of the cases arising might be

interesting from the physical point of view. We therefore restrict ourselves on the case where D

or the eddy vorticity flux in Eq. (2.5) can be represented in such a manner that the resulting

equation admits all the transformations from the maximal Lie invariance pseudogroup (2.4).

This is the approach proposed in [20] and it appears to be suitable for the beta-plane equation.

12



2.4 Algorithm for the construction of differential invariants

Given a transformation pseudogroup G in the space of p independent variables x = (x1, . . . , xp)

and q dependent variables u = (u1, . . . , uq), the exhaustive description of its differential invari-

ants is reduced to either the construction of a functional basis of differential invariants of any

fixed order or finding a complete set of independent operators of invariant differentiation and

a minimal set of differential invariants that generate all differential invariants through invari-

ant differentiation and functional combination [30, Section 24]. Within the framework of the

method of moving frames the solution of this problem is split into two parts [9]. It is convenient

to compute normalized differential invariants and operators of invariant differentiation using the

explicit expressions for transformations from G. The corresponding computation consists of two

procedures, normalization and invariantization. At the same time, the derivation of syzygies

(i.e., relations involving operators of invariant differentiation) between normalized differential

invariants is mostly based on the determining equations of G, and an important tool for this

is given by recurrence formulas. In this section we briefly describe related basic notions and

results, paying the main attention to the computational realization of algorithms in fixed local

coordinates. See [9, 9, 10, 18, 19, 39] for detail and rigorous presentations.

In what follows the index j runs from 1 to p, the index a runs from 1 to q. We use two kinds of

integer tuples for the indexing of objects. One of these kinds is given by the usual multi-indices

of the form α = (α1, . . . , αp), where αj ∈ N0 = N∪{0} and |α| = α1 + · · ·+αp. By δj we denote

the p-index whose jth entry equals 1 and whose other entries are zero. Thus, both the derivative

∂|α|ua/(∂x1)α1 · · · (∂xp)αp and the associated variable of the jet space J∞(x|u) are denoted by

uaα, Dα = Dα1
1 · · ·D

αp
p , etc. Here Dj = ∂xj +

∑
α,a u

a
α+δj

∂uaα is the operator of total differentiation

with respect to the variable xj . The other kind of index tuples is presented by J = (j1, . . . , jκ),

where 1 6 jk 6 p, k = 1, . . . , κ, κ ∈ N0. Such index tuples are used for the indexing of

compositions of operators of invariant differentiation, which do not commute. Namely, we write

Di
J for Di

j1
· · ·Di

jκ
. The symbol dh denotes the horizontal differential, dhF =

∑p
j=1(DjF )dxj for

a differential function F = F [u], i.e. a function of xj and uaα.

The normalization procedure for the pseudogroup G consists of three steps:

1. Choose a parameterization (local coordinates) of G and find explicit formulas for the

prolonged action of G in terms of the jet variables.

2. Choose a subset of the transformed jet variables and equate the expressions for them to

chosen constants.

3. Solve the obtained system of normalization equations as a system of algebraic equations

with respect to the parameters of the pseudogroup G including the derivatives of the

functional parameters.

The second step is nothing but a choice of an appropriate (coordinate) cross-section of the G-

orbits. This should be implemented in a way ensuring that the system from the third step will

be well defined and solvable.

The normalization procedure results in the construction of a moving frame ρ for the pseu-

dogroup G, which is, roughly speaking, an equivariant map from the jet space to G. Once the

moving frame is constructed it can be used to map any object χ(x, u(n)) defined on an open

subset of the jet space (a differential function, a differential operator or a differential form) to

its invariant counterpart, ι(χ(x, u(n))) = χ(ρ(n)(x, u(n)) · (x, u(n))). To carry out this in practice,
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one should replace all occurrences of the pseudogroup parameters in the transformed version of

the object by their expressions obtained with the normalization procedure.

Thus, the invariantization of the coordinate functions xj and uaα of the jet space yields the so-

called normalized differential invariants Hj = ι(xj) and Iaα = ι(uaα). In fact, the invariantized

coordinate functions whose transformed counterparts were used to set up the normalization

equations are equal to the respective constants chosen in the course of normalization and hence

these objects are called phantom differential invariants. Non-phantom normalized differential

invariants are functionally independent and any differential invariant can be represented as a

function of normalized differential invariants. Invariantization of the operators of total differen-

tiation, Dj , gives the operators of invariant differentiation, Di
j , which upon acting on differential

invariants produce other differential invariants. Note that the domain of the jet space, where

invariantized objects are well defined, depends on what cross-section is chosen.

In order to determine the algebra of differential invariants the normalized differential invari-

ants and the operators of invariant differentiation play a key role. It has been proved [30] that

for any Lie (pseudo)group the algebra of differential invariants can be completely described upon

finding a finite generating set of differential invariants. As stated above, all the other differential

invariants are then a suitable combination of the basis differential invariants or their invariant

derivatives. The hardest part in describing the algebra of differential invariants is usually to find

a minimal generating set of these invariants. Proving the minimality of a given basis usually

involves the computation of the syzygies among the differential invariants, meaning functional

relations among the differentiated differential invariants Di
JI

a
α, S(. . . ,Di

JI
a
α, . . . ) = 0.

In general, the normalized differential invariants are derived from invariantization of the

derivatives of the dependent variables, whereas the differentiated differential invariants are ob-

tained by acting on normalized differential invariants of lower order with the operators of in-

variant differentiation. The central point is that the operations of invariant differentiation and

invariantization of a differential function in general do not commute. Roughly speaking, the

failure of commutation of these two operations is quantified by the so-called recurrence relations

dhH
j = ωj + ξ̂j , dhI

a
α =

p∑
j=1

Iaα+δj
ωj + ϕ̂a,α, (2.7)

where ωj = ι(dxj) [9, 19]. The forms ξ̂j = ι(ξj) and ϕ̂αa = ι(ϕαa ) are the invariantizations of the

coefficients of the general prolonged infinitesimal generator

Q∞ =

p∑
j=1

ξj∂xj +
∑
α>0

q∑
a=1

ϕa,α∂uaα , ϕa,α = Dα

(
ϕa −

p∑
j=1

ξjuaδj

)
+

p∑
j=1

ξjuaα+δj
,

of G. More rigorously, here ξj and uaα are interpreted as coordinate functions on the space of

prolonged infinitesimal generators of G, i.e., first-order differential forms in the jet space. Hence

their invariantizations should also be forms, which are called invariantized Maurer–Cartan forms.

The left-hand sides of the relations (2.7) are zero for phantom differential invariants. If the

cross-section is chosen in a proper way, the recurrence relations for the phantom invariants can

be solved for the independent invariantized Maurer–Cartan forms, which in turn can be plugged

into the relations for the non-phantom differential invariants. Collecting coefficients of ωj then

yields a closed description of the relation between normalized and differentiated differential

invariants, which in turn might enable the determination of a basis of differential invariants. For

this latter task, specialized methods from computational algebra can be applied [39], which is,
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however, not necessary in the present case due to the relatively simple structure of the maximal

Lie invariance pseudogroup G1 of Eq. (2.3).

2.5 Differential invariants for the beta-plane vorticity equation

In order to derive the moving frame for the maximal Lie invariance pseudogroup G1 of the

barotropic vorticity equation on the beta-plane, it is necessary to prolong the group actions to

the derivatives of ψ. For this aim, we have to derive expressions for the implicit differentiation

operators, DT , DX and DY . They can be determined as the dual of the lifted horizontal coframe

for G1, which reads

dhT = (Tt + ψtTψ)dt+ (Tx + ψxTψ)dx+ (Ty + ψyTψ)dy = eε1dt

dhX = (Xt + ψtXψ)dt+ (Xx + ψxXψ)dx+ (Xy + ψyXψ)dy = e−ε1ftdt+ e−ε1dx

dhY = (Yt + ψtYψ)dt+ (Yx + ψxYψ)dx+ (Yy + ψyYψ)dy = e−ε1dy.

Therefore, the required implicit differentiation operators are

DT = e−ε1(Dt − ftDx), DX = eε1Dx, DY = eε1Dy, (2.8)

where Dt, Dx and Dy denote the usual operators of total differentiation with respect to t, x and y,

respectively, Dt = ∂t+
∑

α ψα+δ1∂ψα , Dx = ∂x+
∑

α ψα+δ2∂ψα and Dy = ∂y+
∑

α ψα+δ3∂ψα . Here

and in what follows α = (α1, α2, α3) is a multi-index running through N3
0, |α| = α1 + α2 + α3,

δ1 = (1, 0, 0), δ2 = (0, 1, 0), δ3 = (0, 0, 1) and the variable ψα = ψα1α2α3 of the jet space

corresponds to the derivative ∂|α|ψ/∂tα1∂xα2∂yα3 . We also use the notation f(k) = dkf/dtk and

h(k) = ∂kh/∂tk, k ∈ N0. The transformed derivatives Ψα = ∂|α|Ψ/∂Tα1∂Xα2∂Y α3 , |α| > 0, are

then

Ψα = Dα1
T Dα2

X Dα3
Y Ψ = e(α2+α3−α1−3)ε1(Dt − ftDx)α1Dα2

x Dα3
y (ψ + h)

= e(α2+α3−α1−3)ε1

(
(Dt − ftDx)α1ψ0α2α3 +

{
−f(α1+1), α2 = 0, α3 = 1

h(α1), α2 = α3 = 0

})
.

We carry out the normalization procedure in the domain of the jet space which is defined by

the condition ψx 6= 0. We choose the conditions for normalization

T = X = Y = 0, Ψk00 = Ψk01 = 0, k = 0, 1, . . . , Ψ010 = ε, (2.9)

where ε = sgnψx, which allow us to express all the pseudogroup parameters (including the

derivatives of functional pseudogroup parameters) in terms of variables of the jet space:

ε1 = ln
√
|ψx|, ε2 = −t, ε3 = −y, f = −x,

f(k+1) = (Dt − ψyDx)kψy, h(k) = −(Dt − ψyDx)kψ, k = 0, 1, . . . .
(2.10)

In other words, the equations (2.10) represent a complete moving frame for the maximal Lie

invariance pseudogroup of the vorticity equation. The series of equalities for f(k+1) an h(k) is

proved by induction with respect to k using the equations

f(k+1) = (Dt − ftDx)kψy, h(k) = −(Dt − ftDx)kψ.
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The nontrivial normalized differential invariants are found via invariantizing the deriva-

tives ψα for the values of α for which Ψα are not involved in the construction of the above

moving frame, i.e., for

α ∈ A = N3
0 \ {(k, 0, 0), (k, 0, 1), (0, 1, 0), k ∈ N0}.

In other words, for each α ∈ A we should substitute the expressions (2.10) for the pseudogroup

parameters into the expressions for Ψα. (The invariantization of the coordinate functions chosen

for the normalization conditions (2.9) are equal to the corresponding normalization constants

and are the phantom normalized differential invariants for the moving frame (2.10).) As a result,

we obtain the differential invariants

Iα = ι(ψα) = |ψx|(α2+α3−α1−3)/2(Dt − ψyDx)α1ψ0α2α3 , α ∈ A.

The order of Iα as a differential function of ψ equals |α|. It is also obvious that any finite number

of the invariants Iα are functionally independent. This agrees with the general theory of moving

frames [9, 9, 19], which also implies a stronger assertion.

Theorem 2.1. For each r > 2 the functions Iα = |ψx|(α2+α3−α1−3)/2(Dt−ψyDx)α1ψ0α2α3, where

α ∈ A and |α| 6 r, form a local functional basis of differential invariants of order not greater

than r for the maximal Lie invariance pseudogroup G1 of the barotropic vorticity equation on

the beta-plane.

The description of differential invariants of G1 given in Theorem 2.1 is sufficient for appli-

cations within the framework of invariant parameterization. At the same time, it is interesting

and useful to have more information on the structure of the algebra of differential invariants of

the pseudogroup G1 including the operators of invariant differentiation.

Theorem 2.2. The algebra of differential invariants of the maximal Lie invariance pseudogroup

of the barotropic vorticity equation on the beta-plane (2.3) is generated, in the domain Ω1 of the

jet space where D 2
x (
√
|ψx| ) 6= 0, by the single differential invariant I020 = ψxx/

√
|ψx| along with

the three operators of invariant differentiation

Di
t =

1√
|ψx|

(Dt − ψyDx), Di
x =

√
|ψx|Dx, Di

y =
√
|ψx|Dy.

All other differential invariants are functions of I020 and invariant derivatives thereof. The

proof of this theorem is presented in detail in Appendix 2.B.

2.6 Invariantization of parameterization schemes

The Replacement Theorem states that any differential invariant I(x, u(n)) of order n can be ex-

pressed in terms of the normalized differential invariants via replacing any argument of I(x, u(n))

by its respective invariantization, see [10]. In particular, any system of differential equations

can be represented using the normalized differential invariants of its associated maximal Lie

invariance group. The invariantization of the vorticity equation (2.3) in view of the moving

frame (2.10) reads (I120 + I102) + (I021 + I003) + β = 0, or, explicitly

ζt − ψyζx
ψx

+ ζy + β = 0. (2.11)
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This is the fully invariant representation of the barotropic vorticity equation on the beta-plane.

Differential invariants computed in the previous section can be assembled together to invari-

ant parameterizations of the eddy-vorticity flux in the averaged vorticity equation (2.5). Al-

ternatively, we can invariantize any existing parameterization scheme under the moving frame

action (2.10). The following two examples implement this idea.

Example 2. A classical albeit simple parameterization for the eddy-vorticity flux is

evf := (ζ ′ψ′y)x − (ζ ′ψ′x)y = Dx(Kζx) + Dy(Kζy),

where K = K(x, y) might be considered as a spatially dependent function. The most straightfor-

ward way to cast this parameterization into the related invariant one is by applying the moving

frame (2.10) to the terms on the right-hand side. This yields

evf i = Di
x(K(I030 + I012)) + Di

y(K(I021 + I003)) = K(I040 + 2I022 + I004)

= K
√
|ψx|(ζxx + ζyy),

where evf i = ι(evf) and K = const now as ι(x) = ι(y) = 0. The invariant representation of the

closed barotropic vorticity equation then reads

ζt − ψyζx
ψx

+ ζy + β = K
√
|ψx|(ζxx + ζyy).

Example 3. The anticipated (potential) vorticity method was originally proposed by Sadourny

and Basdevant [48]. The idea of this method is to approximate the diffusion effect in the vorticity

equation by a weighted upwind estimate of the vorticity itself, i.e. by employing

ζa
t + J(ψ, ζa) = νJ(ψ,∆nJ(ψ, ζa)),

where ν is a constant, n ∈ N0 and ζa is the absolute vorticity. Here and in what follows ∆ = ∇2

is the two-dimensional Laplacian. The purpose of adding the specific forcing term on the right-

hand side of the vorticity equation is to suppress the high frequency noise in the vorticity field

and at the same time to ensure that energy is conserved during the integration while enstrophy

is dissipated. The latter properties can be easily verified upon multiplying Eq. (2.3) with the

stream function ψ and any function of the absolute vorticity ζa, respectively, and integrating

over the domain Ω, see also [58].

There is a problem with this parameterization scheme in that it is not Galilean invariant.

Galilean invariance (as well as the proper scale invariance), however, can be easily included by

the method of invariantization. For the sake of demonstration, we consider the case of n = 0

here, which is the original version of the anticipated vorticity closure. Upon using the moving

frame (2.10), we obtain

ι(J(ψ, J(ψ, ζa))) =
1√
|ψx|

J(ψy, ζ
a) +

√
|ψx|ζa

yy.

Attaching this to the invariant representation of the vorticity equation (2.11), the vorticity

equation with fully invariant closure reads (ε = sgnψx)

ζa
t + J(ψ, ζa) = ν

√
|ψx|(εJ(ψy, ζ

a) + ψxζ
a
yy). (2.12)
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It is obvious that this parameterization is quite different from that proposed in [48]. It cannot

be brought in the form of nested Jacobian operators and it does not conserve energy any more

(for the derivation of conservative invariant closure schemes, see Section 2.8). On the other

hand, the inherent invariance of the closed vorticity equation (2.12) with respect to Galilean

and scale symmetries is an appealing property for itself and might be relevant e.g. when vorticity

dynamics is studied in a moving coordinate frame.

Quite recently, an approximate scale invariant formulation of the anticipated potential vor-

ticity method was proposed in [15] using scale analysis techniques and physical reasoning. The

motivation for this study is that modern weather and climate models might be required to

operate on grids with variable resolution. Unfortunately, varying resolution in an atmospheric

numerical model is not a simple task as most of the parameterization schemes employed are

definitely not scale invariant, but rather tuned to yield best results on a fixed grid. Painful

efforts might be necessary in order to adjust parameterization schemes of a numerical model to

various spatial-temporal resolutions. Having a general method for deriving of scale-insensitive

closure schemes at hand is therefore of potential practical interest in numerical geophysical fluid

dynamics. Albeit simple, the method of invariantization of existing parameterization schemes

may give appropriate closure schemes that are both physically meaningful and respect essential

symmetries of a specific process to be represented numerically.

These are only two examples for fully invariant closure schemes. See one more example in the

next section. In principle, each term of the form S(I1, . . . , IN ), where S is a smooth function

of its arguments and I1, . . . , IN are differential invariants of G1, satisfies the same requirement

when added to the right hand side of Eq. (2.11). In other words, the general form of closure

ansatzes for Eq. (2.11), which are invariant with respect to the entire group G1, is

ζt + ψxζy − ψyζx + βψx = ψxS(I1, . . . , IN ).

2.7 Application of invariant parameterizations to

turbulence modeling

In this section, we give an application in which we aim to demonstrate in practice the ideas

outlined above and in [26]. This example deals with turbulence properties of the two-dimensional

incompressible Euler equations. Strictly speaking, turbulence is a three-dimensional problem as a

two-dimensional turbulent flow is not stable with respect to fully three-dimensional perturbations

to that flow [49]. Nevertheless, there are countless studies concerning the turbulent properties

of two-dimensional flow simply because it is a relevant problem in large-scale geophysical fluid

dynamics, which behaves as approximately two-dimensional.

In short, the first theoretical results concerning two-dimensional turbulence were derived in [4,

29], following the pioneering work on three-dimensional turbulence done by Kolmogorov [28].

Extensive numerical studies have been carried out since then attempting to verify distinct aspects

of the theory proposed [5, 6, 13, 22, 31]. The two-dimensional case is especially peculiar, as it

admits infinitely many conservation laws including the conservation of energy. The energy in

the barotropic vorticity is purely kinetic and can be represented in different ways using doubly

periodic boundary conditions as

E =
1

2

∫
Ω

v2dA =
1

2

∫
Ω

(∇ψ)2dA = −1

2

∫
Ω
ψζdA, (2.13)
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where Ω = [0, Lx[× [0, Ly[ and dA = dx dy. The special form of Eq. (2.3) leads to the following

class of conservation laws

Cg =

∫
Ω
g(ζa)dA,

for any smooth function g of the absolute vorticity ζa = ζ+f0+βy. The most relevant realization

of the above conservation laws in the present context is the enstrophy, given for the particular

value g = (ζa)2/2.

First of all, consider the case of no differential rotation (β = 0), i.e. the Coriolis parameter f

is approximated by the constant f0, which is referred to as the f-plane approximation. It is the

simultaneous conservation of energy and enstrophy in this case that leads to the remarkable

behavior of two-dimensional turbulence [49, 57]. Starting with a random initial velocity (or

stream function field), energy is transported to the large scale, while enstrophy is transported to

the smaller scales. This cascade is associated with an organization of the vortices, with vortices of

the same sign merging into bigger ones (though the precise mechanisms of the cascade including

the role of the vortices are not yet fully understood). In order to initiate these fluxes of energy

to the larger scale and enstrophy to the smaller scale and thus the process of organization, it

is necessary to place a sink of enstrophy at the very small scales. This sink acts as a remover

of enstrophy while ideally conserving energy, as the latter is transported away from the small

scales on which the dissipation acts (which in practice is hard to realize in a numerical simulation

using a finite number of grid points). It is believed that the form of the energy spectrum in a

range above which dissipation is acting (inertial range) can be derived using scaling theory in a

similar manner as it was shown by Kolmogorov for the three-dimensional case [49, 57].

The energy and enstrophy spectra E(k) and C(k) are defined by

Ē =
1

2LxLy

∫
Ω

v2dA =
1

2LxLy

∫
Ω

(∇ψ)2dA =

∫
E(k)dk,

C̄ =
1

2LxLy

∫
Ω
ζ2dA =

1

2LxLy

∫
Ω

(∆ψ)2dA =

∫
C(k)dk,

where Ē and C̄ are the average energy and average enstrophy, k =
√

(kx)2 + (ky)2 is the scalar

wave number, kx and ky are the wave numbers in x- and y-direction, respectively. The possibility

of using a single wave number is due to the assumption of isotropy that is generally made in

turbulence theory and which is reasonable in the case of vanishing differential rotation [57].

According to the theory, the form of the energy spectrum in the inertial range should follow

E(k) ∝ k−3.

This is referred to as the enstrophy cascade in two-dimensional turbulence. Analogously, the

enstrophy spectrum in the inertial range should follow

Cens(k) ∝ k−1 = k2E(k).

The impact of the beta-term in the vorticity equation on the turbulent cascades was first

studied in [46]. In this seminal paper, it was remarked that the Rossby wave solutions admitted

by the beta-plane equation can act as a source of anisotropization of turbulence at the larger

scale. Qualitatively, at some stage the size of the vortices is big enough that they are exposed

to the effect of differential rotation, which essentially hinders the tendency of vortex growth due
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to the inverse energy cascade. Rather, the vortices evolve into Rossby wave and eventually to

the formation of zonal jets as observed e.g. on giant planets. Depending on the precise setting

used (e.g. strength of the differential rotation, additional energy injection to the system), the

results of turbulence simulations can vary, but often energy spectra steeper than those predicted

theoretically can be found [24, 32, 46].

In practice, the sink of enstrophy at the small scales is usually implemented by adding a

hyperviscosity of the form

D = (−1)n−1ν∆nζ (2.14)

for n ∈ N+ to the right-hand side of Eq. (2.3), cf. Eq. (2.6). However, it can easily be checked

that this form of hyperviscosity is not invariant under the Lie symmetry pseudogroups of the

beta-plane and f-plane equations. More specifically, it violates the scale invariance of Eq. (2.3).

From the theoretical point of view, this violation appears to be especially odd, as it is precisely

the scale invariance of the Euler equations that is used to derive the form of the energy spectrum

in the inertial range.

Theorem 2.1 directly implies that the invariantization ι(D) = (−1)n−1ν
√
|ψx|2n−1∆nζ is a

differential invariant of the maximal Lie invariance pseudogroup of the vorticity equation. In

view of the results of Section 2.6, we conclude that the form of the diffusion term obtained in

the course of the invariantization is

D̃ = |ψx|ι(D) = (−1)n−1ν
√
|ψx|2n+1∆nζ.

The completely invariant formulation of the vorticity equation on the beta-plane with hyper-

diffusion therefore reads

ζt + ψxζy − ψyζx + βψx = (−1)n−1ν
√
|ψx|2n+1∆nζ. (2.15)

Note, however, that the price for introducing an invariant enstrophy sink is the nonlinearity

of the (hyper)diffusion term. More generally, the situation is alike to the problem of finding a

relation between the Reynolds stresses and the mean strain rate in the Reynolds averaged Navier–

Stokes equations or in large–eddy simulations thereof. It was pointed out that establishing a

relationship between the nonlinear Reynolds stresses and the linear strain rate (i.e. invoking

the Boussinesq hypothesis) may lead to unrealistic results for certain turbulent flows such as

in rotating or stratified fluids or those exposed to abrupt changes of the mean strain rate, see

the discussions in [41, 59]. It is therefore worthwhile pointing out that the requirement of

preserving the entire maximal Lie invariance pseudogroup of the barotropic vorticity equation

on the beta-plane automatically yields nonlinear hyperdiffusion terms. For n = 1, the right-

hand side of Eq. (2.15) can be considered as a generalized down-gradient parameterization for

the eddy-vorticity flux, which is also a nonlinear quantity. That is, requiring a (hyper)diffusion

scheme to be scale invariant, it is indispensable to use nonlinear (hyper)diffusion.

It is important to note that the anisotropic coefficient
√
|ψx|2n+1 arises due to the special

form of normalization conditions (2.9) we have chosen in Section 2.5 for the construction of

the moving frame. This form is by no means unique but rather a consequence of the mov-

ing frame we have invoked. The situation is comparable to the discretization of differential

equations, which can also be done in multiple ways. Some schemes have better properties

than others and ultimately it is necessary to both analyze and test the various schemes for
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different sets of problems. Having more than one possibility to construct invariant subgrid-

scale schemes out of a given non-invariant scheme should therefore be considered as an ad-

vantage rather than as a drawback of the proposed method. The knowledge of the com-

plete set of differential invariants, which is obtained as a byproduct when determining the

invariantization map for a given group action, allows one to derive series of invariant closure

schemes starting from that obtained as a direct result of the invariantization of the given ini-

tial scheme. This is facilitated by recombining a given invariant scheme using the differen-

tial invariants, as any functional combination of differential invariants is again a differential

invariant.

A number of alternative (isotropic) forms of a completely invariant nonlinear hyperviscosity

term for the vorticity equation on the beta-plane can therefore be suggested, e.g.

D̃ = (−1)n−1νζ2n+1∆nζ, D̃ = (−1)n−1ν∇(ζ2n+1∇∆n−1ζ), etc.,

which are derived upon recombining the differential invariants derived in Theorem 2.1. Due to

the wide possibility for varying ansatzes for invariant parameterizations we can control differ-

ent desirable conditions which proper invariant closure schemes should additionally satisfy, cf.

Section 2.8.

Subsequently we will exclusively work with Eq. (2.15). Our motivation for choosing the

anisotropic hyperdiffusion (2.15) rather than any of the above isotropic ones stems from recent

experiments on turbulence which suggest that contrary to the Kolmogorov hypothesis the small

scales might indeed feel the effects from the large scale being anisotropic, i.e. that anisotropy can

propagate through to the very small scales, see e.g. [53]. However, future tests will be conducted

so as to compare the different forms of invariant hyperdiffusion.

We give some numerical experiments using Eq. (2.15) and compare it with the respective

non-invariant model that employs classical hyperdiffusion (2.14). Both models are integrated

using a finite difference scheme and biharmonic dissipation is used in all the experiments, i.e.

n = 2. The nonlinear terms on the left-hand side are discretized using the Arakawa Jacobian

operator [3], which guarantees energy and enstrophy conservation of the spatial discretization

in the case of vanishing dissipation, ν = 0. A leapfrog scheme is used for the time stepping in

conjunction with a Robert–Asselin–Williams filter [60], in order to suppress the computational

mode. The size of the domain is Lx = Ly = 2π, with a default of N = 1024 grid points in

each direction, β = 1. The initial condition is a Gaussian random stream function field, with

the initial energy spectrum given by the function E(k) ∝ k3 exp(−3k2/k2
p), where kp = 64. No

normalization of the initial energy was used. The value of ν was chosen to be νinv = 1 · 10−10 in

the invariant case and νninv = 2 · 10−9 for the non-invariant simulations. Note that the value of

νninv has been selected to lie in between the values given in [13] for the two integrations using

5122 and 40962 grid points. The value of νinv has been chosen so that νinv ≈ max(νninv

√
|ψx|5)

initially for the sake of comparison.

Both models have been integrated for approximately 10 000 time steps using ∆t = 1 · 10−3.

Hence, all the results presented below were evaluated at approximately t = 10, which should

be long enough so that inertial ranges can form in the energy and enstrophy spectra. Be-

low, we shall like to present the enstrophy spectra for fully developed freely decaying tur-

bulence using both the invariant and the non-invariant hyperdiffusion terms. As was said

above, according to the Batchelor–Kraichnan theory the enstrophy spectrum should be of the

form k−1 in the intertial range. However, finding experimental evidence for a spectrum of
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Figure 2.1: Enstrophy spectrum at approximately t = 10 using (a) invariant hyperdiffusion and

(b) non-invariant hyperdiffusion.

Figure 2.2: Vorticity field at approximately t = 10 using (a) invariant hyperdiffusion and (b)

non-invariant hyperdiffusion.

this form proved rather hard and most numerical simulations carried out so far yield steeper

spectra.

In Fig. 2.1a we show the enstrophy spectrum found from the simulation using invariant

hyperdiffusion. In the region between approximately k = 100 up to k = 300 the spectrum

follows k−1 almost perfectly. That is, the invariant hyperdiffusion of the form used in (2.15)

leads to an experimental verification of the Batchelor–Kraichnan theory.

In Fig. 2.1b we show the corresponding enstrophy spectrum obtained using conventional

(non-invariant) hyperdiffusion. As in the majority of turbulence simulations, also we obtain

a spectrum in the inertial range that is steeper than k−1, lying between k−1 and k−2, in this

case. Moreover, it is instructive to note that the lower parts of the spectra (up to the respective

inertial ranges) are rather similar for both schemes, while differences occur within the inertial

and in the diffusion ranges. This observation underpins that the proposed nonlinear invariant

hyperdiffusion is physically acting as a viscousity term in Eq. (2.15).

Fig. 2.2 shows the associated vorticity fields obtained using the invariant and non-invariant

hyperdiffusion schemes at the end of the integration. Note that the value of β chosen is rather
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small (and much smaller as compared to the value of β = 3 used in [32]) so the effects of

differential rotation on the vorticity fields are rather minimal. Both fields look qualitatively

similar verifying that invariant hyperdiffusion is capable of producing a physically meaningful

vorticity field.

Remark 2.2. Decaying turbulence simulations are an important class of tests for numerical in-

tegration schemes. On the other hand, from the point of view of both the theory and application,

it is generally more instructive when Eq. (2.3) is augmented with some forcing which supplies

energy to the system and thereby prevents turbulence from dying out. As it is then usually

necessary to damp out the energy which is otherwise piling up at small wave numbers (large

scales) due to the inverse energy cascade, an additional drag term is introduced in Eq. (2.3).

This drag term can be either physical (e.g. linear Ekman drag due to bottom friction) or, similar

as hyperviscosity, scale selective. In the latter case, one uses a hypoviscosity [16], which is given

by adding a term proportional to ∆−nζ, which acts scale selective by emphasizing the large

scale and thus is effectively energy removing. Again, one could raise the question whether such

a hypofriction should possess some invariance properties, but this is beyond the scope of the

present paper and should be considered in a forthcoming study.

2.8 Conservative invariant parameterizations

A parameterization is called conservative if the corresponding closed system of differential equa-

tions possesses nonzero conservation laws. Special attention should be paid to parameterizations

possessing conservation laws that have a clear physical interpretation (such as the conservation

of energy, mass, momentum, etc.) and that originate from the conservation laws of the initial

system of equations. If a parameterization is both conservative and invariant with respect to a

pseudogroup of transformations, it is called a conservative invariant parameterization.

The general method for singling out conservative parameterizations among invariant closure

ansatzes is based on the usage of the Euler operators, i.e. variational derivatives with respect to

the dependent variables [42]. Suppose that L̃θ: L̃l(x, ū(n), θ) = 0, l = 1, . . . ,m, θ = θ(I1, . . . , IN )

represent a family of local parameterizations for a system L: Ll(x, u(n)) = 0, l = 1, . . . ,m, which

are invariant with respect to a pseudogroup G. Here L̃l are fixed smooth functions of their ar-

guments. The tuple θ of arbitrary elements consists of smooth functions of certain differential

invariants I1, . . . , IN of G. It runs through a set of such tuples constrained by a system of

differential equations, where I1, . . . , IN play the role of independent variables. We require the

tuples (λm1, . . . , λml), m = 1, . . . ,M , of differential functions of u to be characteristics of M

linearly independent local conservation laws of the system L̃θ for some values of θ, i.e. for each m

the combination λm1L̃1 + · · · + λmlL̃l is a total divergence. The theorem on characterization

of total divergences [42, Theorem 4.7] then implies the equations Ea(λm1L̃1 + · · ·+ λmlL̃l) = 0

for each m = 1, . . . ,M and a = 1, . . . , q, where Ea is the Euler operator associated with the

dependent variable ua, Eaf =
∑

α(−D)αfuaα . Splitting these equations with respect to deriva-

tives of u wherever this is possible, one constructs the system of determining equations with

respect to θ, which should be solved in order to derive the corresponding conservative invariant

parameterizations.

As the direct computation is too cumbersome, we use some heuristic arguments and look

for a diffusion ansatz for the barotropic vorticity equation on the beta-plane that satisfies the

following relevant and valuable conditions:
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• It is invariant with respect to the entire maximal Lie invariance pseudogroup G1 of

Eq. (2.3).

• The subgrid-scale term or, more generally, the sink term to be represented is a differential

function of the vorticity ζ (namely, a polynomial depending only on derivatives of ζ with

respect to the space variables x and y).

• This expression is as similar as possible to the hyperviscosity term (2.14).

• And, last but not least, the parameterization is conservative. More precisely, it possesses

all the conservation laws of Eq. (2.3) with zero-order characteristics.

The second point guarantees the invariance of the corresponding diffusion ansatz under all

transformations from G1 that do not involve scalings. In order to provide the scale invariance,

we should just balance the scaling weights of derivatives of ζ in the diffusion term. Moreover,

these derivatives should be composed in such a way that allows integrating by parts in order to

represent the diffusion term multiplied by an arbitrary zero-order conservation-law characteristic

of Eq. (2.3) in conserved form. An example of such a parameterization is given by

ζt + ψxζy − ψyζx + βψx = D, D = ν∆
∆ζ7

ζ
= 7ν∆(ζ5∆ζ + 6ζ4(∇ζ)2). (2.16)

All the properties listed above can be checked for the sink term (2.16). Thus, the expression

for D from (2.16) involves only the vorticity and its derivatives and is quite similar to (2.14).

Moreover, the diffusion D is a globally defined differential function which is a polynomial of its

arguments. The invariance of Eq. (2.16) with respect to G1 can be simply checked using the

infinitesimal invariance criterion. A more sophisticated way to check this invariance is to rewrite

Eq. (2.16) in terms of normalized invariants of the pseudogroup G1, which will not be done

explicitly here. As an unexpected but valuable bonus we have that the maximal Lie symmetry

pseudogroup of Eq. (2.16) with the same term D in the case of the f-plane (β = 0) is even wider

than G1. It also includes the usual rotations of the variables (x, y) and the generalized Galilean

boosts in y-direction, which belong to the Lie symmetry pseudogroup G0 of the barotropic

vorticity equation on the f-plane. This in particular means that the parameterization (2.16) is

isotropic.

The space of zero-order characteristics of Eq. (2.3) is generated by the characteristics λ = f(t),

λ = g(t)y and λ = ψ, where f and g run through the set of smooth functions of t. The physically

most important of these characteristics are λ = 1, λ = y and λ = ψ, which are associated with the

conservation of circulation, x-momentum and energy. Any zero-order characteristic of Eq. (2.3)

is a characteristic of Eq. (2.16). Indeed, denoting

L := ζt + ψxζy − ψyζx + βψx −D

we derive that

fL = Dx

(
fψxt + fψζy + fβψ − νfDx

∆ζ7

ζ

)
+ Dy

(
fψyt − fψζx − νfDy

∆ζ7

ζ

)
,

gyL = Dx

(
gyψxt + gyψζy −

g

2
(ψy)

2 + gyβψ − νgyDx
∆ζ7

ζ

)
+ Dy

(
gyψyt − gψy − gyψζx + gψψxy − νgyDy

∆ζ7

ζ
+ νg

∆ζ7

ζ

)
,
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ψL = Dt

(
−1

2
(∇ψ)2

)
+ Dx

(
ψψxt +

1

2
ψ2ζy +

β

2
ψ2 − νψDx

∆ζ7

ζ
+ νψx

∆ζ7

ζ
− νDxζ

7

)
+ Dy

(
ψψyt −

1

2
ψ2ζx − νψDy

∆ζ7

ζ
+ νψy

∆ζ7

ζ
− νDyζ

7

)
.

If we grant that the vorticity equation coupled with some diffusive term possesses a smaller

number of conservation laws (e.g. owing to the special physical properties of this diffusion), we

can use a simpler form for the expression D. For example, the differential function D = ν∆ζ4

leads to a parameterization which is invariant with respect to the entire pseudogroup G1 and

possesses conservation laws with the characteristics λ = f(t), λ = g(t)y for arbitrary values of

the smooth parameter-functions f and g.

The parameterization (2.16) demonstrates the feasibility of combining invariant and conserva-

tive properties of closure schemes. This possibility is important for two obvious reasons. Firstly,

conservation laws incorporate relevant physical information that is worth being preserved by

a parameterization scheme. Secondly, from the point of view of constructing parameterization

schemes, the requirement of preserving both symmetries and conservation laws leads to a more

specific class of schemes than considering either only symmetries or only conservation laws. The

additional narrowing of the class of admitted schemes using geometric constraints can then help

to reduce the number of schemes that must be tested numerically so as to find the optimal

parameterization for a given process.

2.9 Conclusion and discussion

The differential invariants of the Lie symmetry pseudogroup G1 of the barotropic vorticity equa-

tion on the beta-plane are computed using the technique of moving frames for Lie pseudogroups.

A basis of these differential invariants along with the associated operators of invariant differ-

entiation is established. Together, they serve to completely describe the algebra of differential

invariants of G1. Although differential invariants have many applications (such as the inte-

gration of ordinary differential equations [42], computation of so-called differentially invariant

solutions [23, 30], the construction of invariant numerical discretization schemes [6], etc.), in

the paper we focus on their usage in the construction of invariant closure schemes or, perhaps

more generally, invariant diffusion terms for the averaged vorticity equation. This is one of

the two general methods proposed in [26] to derive parameterization schemes with symmetry

properties. As an alternative to the direct usage of elementary differential invariants that can be

build together to yield invariant closure schemes, we propose the method of invariantization of

existing parameterization schemes. This method is along the line of invariantization of existing

discretization schemes as introduced in [12, 22]. Although this method is straightforward to

apply, a potential complication is that the result depends on the particular choice of the moving

frame and therefore does not lead to a unique invariant counterpart of an existing non-invariant

scheme. As a consequence, it might be necessary to modify invariantized closure schemes and

to test different invariantizations in order to devise physically valuable closures.

The differential invariants derived are used to construct invariant hyperdiffusion terms in

order to model the behavior of two-dimensional freely decaying turbulence. The resulting en-

strophy spectrum exhibits an arc of approximate k−1 slope which is the theoretically derived

shape for the postulated enstrophy inertial range. It should be stressed, though, that the ob-

tained enstrophy spectrum should be taken with a pinch of salt. Since the derivation of the
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theoretical form of the spectra in [4, 29] it has been tried in numerous studies to obtain these

spectra in numerical simulations. Although results often vary, spectra are found with a steeper

slope than the predicted k−1 curve as described in [5, 6, 13, 30, 32, 52]. It seems to be generally

agreed today that the presence of the stable coherent vortices, which is the main feature of

two-dimensional turbulence, has a strong impact on the derived enstrophy spectra. This holds

in the case of turbulence both on the f-plane and on the beta-plane. The introduction of an

invariant hyperdiffusion-like term certainly complicates the situation as diffusion then is coupled

nonlinearly to the vorticity equation. On the other hand, it was indicated that the presence

of the beta-term in the vorticity equation allows for a nonlocal transfer of anisotropy from the

larger to the smaller scales [32]. A nonlinear diffusion term has the potential to support such

a nonlocal scale interaction and thereby serves as a potential parameterization scheme for nu-

merical models. It should be stressed in this context that in all the simulations we have carried

out, the rate of energy dissipation was lower than using classical hyperdiffusion even in quite

low-resolution numerical experiments.

Apart from the discussion above, the possibility of constructing hyperdiffusion-like enstrophy

sink terms that lead to scale invariant enstrophy spectra seems to be a valuable property for itself.

It is precisely the scale invariance of the Euler equations that is used to predict the behavior

of two-dimensional turbulence in the inertial range and therefore the availability of dissipative

versions of the vorticity equation having the same invariance properties as the inviscid vorticity

equation might be a general advantage. Heuristically, one can expect that an invariant closure

scheme should be better adapted for the problem of reproducing features that have been derived

using symmetries (as the isotropic enstrophy spectrum), similarly as an invariant discretization

scheme often reproduces better invariant exact solutions of a differential equation than non-

invariant discretization schemes [21]. This assumption is supported by the proved relevance of

Lie symmetries in turbulence theory [35]. The results obtained in the present paper do not

contradict this assumption, keeping in mind especially that the premises invoked to obtain the

theoretical form of the spectra are at present under revision. In this context, it should again be

stressed that there is a multitude of invariant parameterization schemes or invariant diffusion

terms that can be coupled to the vorticity equation on the beta-plane. The fact that already the

simplest invariantized version (2.15) of the hyperdiffusion term (which has obvious weaknesses)

shows quite good properties in the course of our numerical tests is a motivating result which

is worth pointing out. Nevertheless, in order to verify and better assess the ability of invariant

hyperdiffusion schemes to model turbulence on the beta-plane, further theoretical and numerical

studies must be carried out.

The method we propose in this paper is fully generalizable. It is the number of variables of

a model and its symmetry group that determine whether the method is computationally more

complicated to realize, but this complication is not conceptual. Thus, the relative simplicity

of constructing diffusion schemes that are invariant under the entire maximal Lie invariance

group is a particular feature of the beta-plane vorticity equation, which is computationally more

involved for vorticity dynamics on the f-plane. The complication with the latter model is that

the corresponding maximal Lie invariance pseudogroup G0 is even wider than G1. This makes

it much harder to derive reasonably simple closure schemes that are invariant under the entire

pseudogroup G0, see the discussion in [26], where a generating set of differential invariants of G0

and a complete set of its independent operators of invariant differentiation are determined.

A possible remedy for this complication is to consider closure schemes that are invariant only
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under certain subgroups of the maximal Lie invariance pseudogroup of the f-plane equation. As

highlighted in the present paper, the selection of such subgroups can be justified for physical

reasons when boundaries come into play.

Another novel feature of the present paper is the explicit inclusion of conservation laws in

invariant closure schemes. The chance of constructing such conservative invariant parameter-

ization schemes is of obvious physical relevance. For physical processes that do not violate

particular conservation laws, it is natural to require the associated parameterization to be also

conservative. It was demonstrated in the paper for the vorticity equation on the beta-plane

that the concepts of invariant and conservative parameterization schemes can be united to yield

closure ansatzes that preserve both all the symmetries and certain conservation laws of this

equation. The construction of further invariant conservative closure schemes as well as their

exhaustive testing will be a next major challenge in the application of ideas of group analysis to

the parameterization problem.
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2.A Symmetries of the vorticity equation on the beta-plane

We aim to detail the computation of the maximal Lie invariance algebra g1 of the vorticity

equation (2.3) here. Full expositions on finding Lie symmetries of differential equations can

be found in the standard textbooks [1, 4, 30, 42]. More details on the symmetries (and exact

solutions) of the vorticity equation are presented in [5].

Given a generator

Q = τ(t, x, y, ψ)∂t + ξ(t, x, y, ψ)∂x + η(t, x, y, ψ)∂y + ϕ(t, x, y, ψ)∂ψ. (2.17)

of a one-parameter point symmetry group of the vorticity equation

∆ = ζt + ψxζy − ψyζx + βψx = 0, ζ = ψxx + ψyy,

the infinitesimal invariance criterion [30, 42] implies Q3(∆) = 0, which has to hold on the

manifold ∆ = 0, where Q3 denotes the third prolongation of the vector field Q. Explicitly, the

prolonged vector field Q3 is defined by Q3 = Q+
∑

0<|α|63 ϕ
α∂ψα and the coefficients of Q3 are

derived from the general prolongation formula,

ϕα = Dα1
t Dα2

x Dα3
y (ϕ− τψδ1 − ξψδ2 − ηψδ3) + τψα+δ1 + ξψα+δ2 + ηψα+δ3 . (2.18)
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Here we use the notation introduced in the beginning of Section 2.5. Then the condition Q3(∆) =

0 expands to

ϕ120 + ϕ102 + ϕ010ζy + ψx(ϕ021 + ϕ003)− ϕ001ζx − ψy(ϕ030 + ϕ012) + βϕ010 = 0,

and the constraint that Q3(∆) = 0 has to hold only on the manifold of ∆ = 0 is taken into

account by substituting ψtxx = −ψtyy − ψxζy + ψyζx − βψx wherever ψtxx occurs. As the

coefficients of Q are only functions of t, x, y and ψ, the expanded condition can be split with

respect to the various derivatives of ψ. This splitting yields the determining equations for the

coefficients of the vector field Q,

τx = τy = τψ = ξy = ξψ = ηt = ηx = ηψ = ϕx = 0,

ξx = ηy = −τt, ϕy = −ξt, ϕψ = −3τt.
(2.19)

The general solution of this system of determining equations reads

τ = c1t+ c2, ξ = −c1x+ f̃(t), η = −c1y + c3, ϕ = −3c1ψ − f̃ty + g̃(t),

where f̃ and g̃ run through the set of smooth functions of t. Thus, the maximal Lie invariance

algebra of infinitesimal symmetries of the barotropic vorticity equation on the beta-plane is

spanned by the vector fields

D = t∂t − x∂x − y∂y − 3ψ∂ψ, ∂t, ∂y, X (f̃) = f̃(t)∂x − f̃t(t)y∂ψ Z(g̃) = g̃(t)∂ψ.

2.B Algebra of differential invariants for the vorticity equation

In this appendix we present the details for the proof of Theorem 2.2 which exhaustively describes

the algebra of differential invariants for the maximal Lie invariance pseudogroup of the barotropic

vorticity equation on the beta-plane.

A complete set of independent operators of invariant differentiation is derived by invarianti-

zation of the usual operators of total differentiation, yielding

Di
t =

1√
|ψx|

(Dt − ψyDx), Di
x =

√
|ψx|Dx, Di

y =
√
|ψx|Dy. (2.20)

This is practically realized via substituting the expressions (2.10) for the pseudogroup param-

eters into the implicit differentiation operators (2.8). Any operator of invariant differentiation

related to the pseudogroup G1 is locally a combination of the operators (2.20) with functional

coefficients depending only on differential invariants of G1. The commutation relations between

the operators Di
t, Di

x and Di
y are

[Di
t,D

i
x] =

ε

2
I020Di

t +
(
I011 +

ε

2
I110

)
Di
x,

[Di
t,D

i
y] =

ε

2
I011Di

t + I002Di
x +

ε

2
I110Di

y,

[Di
x,D

i
y] =

ε

2
I020Di

y −
ε

2
I011Di

x.

(2.21)

In order to completely describe the algebra of differential invariants of G1, it remains to

establish a basis of differential invariants such that any differential invariant of G1 can be rep-

resented as a function of basis elements and their invariant derivatives. It is also necessary to
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compute a complete system of syzygies between basis invariants. For this aim, we will evaluate

the recurrence relations between the normalized differential invariants and the differentiated

differential invariants as detailed in [9, 19]. The starting point for the application of the general

algorithm to the maximal Lie invariance pseudogroup G1 of the vorticity equation on the beta-

plane is the system of determining equations for the coefficients of a vector field (2.17) from the

maximal Lie invariance algebra of Eq. (2.3), which is given through system (2.19). Consider

the prolonged operator Q∞ = Q+
∑
|α|>0 ϕ

α∂ψα . The coefficients of Q∞ are calculated by the

standard prolongation formula (2.18). In view of the determining equations, the coefficients ϕα

take the form

ϕα = (α2 + α3 − α1 − 3)τtψα −
α1∑
k=1

(
α1

k

)
ξ(k)ψα−kδ1+δ2 +

{
−ξ(α1+1), α2 = 0, α3 = 1

ϕ(α1), α2 = α3 = 0

}
,

where ξ(k) = ∂kξ/∂tk and ϕ(k) = ∂kϕ/∂tk, k = 0, 1, 2, . . . . We collect the coefficients of Q

and their derivatives appearing in the expressions for the prolonged coefficients of Q and de-

note the associated invariantized objects, which are differential forms, as τ̂0 = ι(τ), τ̂1 = ι(τt),

ξ̂k = ι(ξ(k)), η̂ = ι(η) and ϕ̂k = ι(ϕ(k)). In the course of the normalization (2.9) the invariantized

counterparts ϕ̂α = ι(ϕα) of the prolonged coefficients of Q are

ϕ̂j00 = ϕ̂j − εξ̂j −
j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k if j > 0, ϕ̂j01 = −ξ̂j+1 −
j∑

k=1

(
j

k

)
Ij−k,11ξ̂

k,

ϕ̂α = (α2 + α3 − α1 − 3)Iατ̂
1 −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k if α2 > 0 or α3 > 1.

For lower values of |α|, 0 < |α| 6 3, we calculate

ϕ̂100 = ϕ̂1 − εξ̂1, ϕ̂010 = −2τ̂1, ϕ̂001 = −ξ̂1,

ϕ̂200 = ϕ̂2 − εξ̂2 − 2I110ξ̂
1, ϕ̂110 = −3I110τ̂

1 − I020ξ̂
1, ϕ̂101 = −ξ̂2 − I011ξ̂

1,

ϕ̂020 = −I020τ̂
1, ϕ̂011 = −I011τ̂

1, ϕ̂002 = −I002τ̂
1,

ϕ̂300 = ϕ̂3 − εξ̂3 − 3I110ξ̂
2 − 3I210ξ̂

1,

ϕ̂210 = −4I210τ̂
1 − I020ξ̂

2 − 2I120ξ̂
1, ϕ̂201 = −ξ̂3 − I011ξ̂

2 − 2I111ξ̂
1,

ϕ̂120 = −2I120τ̂
1 − I030ξ̂

1, ϕ̂111 = −2I111τ̂
1 − I021ξ̂

1, ϕ̂102 = −2I102τ̂
1 − I012ξ̂

1,

ϕ̂030 = ϕ̂021 = ϕ̂012 = ϕ̂003 = 0.

From the recurrence relations for the phantom invariants H0 = ι(t), H1 = ι(x), H2 = ι(y),

Ii00 = ι(ψi00), Ii01 = ι(ψi01), i = 0, 1, . . . , and I010 = ι(ψ010), which are

dhH
0 = ω1 + τ̂0 = 0, dhH

1 = ω2 + ξ̂0 = 0, dhH
2 = ω3 + η̂ = 0, dhI000 = ω2 + ϕ̂0 = 0,

dhIj00 = Ij10ω
2 + ϕ̂j − εξ̂j −

j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k = 0, j = 1, 2, . . . ,

dhIj01 = Ij11ω
2 + Ij02ω

3 − ξ̂j+1 −
j∑

k=1

(
j

k

)
Ij−k,11ξ̂

k = 0, j = 0, 1, . . . ,

dhI010 = I110ω
1 + I020ω

2 + I011ω
3 − 2τ̂1 = 0,
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where ω1 = ι(dt), ω2 = ι(dx) and ω3 = ι(dy), we derive expressions for the invariantized

Maurer–Cartan forms

τ̂0 = −ω1, ξ̂0 = −ω2, η̂ = −ω3, ϕ̂0 = −ω2, τ̂1 = 1
2(I110ω

1 + I020ω
2 + I011ω

3),

ξ̂j = Ij−1,11ω
2 + Ij−1,02ω

3 −
j−1∑
k=1

(
j − 1

k

)
Ij−k−1,11ξ̂

k,

ϕ̂j = −Ij10ω
2 + εξ̂j +

j−1∑
k=1

(
j

k

)
Ij−k,10ξ̂

k,

j = 1, 2, . . . . The forms ξ̂j should be calculated recursively starting from j = 1. Thus,

ξ̂1 = I011ω
2 + I002ω

3,

ξ̂2 = (I111 − I2
011)ω2 + (I102 − I011I002)ω3,

ξ̂3 = (I211 − 3I011I111 + I3
111)ω2 + (I202 − 3I011I102 + I2

011I002)ω3, . . . .

In general, ξ̂j = ξ̂j,2ω2 + ξ̂j,3ω3, where the coefficients ξ̂j,2 and ξ̂j,3 are expressed in terms of

normalized invariants Iα with |α| 6 j + 1.

The recurrence relations for non-phantom normalized invariants correspondingly read

dhIα1α2α3 = Iα+δ1ω
1 + Iα+δ2ω

2 + Iα+δ3ω
3 + (α2 + α3 − α1 − 3)Iατ̂

1

−
α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k if α2 > 0 or α3 > 1.

As by definition dhF = (Di
tF )ω1 + (Di

xF )ω2 + (Di
yF )ω3, the above recurrence relations can

be split into a list of equations for first-order invariant derivatives of normalized differential

invariants Iα with α2 > 0 or α3 > 1 by taking into account the expressions for the invariantized

Maurer–Cartan forms:

Di
tIα = Iα+δ1 +

α2 + α3 − α1 − 3

2
I110Iα,

Di
xIα = Iα+δ2 +

α2 + α3 − α1 − 3

2
I020Iα −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k,2,

Di
yIα = Iα+δ3 +

α2 + α3 − α1 − 3

2
I011Iα −

α1∑
k=1

(
α1

k

)
Iα−kδ1+δ2 ξ̂

k,3.

(2.22)

We only present the closed expressions for the first-order invariant derivatives of Iα with |α| 6 3:

Di
tI110 = I210 − 3

2I
2
110, Di

xI110 = I120 − 3
2I110I020 − I011I020,

Di
yI110 = I111 − 3

2I110I011 − I020I002,

Di
tI020 = I120 − 1

2I110I020, Di
xI020 = I030 − 1

2I
2
020, Di

yI020 = I021 − 1
2I011I020,

Di
tI011 = I111 − 1

2I110I011, Di
xI011 = I021 − 1

2I011I020, Di
yI011 = I012 − 1

2I
2
011,

Di
tI002 = I102 − 1

2I110I002, Di
xI002 = I012 − 1

2I020I002, Di
yI002 = I003 − 1

2I011I002,

Di
tI210 = I310 − 2I110I210, Di

xI210 = I220 − 2I020I210 − 2I011I120 + (I2
011 − I111)I020,

Di
yI210 = I211 − 2I011I210 − 2I002I120 + (I002I011 − I102)I020,
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Di
tI201 = I301 − 2I110I201, Di

xI201 = I211 − 2I020I201 − 3I001I111 + I3
011,

Di
yI201 = I202 − 2I011I201 − 2I002I111 − I011I102 + I002I

2
011,

Di
tI120 = I220 − I110I120, Di

xI120 = I130 − I020I120 − I011I030,

Di
yI120 = I121 − I011I120 − I002I030,

Di
tI111 = I211 − I110I111, Di

xI111 = I121 − I020I111 − I011I021,

Di
yI111 = I112 − I011I111 − I002I021,

Di
tI102 = I202 − I110I102, Di

xI102 = I112 − I020I102 − I011I012,

Di
yI102 = I103 − I011I102 − I002I012,

Di
tI030 = I130, Di

xI030 = I040, Di
yI030 = I031,

Di
tI021 = I121, Di

xI021 = I031, Di
yI021 = I022,

Di
tI012 = I112, Di

xI012 = I022, Di
yI012 = I013,

Di
tI003 = I103, Di

xI003 = I013, Di
yI003 = I004.

In principle, it is possible to read off the generating differential invariants from the above split

recurrence relations. The expressions for Iα+δ1 , Iα+δ2 and Iα+δ3 derived from (2.22) only involve

first-order invariant derivatives of Iα and normalized invariants of orders not greater than |α|.
This implies that a generating set of differential invariants consists of invariantized derivatives

which are minimal with respect to the usual partial ordering of derivatives and are not phantom

invariants. We have four such minimal elements,

I110 =
ψtx − ψyψxx√

|ψx|3
, I020 =

ψxx√
|ψx|

, I011 =
ψxy√
|ψx|

, I002 =
ψyy√
|ψx|

.

All the other invariantized derivatives are expressed via invariant derivatives of I110, I020, I011

and I002. As was indicated above, not all differentiated differential invariants are necessarily

functionally independent, which is encoded in syzygies of the algebra of differential invariants.

Taking into account these syzygies can further reduce the number of generating differential

invariants thereby allowing one a more concise description of the basis of differential invariants.

In the present case, we find the following lower-order syzygies:

Di
tI011 −Di

yI110 = I110I011 + I020I002,

Di
tI020 −Di

xI110 = I020(I110 + I011),

Di
yI011 −Di

xI002 = 1
2I020I002 − 1

2I
2
011,

Di
xI011 −Di

yI020 = 0,

(Di
y)

2I110 −Di
tD

i
xI002 = 1

2(Di
t − I011)(I020I002)− (Di

y + I011)(3
2I110I011 + I020I002)

−I011Di
yI110 − I002Di

yI020,

(Di
y)

2I020 − (Di
x)2I002 = 1

2Di
x(I020I002)− 1

2Di
y(I011I020).

From the two first syzygies we can express the invariants I011 and I002 via invariant derivatives

of I110 and I020,

I011 =
Di
tI020 −Di

xI110

I020
− I110,

I002 =
1

I020
(Di

t − I110)

(
Di
tI020 −Di

xI110

I020
− I110

)
−

Di
yI110

I020
.
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Another way of finding relations between generating invariants is to use the commutation

relations between the operators of invariant differentiation. Evaluating each equality from (2.21)

on an element I from the above generating set, we obtain a system of linear algebraic equations

with respect to the other elements of these sets, which can be solved on the domain of the jet

space where the determinant of the matrix associated with the system does not vanish. It is

convenient to choose, e.g., I = I020. Then, we derive the representations

I011 =
I020Di

yI020 − 2ε[Di
x,D

i
y]I020

Di
xI020

,

I110 =
2ε[Di

t,D
i
x]I020 − I020Di

tI020

Di
xI020

− 2εI011,

I002 =
[Di

t,D
i
y]I020

Di
xI020

− ε

2

Di
tI020

Di
xI020

I011 −
ε

2

Di
yI020

Di
xI020

I110,

which are defined on the domain Ω1 of the jet space where Di
xI020 6= 0, i.e., D 2

x (
√
|ψx| ) 6= 0.

As a result, it is straightforward to establish Theorem 2.2.
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Parameterization (closure) schemes in numerical weather and climate prediction models

account for the effects of physical processes that cannot be resolved explicitly by these

models. Methods for finding physical parameterization schemes that preserve conservation

laws of systems of differential equations are introduced. These methods rest on the possibility

to regard the problem of finding conservative parameterization schemes as a conservation

law classification problem for classes of differential equations. The relevant classification

problems can be solved using the direct or inverse classification procedures. In the direct

approach, one starts with a general functional form of the parameterization scheme. Specific

forms are then found so that corresponding closed equations admit conservation laws. In the

inverse approach, one seeks parameterization schemes that preserve one or more pre-selected

conservation laws of the initial model. The physical interpretation of both classification

approaches is discussed. Special attention is paid to the problem of finding parameterization

schemes that preserve both conservation laws and symmetries. All methods are illustrated

by finding conservative and invariant conservative parameterization schemes for systems of

one-dimensional shallow-water equations.

3.1 Introduction

The problem of replacing the continuous governing equations of the atmosphere–ocean system

by a discrete approximation is that in general no numerical scheme is capable of preserving all

the geometrical features that the initial system of differential equations possesses. Among these

features are symmetries and conservation laws. The lack of a numerical scheme in preserving
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fundamental properties of the model has far-reaching consequences on the practical utility of

the computed results. Simulating the earth system is a relevant but highly complex task and it

involves an intricate interaction of theoretical insight, data handling and numerical modeling.

Introducing errors in any of these tasks can lead to severe drifts of the forecasted state towards

wrong attractors and thus to misleading weather and climate predictions. To remedy this chal-

lenge for the discretization part of the equations, several structure-preserving numerical integra-

tors were developed [18, 28, 32, 47] that might eventually replace standard integration schemes.

Less research has been carried out so far on the slightly different but related problem of finding

structure-preserving closure models or parameterization schemes for the subgrid-scale terms that

inevitably arise when discretizing a nonlinear system of partial differential equations owing to

the limited resolution one has to employ when integrating a numerical model. Attention to the

importance of this issue was brought up in [20] and continued in [29], where the task of finding

invariant subgrid-scale closure schemes for the filtered Navier–Stokes equations was investigated.

Moreover, it was found in [21] that certain subgrid-scale closure models can also admit additional

symmetries that have no counterparts in the original model to be closed. A subgrid-scale closure

model that has such additional symmetries can indicate that the respective model is physically

inadequate and underpin once more the preeminent role of symmetries in hydrodynamics, see

also the discussion in [22].

The ideas formulated in [20] were recently also picked up in [6, 26] with the aim of formu-

lating general algorithms for finding local parameterization schemes with prescribed invariance

characteristics. These methods rely on the property that any generic parameterization ansatz,

when introduced into an averaged system of differential equations turns this system into a class

of closed differential equations. There exist powerful methods from the field of group analysis of

differential equations [4, 4, 5, 5, 11, 14, 27, 28, 30, 42] that can be used to study the symmetry

properties of such classes of differential equations in an algorithmic way. By a proper interpre-

tation of these methods, one can turn them into effective tools for the construction and study

of local parameterization schemes preserving invariance properties.

The fact that the local parameterization problem in general can be regarded as the study

of the properties of classes of differential equations is also the key for the analog problem of

finding parameterization schemes preserving conservation laws. Paralleling the task of finding

parameterization schemes that preserve symmetry properties, this problem has important phys-

ical applications. Preserving physical conservation laws in the parameterization process is a

natural requirement as there exist various processes that preserve e.g. energy or mass, but that

cannot be resolved in a particular numerical model and thus have to be modeled in a simplified

manner. When constructing closure models for such processes it is natural to require the closed

system of equations to still preserve energy or mass as otherwise the physical consistency of the

parameterization scheme is necessarily violated. Developing algorithmic methods that allow one

to construct such parameterization schemes is thus a worthwhile endeavor.

A further point in favor of an extension of the tool kit of geometric closure schemes to include

conservative parameterizations is related to the fact that symmetries and conservation laws of a

system of differential equations L have different relations to the solutions of L. By definition, a

symmetry of L is a property of L itself without regard to posed initial and boundary conditions

whereas a conservation law is a property holding for every solution of L irregardless of posed

initial and boundary conditions. In particular, most of the nontrivial symmetries of equations

in hydrodynamics are broken once classical boundary conditions are imposed (e.g. rigid walls or
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even periodic domains). In contrast, the validity of a conservation law holds in the presence of

all kinds of initial and boundary conditions.

Hence it is clear that it is physically relevant to study the relation between conservation

laws, classes of differential equations and the parameterization problem. Shedding light on this

relation is the purpose of the present paper. The main result of our study is a step towards the

first systematic description of general methods for the construction of parameterization schemes

that preserve or possess particular conservation laws.

This paper in organized as follows. In Section 3.2, the theory of conservative parameterization

schemes is developed. Here, necessary terminology on conservation laws and group classification

is introduced to demonstrate that the problem of finding conservative parameterization schemes

can be regarded as a classification problem of conservation laws in classes of differential equa-

tions. This classification problem can be solved using both direct and inverse methods. These

methods and the additional requirement on conservative parameterization schemes to be invari-

ant with respect to a nontrivial symmetry can successfully be used to narrow down the vast

possibility one generally has when constructing local subgrid-scale closure schemes for averaged

or filtered differential equations. As an example, conservative and invariant conservative param-

eterization schemes are constructed for the system of one-dimensional shallow-water equations

in Section 3.3. In Section 3.4, the results of the paper are summarized and suggestions are given

for further research directions.

3.2 Conservative and invariant parameterization schemes

In this section we introduce some necessary terminology on symmetries and conservation laws,

which are essential to formulate the theory of invariant and conservative parameterization

schemes in a proper way. The exposition of the background material follows [1, 2, 5, 26–28, 42],

to which we refer for a more thorough discussion of the underlying notions, methods and theo-

retical concepts.

3.2.1 General notions and statement of the problem

Let there be given a system of differential equations denoted by L, which consists of L equations

of the form ∆l(x, u
(n)) = 0, l = 1, . . . L, where x = (x1, . . . , xp) are the independent variables,

u = (u1, . . . , uq) are the dependent variables and u(n) denote all the derivatives of u with respect

to x up to order n, with u being included as the zeroth order derivative.

Definition 3.1. A local conservation law of the system L is a divergence expression which

vanishes on the solution set of the system L (denoted by |L),

DjΦ
j |L = (D1Φ1 + · · ·+ DpΦ

p)|L = 0. (3.1)

The p-tuple of differential functions Φ = (Φ1(x, u(m)), . . . ,Φp(x, u(m))), m ∈ N0, is a conserved

current of the associated conservation law.

Here and in the following, Di is the operator of total differentiation with respect to xi, defined

by Di = ∂xi + uαJ,i∂uαJ , where uαJ = ∂|J |uα/∂(x1)j1 · · · ∂(xp)jp , uαJ,i = ∂uαJ/∂x
i, J = (j1, . . . , jp) is

a multi-index, ji ∈ N0 and |J | = j1 + · · ·+ jp. The summation convention over repeated indices

is understood.
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Definition 3.2. A local conservation law of the system L is trivial if the components of its

conserved current Φ are of the form Φj = M j(x, u(m)) + Hj(x, u(m)), where the differential

function M j vanishes on the solution space of the system L and the tuple (H1, . . . ,Hp) of

differential functions is a null divergence, i.e. it satisfies DjH
j = 0 identically.

Trivial conservation laws satisfy the divergence condition in a trival way and thus contain no

relevant information about the system L. Consequently only nontrivial conservation laws are of

interest below.

Definition 3.3. Two conserved currents Φ and Φ′ represent the same conservation law (i.e. are

equivalent) if their difference Φ−Φ′ is a conserved current associated with a trivial conservation

law.

The above definition implies that conservation laws can only be found up to adding trivial

conservation laws, i.e. there is not a single canonical representation of one and the same conser-

vation law. Thus, formally the space of conservation laws can be defined as the set of elements

from the factor space of the set of all conserved currents with respect to the subset of trivial

conserved currents. See [28] for more details.

Conservation laws are conveniently found using the multiplier approach. This method rests

on an equivalent recasting of the definition of a conservation law (3.1) in the form

DjΦ
j(x, U (m)) = Λl(x, U (r))∆l(x, U

(n)), (3.2)

where the differential functions Λ = (Λ1(x, U (r)), . . . ,ΛL(x, U (r))), r ∈ N0, are conservation

law (CL) multipliers, also called the characteristic of the conservation law associated with the

conserved current Φ. Note that expression (3.2) holds for arbitrary functions U(x). It is then

obvious that for solutions U(x) = u(x) of the system L the right-hand side of the above expres-

sion vanishes and thus (3.2) reduces to the definition of a conservation law given above, provided

that the characteristic Λ is non-singular on the solution manifold of L.

Expression (3.2) can be converted into a system of determining equations for the multipliers Λ.

This is facilitated by means of the Euler operator.

Definition 3.4. The Euler operator with respect to the dependent variable U i is the differential

operator given by

Ei = ∂U i −Dj1∂U ij1
+ Dj1Dj2∂U ij1j2

− · · · = (−D)J∂U iJ
, (3.3)

where (−D)J = (−D1)j1 · · · (−Dp)
jp .

The importance of Euler operators in the study of local conservation laws lies in the property

that they annihilate any divergence expression DjΦ
j . In particular the CL multipliers Λ =

(Λ1(x, U (r)), . . . ,ΛL(x, U (r))), r ∈ N0, yield a CL of L if and only of

Ei(Λ
l∆l) ≡ 0, i = 1, . . . , q. (3.4)

Equation (3.4) can be split with respect to ∆l and its differential consequences. This yields an

over-determined linear system of partial differential equations, which serve as the determining

equations for the local CL multipliers of the system L. Once these multipliers are found, the

associated conserved currents Φ can be constructed using e.g. a homotopy formula [1, 2, 5].
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We now move on to the precise statement of the parameterization problem. Given a system

of differential equations L, ∆l(x, u
(n)) = 0, l = 1, . . . , L, consider a filtering operation

P(ui) = ūi(x) =

∫
Ω
ui(y)G(y, x) dy, (3.5)

where dy = dy1 · · · dyp and Ω is the domain of integration. Eq. (3.5) presents the convolution

of the variable ui with the filter kernel G = G(y, x). The filter kernel G(y, x) satisfies∫
Ω
G(y, x) dy = 1,

see [19, 20, 30]. This averaging operation can be used to decompose the instantaneous dependent

variables u according to

u = ū+ u′.

The average ū is referred to as the resolved or grid-scale part of the dynamics, while u′ includes

the unresolved subgrid-scale fraction of u. As we do not mix different averaging methodologies

in one and the same physical problem, we subsequently denote by a bar any mean value of u,

irrespectively of what averaging operator is used in the concrete problem of interest.

Example 4. In the classical Reynolds averaging one uses the time average of u, which is de-

fined by

PR(ui) = ūi(x∗) = lim
T→∞

1

T

∫ t0+T

t0

ui(t, x∗) dt,

where t0 denotes the initial time one starts to average. This time average follows from (3.5)

upon setting t = x1, x∗ = (x2, . . . , xp) and by factorizing

G(y, x) = G1(y1)

p∏
i=2

Gi(y
i − xi) =

HT (y1)

T

p∏
i=2

δ(yi − xi),

where HT is the indicator function of the interval [t0, t0 + T ] and δ is the delta distribution.

The time averaging is a Reynolds operator, i.e. it satisfies ūiuj = ūiūj . Owing to this property,

in the splitting u = ū + u′ one has u′ = 0 since ¯̄u = ū. The average over a product uiuj thus

gives uiuj = ūiūj + ui′uj′ , which is the classical Reynolds decomposition that introduces the

Reynolds stresses ui′uj′ into the averaged Navier–Stokes equations. In practical computation a

finite T <∞ has to be chosen and then ū = ū(t0, x
∗), i.e. the mean value is still time-dependent.

Example 5. In large eddy simulation of turbulence, the classical Reynolds averaging as intro-

duced in Example 4 is replaced by a spatial filtering approach defined by

PLES(ui) = ūi(t, x∗) =

∫
Ω
ui(y)G(y, x)dy,

for which the filter kernel in (3.5) is decomposed according to

G(y, x) = G1(y1 − t)
p∏
i=2

Gi(y
i − xi) = δ(y1 − t)

p∏
i=2

Gi(y
i − xi).

The filters defined this way are generally not Reynolds operators, i.e. now u′ 6= 0 as ¯̄u 6= ū and

thus filtering over products uiuj produces additional terms of forms not present in the Reynolds

averaging approach, i.e. uiuj = ūiūj + ui′ ūj + ūiuj′ + ui′uj′ .
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With the aid of a particular averaging operator (3.5) the system L is converted into a system

for the resolved part ū, which can be determined by measurements or in the course of a numerical

simulation of the system L. This is done by introducing the splitting u = ū+u′ into the system L
followed by an application of a specific filtering (3.5), which leads to the averaged system of

differential equations L̄ given by

∆̄l(x, ū
(n), w) = 0, l = 1, . . . , L. (3.6)

In this expression the k-tuple w = (w1, . . . , wk) includes all those terms that arise in the course

of the averaging or filtering and cannot be determined from the knowledge of the mean or filtered

values ū(n). For the Reynolds averaging introduced in Example 4, these are terms like ui′uj′

(or higher order products as well as their derivatives), while in the case of the spatial filtering

of Example 5, w would additionally include terms of the form ui′ ūj , etc. This is essentially the

closure problem, i.e. Eqs. (3.6) include more unknown than known quantities. Thus, as they

stand Eqs. (3.6) cannot be used for a numerical integration unless one expresses the additional

unknowns w in terms of certain known expressions.

Definition 3.5. A local parameterization or subgrid-scale closure model assumes a functional

relation between the unknown subgrid-scale terms w and the mean values ū(r), r ∈ N0, i.e.

wi = f i(x, ū(r)), i = 1, . . . , k, (3.7)

for certain parameterization functions f = (f1, . . . , fk).

Introducing a local parameterization scheme (3.7) into system (3.6) leads to a closed system

of differential equations for the mean values ū. The inherent problem of this construction is

that in most cases of interest the information contained in ū and its derivatives is not sufficient

to determine the entire subgrid-scale structure contained in w. The art of constructing physical

parameterization schemes is to determine the parameterization functions f in such a manner

that the assumption (3.7) will allow one to find ū from the closed system L̄ with sufficient

accuracy.

Finding suitable parameterization functions f that lead to realistic results for ū can be

rather tedious. One general methodology to restrict the vast number of possible forms for the

parameterization functions is to choose them in such a manner that the resulting closed system

of differential equations preserves certain nontrivial geometric properties such as conservation

laws and/or symmetries. This motivates the following definition.

Definition 3.6. A local parameterization scheme is called conservative provided that the closed

class of differential equations L̄ preserves certain nontrivial conservation laws of the initial sys-

tem. A local parameterization scheme is called invariant provided that the closed class of

differential equations L̄ preserves a nontrivial point symmetry group G of the initial system.

Conservative parameterization schemes can be found using techniques analogous to those for

the group classification of classes of differential equations. A class of differential equations L|S
is a system of differential equations of the form ∆l(x, u

(n), θ(x, u(n))) = 0, l = 1, . . . , L, which

is parameterized by a k-tuple θ = (θ1, . . . , θk) of differential functions that satisfy a system of

K ∈ N0 auxiliary differential equations of the form Sj(x, u
(n), θ(m)(x, u(n))) = 0, j = 1, . . . ,K,

the solution set of which is denoted by S. The system of auxiliary equations in part specifies

the properties of the class and it is regarded as a system for θ, i.e. x and u(n) play the role of
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independent variables. To complete the description of the class L|S one usually takes into account

a constitutive inequality, Σ(x, u(n), θ(m)(x, u(n))) 6= 0, which guarantees that all equations from

the class share some joint properties (e.g. a particular derivative does not vanish, all equations

of L|S are linear or nonlinear, etc.).

It is the purpose of conservation law classification to systematically investigate the CLs of a

class of differential equations. By substituting the general closure scheme (3.7) into the averaged

system L̄ (3.6) one obtains a class of closed differential equations for ū,

∆̄l(x, ū
(n), f(x, ū(r))) = 0, l = 1, . . . , L, (3.8)

in which the parameterization functions f play the role of the arbitrary elements θ. In the

following subsections we will introduce and discuss methods that allow one to specify the pa-

rameterization functions f in such a manner that the system (3.8) has certain nontrivial local

CLs. The corresponding classification methods for finding parameterization schemes that possess

nontrivial maximal Lie invariance groups where introduced in [11], see also [26]. Combinations

of invariant and conservative parameterization schemes are also possible and will be discussed

at the end of this section.

Remark 3.1. A problem related to the search for parameterization or closure schemes for the

subgrid-scale terms arising in averaged differential equations is to search for extensions of differ-

ential equations that preserve some of the geometric features of the original differential equations

L. Physically, such extensions could be e.g. adding dissipation terms to a non-dissipative model

or source or sink terms to transport equations. Depending on the nature of the included pro-

cess, the addition of such extra terms may alter the structure of the initial system of differential

equation but might still retain some of the geometric features of the original model. A possible

research question is thus to construct extra terms for the system L : ∆l(x, u
(n)) = 0, l = 1, . . . L

in such a manner as to preserve certain CLs and/or symmetries of L. Mathematically, this

is done by investigating systems of the form ∆l(x, u
(n)) = gl(x, u

(r)), for a certain L-tuple

g = (g1(x, u(r)), . . . gL(x, u(r))) of extensions. It is obvious that this system can be brought

into the form (3.8) if the functions f are interpreted as the additional terms that extend the

initial system L and no averaging operation is involved, i.e. ū(n) = u(n). Consequently, the same

methods as introduced below for solving the parameterization problem for system (3.8) can be

used to tackle this kind of problem.

3.2.2 Conservative parameterizations via direct classification

In order to discuss the method for finding conservative parameterization schemes, the following

definitions are useful.

Definition 3.7. An equivalence transformation ϕ from the class L|S is a point transformation

on the space (x, u(n), θ), which is projectable on the spaces of (x, u(n′)), 0 ≤ n′ ≤ n, such that

∀θ ∈ S : θ′ = ϕθ ∈ S and the restriction of ϕ to the space of (x, u(n)), denoted by ϕ|(x,u(n)), is a

point transformation from Lθ to Lθ′ . Here, Lθ and Lθ′ are equations from the class L|S .

Thus, equivalence transformations are point transformations that map one system of dif-

ferential equations from a given class L|S to another system of differential equations from the

same class. The collection of all equivalence transformations forms a group, which is called the

equivalence group G∼.
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Definition 3.8. Let there be given two systems of differential equations from the class L|S ,

denoted by Lθ and Lθ′ , which have CLs with conserved currents Φ and Φ′, respectively. The

pairs (Lθ,Φ) and (Lθ′ ,Φ′) are equivalent with respect to the equivalence group G∼ if there

exists a point transformation ϕ ∈ G∼ that transforms the system Lθ to the system Lθ′ and

which transforms the conserved current Φ in such a manner that Φ̃ = ϕ(x, u(r),Φ) and Φ′ are

equivalent conserved currents, see Definition 3.3.

In this definition, the action of a point transformation ϕ ∈ G∼ on a conserved current Φ has

the explicit form

Φ̃i(x̃, ũ(r)) =
Dxj x̃

i

|Dxx̃|
Φj(x, u(r)), i = 1, . . . , p,

where |Dxx̃| is the determinant of the matrix (Dxj x̃
i). See [5, 9, 28] for more details.

The direct classification procedure for finding parameterization schemes with prescribed CLs

can be formulated in the following way. For a given fixed general form of the parameterization

functions f , determine those CLs that hold for any equation from the class (3.8) (i.e. for all

admissible forms of f) and find all the inequivalent equations from that class that have additional

CLs.

To make the classification problem tractable, one first chooses the general form of param-

eterization functions f one aims to study, i.e. one determines which variables x and u(r) the

functions f should depend on. This choice is physically motivated. Once the general form of

f (hence the system of auxiliary equations S) is fixed, one can solve the classification problem

taking into account the equivalence of CLs as embodied in Definition 3.8. This means that one

determines the equivalence group of the general class of closed differential equations of interest

and then solves the determining equations (3.4) for CL multipliers. One seeks those values of

f (up to equivalence) for which the determining equations for CL multipliers yield additional

multipliers beyond those for generic parameterization functions. An example for this procedure

is given in Section 3.3.1.

The direct group classification method yields a list of inequivalent equations L̄f from the class

L̄|S that possess inequivalent nontrivial local CLs. Using this list of all possible conservative

parameterization schemes from the predefined class, one can then test the different schemes

obtained and select the most appropriate one as a candidate closure scheme for the process of

interest that needs to be parameterized.

Physically, the method of finding conservative parameterization schemes using the direct

classification approach might be most appropriate in the case when one seeks to represent

processes that are not already included in the dynamics resulting from the system L. The

reason for this is that by means of the direct classification method one might obtain closed

differential equations that have CLs not possessed by the original system L.

3.2.3 Conservative parameterizations via inverse classification

A different ideology for finding parameterization schemes is the following. Assume that the

original system of differential equations L has a certain number of nontrivial local CLs. The

averaging of a differential equation certainly disturbs the geometric structure of the equation

but it might nevertheless be desirable that the averaged system share some CLs of the original

system of equations. An example for this is a process that conserves energy but needs to be

parameterized in a given system of differential equations. For the sake of physical consistency,
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the closed differential equations should conserve energy and thus only parameterization schemes

that are compatible with energy conservation can be considered.

This discussion is related to what is called the inverse classification problem and in the

framework of a conservative parameterization scheme, it can be formulated in the following way.

Let there be given an initial system of differential equations L. One first determines CLs holding

for the original system of differential equations L : ∆l(x, u
(n)) = 0, l = 1, . . . L through the CL

multiplier approach. Depending on the complexity of the problem of interest, one might not be

able to obtain an exhaustive description of all CLs but rather restricts oneself to CLs associated

with characteristics Λ(x, u(r)) for some fixed (often low-dimensional) r. Among the CLs of L,

one selects, using physical reasoning, the associated multipliers of those CLs that one aims to

preserve in the course of the parameterization process. As in the case of the direct classification

method, one next averages the system L and determines the general functional form of the

parameterization functions f to be used in the class of parameterization schemes (3.7). The

final step is to plug the class of averaged closed differential equations (3.8) into the determining

equations (3.4) for CL multipliers. Since the multipliers that the resulting equations from the

class (3.8) should admit are fixed, the determining equations for local CL multipliers are thus

converted into a system of determining equations for the parameterization functions f . Solving

this system leads to all equations from the class L̄|S that have the same CL multipliers Λ(x, ū(r))

as the original system L, with u(r) being replaced by the corresponding averaged values ū(r).

A nontrivial question in this construction procedure is to determine in advance whether at

least some systems from the class L̄|S selected has the CLs associated with the chosen multipliers

Λ(x, u(r)) stemming from the original system L, i.e. whether the determining equations (3.4)

yield any nontrivial solutions. A natural strategy to overcome this problem of possibly triviality

of the solution of (3.4) is to (i) either assume that the class of closed equations L̄|S is rather

wide (i.e. that the function f depends on a large number of variables from ū(r)) or (ii) to only

require a suitable small set of CLs being preserved by the parameterization scheme. From the

physical point of view, the first strategy should be the method of choice.

Although this possible triviality of the solution of the determining equations for the parame-

terization functions and the associated failure in finding nontrivial conservative parameterization

schemes seems undesirable, it nevertheless includes important physical evidence. It simply means

that for the parameterization ansatz selected, no element of the class of closed equations can

satisfy the requirement of retaining the desired CLs and thus might indicate that the initial

parameterization ansatz was flawed.

Similar as the direct classification method, which might lead to conservative parameterization

schemes that possess CLs which do not hold for the original system L, conservative parameter-

ization schemes derived using the inverse classification procedure may also yield additional CLs

for the resulting closed system of differential equations. This should be investigated on a per

case basis.

The inverse classification strategy might be best suited for processes already included in the

full dynamics of the original system L, but that cannot be explicitly resolved because of e.g.

computational limitations.

Remark 3.2. The existence of at least the trivial solution of Eqs. (3.4) in the case when the

CL multipliers are fixed and possible forms of f are sought, i.e. that the system of determining

equations is compatible is guaranteed if (3.8) can be rewritten in the form

∆l(x, ū
(n)) = gl(x, ū

(r)), l = 1, . . . , L,
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where the left-hand side is the same as in the original system L provided that ū(n) is used in place

of u(n) and the right-hand side is a functional combination of the parameterization functions f .

Thus, if g = 0 (and hence f = 0), the above equation admits the same CL multipliers Λ as for

the system L in which ū(n) is used instead of u(n).

3.2.4 Conservative and invariant parameterizations

Methods for finding parameterization schemes with symmetry properties using methods from the

group analysis of differential equations were introduced in [6, 11, 20, 26]. There is neither a prac-

tical nor a theoretical objection against a parameterization scheme preserving both invariance

and CL properties. Indeed, the compatibility of these two concepts was explicitly demonstrated

by constructing CL and invariance preserving hyperdiffusion schemes for the two-dimensional

barotropic vorticity equation on the beta-plane [6]. We now outline how to systematically con-

struct invariance and CL preserving parameterization schemes.

As in the case of conservative parameterization schemes, two main methods are applicable

to determine parameterization schemes with symmetry properties. These methods are straight-

forward applications of the group analysis of differential equations and the required techniques

are based on the direct and the inverse approach to the symmetry classification problem, re-

spectively. The key to the construction of conservative invariant parameterization schemes is

that the closure models resulting from the conservative parameterization procedure as outlined

in the previous two subsections are usually still classes of differential equations. These classes

are generally narrower than the initial class given by Eqs. (3.8) but nevertheless include arbi-

trary constants or parameter functions with respect to which the usual symmetry classification

problem can be carried out. We only outline the main ideas of this construction below as a more

detailed exposition of the methods available in the field would require a substantial extension of

the text. Moreover, the symmetry analysis and group classification of differential equations is a

well-investigated subject. See [1–4, 4, 5, 5, 11, 14, 27, 28, 30, 38, 42] and references therein.

Special attention will be also paid to models that are derivable from variational principles,

i.e. which are Euler–Lagrange equations. For such systems there is a close connection between

symmetries and CLs that can be utilized to construct invariant conservative parameterization

schemes. In particular, in this situation, all CL multipliers are symmetries but the converse is

false [1, 2, 4, 5, 42].

Invariant conservative parameterizations via direct symmetry classification. In the

direct symmetry classification approach one starts with a given class of differential equations

and determines those symmetries that hold for all equations in the class. These symmetries form

the kernel of maximal Lie invariance groups of equations in the class. The direct classification

problem is solved by finding all equations in the class that have symmetry extensions with

respect to the kernel and this investigation is carried out up to the equivalence imposed by the

equivalence group G∼.

Depending on the complexity of the class of closed differential equations (3.8) with conserva-

tive properties, different strategies for solving the direct symmetry classification problem can be

adopted. For simple classes depending only on a few arbitrary constants or parameter functions

with few arguments, the direct integration of the determining equations of Lie symmetries up to

equivalence using compatibility analysis is the method of choice. This method yields a complete

list of inequivalent equations from classes of the form (3.8) that are both conservative and have

nontrivial symmetry properties. If the structure of the class of (3.8) is too complicated for a
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direct integration of the determining equations of Lie symmetries then the algebraic method of

group classification can be used. With this method one aims to find symmetry extensions of

the kernel that are induced by transformations from the equivalence group of the class under

consideration. The algebraic method thus reduces the problem of finding symmetry extensions

to the problem of finding inequivalent subgroups of the equivalence group G∼. Similar to the

direct integration of the determining equations, the algebraic method of group classification can

lead to the complete solution of the group classification problem, namely for classes of differen-

tial equations possessing the normalization property, see [27]. If the given class of equations is

not normalized, then the algebraic method will not lead to a complete description of all possible

inequivalent symmetry extensions of the kernel. One will still find those symmetry extensions

that are induced by the equivalence transformations of the class of equations of interest but there

can be other symmetry extensions of the kernel that cannot be found from the classification of

the subgroups of the equivalence group. The algebraic method of direct group classification

for classes that are not normalized is also known as preliminary group classification. A more

detailed discussion of the techniques available in the field of direct group classification can be

found in [5, 14, 27].

Irrespective of what method is used to (partially) solve the direct symmetry classification

problem, all the systems of closed differential equations obtained in the classification procedure

have the same CLs but different (inequivalent) maximal Lie invariance groups. The resulting

closure schemes then have to be tested numerically to find the most suitable invariant and

conservative representation for a given subgrid-scale process.

Invariant conservative parameterizations via inverse symmetry classification. The

inverse symmetry classification problem is to find all those equations that have a prescribed

symmetry property. See [11] for the first systematic outline of this problem for both ordinary

and partial differential equations. Here, rather than starting from a given class of differential

equations and describing the invariance properties of equations from this class as done in the

direct symmetry classification, in the inverse classification one starts with a given Lie group of

transformations and seeks to find the class of equations (up to some order n) that is invariant

under the selected group. The inverse symmetry classification procedure rests on the following

theorem [4, 5, 11, 38, 42]:

Theorem 3.1. Let there be given a Lie group of transformations G acting on a manifold M .

If the nth prolongation of G acts regularly on the nth order jet space Jn and if there exists a

functionally independent system of nth order differential invariants I1, . . . , IN , Ii = Ii(x, u
(n)),

then any nth order system of differential equations L admitting G as a symmetry group can

be rewritten in terms of these differential invariants, i.e. ∆l(x, u
(n)) = ∆̃l(I1, . . . , IN ) = 0,

l = 1, . . . , L.

This result is known as the replacement theorem [9, 10]. It implies the existence of a cer-

tain non-degenerate matrix Γκl = Γκl (x, u(n)) such that the following holds for the system of

differential equations L : ∆l(x, u
(n)) = ∆̃l(I1, . . . , IN ) = 0, l = 1, . . . , L,

Γκl (x, u(n))∆κ(x, u(n)) = ∆̃l(I1(x, u(n)), . . . , IN (x, u(n))), l = 1, . . . , L. (3.9)

One can use the replacement theorem to construct parameterization schemes that have spec-

ified CL and invariance properties. To this end, one first determines the complete system of sth

order differential invariants Ii of the maximal Lie invariance group G of the original unaveraged
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system of differential equations L or of an appropriate subgroup G1 ⊂ G, where s = min(n, r),

n and r being the highest order derivatives arising in L and the parameterization ansatz (3.7),

respectively. These invariants can be found either using infinitesimal techniques [4, 5, 11, 30, 42]

or moving frames [9, 9, 10].

Secondly, once the invariants of G (or G1) are known one can find the multipliers Γκl and thus

obtain the invariant representation (3.9) of the system L. Now suppose that the parameterization

functions f in the class (3.8) have been determined in such a manner that the resulting equations

from (3.8) have the desired CLs. As in Remark 3.2, one represents (3.8) in the solved form

∆l(x, ū
(n)) = gl(x, ū

(r)), l = 1, . . . , L. These closed equations will be invariant under G (or G1)

for those functions g that satisfy the system of equations

Γκl (x, ū(n))gκ(x, ū(r)) = g̃l(I1, . . . , IN ), l = 1, . . . , L, (3.10)

using the same multipliers Γκl (replacing u(n) with ū(n)), for some N -tuple of functions g̃ of the

differential invariants Ii.

Similar to the discussion in Section 3.2.3, it is a nontrivial question to determine in advance

whether condition (3.10) can be satisfied for a given set of conservative parameterization func-

tions f and a chosen symmetry group G (or G1). In general, the wider the symmetry group G

(or G1) is, the more specific are the forms of the differential invariants Ii and hence the more

general the class of conservative parameterization schemes has to be in order to allow jointly

for CL and invariance properties. On the other hand, if from the physical point of view it is

required that the parameterization of a certain process should have specified invariance and CL

properties, then failure in satisfying condition (3.10) may again point to an inappropriately cho-

sen parameterization ansatz for f and thus is one more check for the consistency of a physical

parameterization scheme.

Variational parameterizations for Lagrangian systems. As mentioned previously, there

is a direct close connection between symmetries and CLs for systems of differential equations

that can be derived from a variational principle. More precisely, for each one-parameter Lie

group of point transformations (or, more generally, one-parameter group of higher order local

transformations) that leaves invariant the functional

S[u] =

∫
Ω
L(x, u(n))dx, (3.11)

where dx = dx1 · · · dxp, to within a divergence, there is a local CL of the Euler–Lagrange equa-

tions associated with (3.11). This result is the celebrated Noether theorem [4, 5, 42]. Practically,

the invariance of the functional S[u] under point transformations of the form x̃ = x̃(x, u, ε) and

ũ = ũ(x, u, ε), with associated infinitesimal generator Q = ξi(x, u)∂xi + φα(x, u)∂uα , can be

determined by checking whether the condition

Q(n)(L) + LDiξ
i = DiB

i (3.12)

is satisfied, where Q(n) denotes the nth prolongation of Q and B = (B1(x, u(m)), . . . , Bp(x, u(m)))

is some p-tuple of differential functions. In this case, it can be proved [4, 5, 42] that the

characteristic η = (η1, . . . , ηq) of the vector field Q written in evolutionary form, which is given

by ηα = φα − ξiuαi is also a set of q local CL multipliers of the associated Euler–Lagrange

equations of S[u], i.e. η = Λ. This means that a set of local conservation CL multipliers satisfies
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the determining equations for local symmetries, in evolutionary form, of the corresponding

Euler–Lagrange equations.

In practice, the Euler–Lagrange equations follow from taking the variational derivative of (3.11),

which boils down to applying the Euler operator Eu to the Lagrangian function L. The follow-

ing definitions and theorem will be useful for the construction of variational parameterization

schemes, i.e. parameterization schemes that preserve the variational structure of a system of par-

tial differential equations. A more comprehensive discussion on the relation between symmetries,

CLs and variational forms can be found in [4, 5, 42].

Definition 3.9. Let there be given a system of differential equations L : ∆l(x, u
(n)) = 0, l =

1, . . . , L. The linearizing operator (Fréchet derivative) associated with L is the matrix-valued

differential operator DL whose components are given by

(DL)µν =

(
∂∆µ

∂uν
+
∂∆µ

∂uνj1
Dj1 + · · ·+ ∂∆µ

∂uνj1···jp
Dj1 · · ·Djp

)
=
∂∆µ

∂uνJ
DJ .

Definition 3.10. The adjoint D∗L of the linearizing operator DL is the matrix-valued differential

operator whose components are given by

(D∗L)νµV
µ = (−D)J

(
∂∆µ

∂uνJ
V µ

)
.

for any differential function V = (V 1, . . . , V L), where V l = V l(x, u(n)). The operator DL is

self-adjoint if and only if D∗L = DL.

Theorem 3.2. Let L : ∆l(x, u
(n)) = 0, l = 1, . . . , L be a system of differential equations. The

system L can be derived from a variational principle (3.11) if and only if the linearization

operator DL associated with L is self-adjoint, i.e. D∗L = DL.

Theorem 3.2 is the key for the construction of variational parameterization schemes. Suppose

that the system L admits a variational form (3.11). Averaging of the equations from system L
and assuming a general parameterization ansatz (3.7) leads to a system of equations that can

be brought into the form

∆l(x, ū
(n)) = gl(x, ū

(r)), l = 1, . . . , L. (3.13)

See also Remark 3.2. Since the linearization operator associated with the left-hand side of the

above expression is by supposition self-adjoint, the above closed system of differential equa-

tions (3.13) will remain variational if and only if

D∗g = Dg, (3.14)

i.e. the linearization operator associated with the right-hand sides of system (3.13) must be

self-adjoint. This imposes the required conditions on the function g = (g1, . . . , gL) to yield a

variational parameterization scheme.

Since the one-dimensional shallow-water equations (3.17), which will be our running example

for finding conservative parameterization schemes, are not derivable from a variational principle,

we illustrate the idea of variational parameterization schemes for the potential Korteweg–de Vries

equation.
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Example 6. The potential Korteweg–de Vries (KdV) equation is obtained from the usual KdV

equation vt + vvx + vxxx = 0 by the differential substitution v = ux, i.e.

∆pKdV(x, u(4)) = utx + uxuxx + uxxxx = 0. (3.15)

This equation is variational with L = 1
2u

2
xx − 1

6u
3
x − 1

2utux being a Lagrangian. The maximal

set of point symmetries of (3.15) is infinite dimensional and spanned by the vector fields

∂t, ∂x, t∂x + x∂u, γ(t)∂u, 3t∂t + x∂x − u∂u,

where γ = γ(t) runs through the set of smooth functions of t. The first four vector fields satisfy

the variational symmetry condition (3.12) and are thus associated with local conservationl laws.

The characteristics of these symmetries are (i) η = −ut, (ii) η = −ux, (iii) η = x − tux and

(iv) η = γ(t) to which the following CLs Λ(x, U, Ux, Uxx, Uxxx)∆pKdV(x, U (4)) = Dtρ + DxF

correspond [5]:

Λ ρ F

U2
x + 2Uxxx

1
3U

3
x + UxUxxx

1
4U

4
x + U2

xUxxx − UxUtxx + U2
xxx + UxxUtx,

Ux
1
2U

2
x

1
3U

3
x + UxUxxx − 1

2U
2
xx,

x− tUx 1
2 tU

2
x + xUx −1

3 tU
3
x − tUxUxxx + 1

2 tU
2
xx + 1

2xU
2
x − Uxx + xUxxx,

γ(t) γUx
1
2γU

2
x + γUxxx − γtU.

We average the potential KdV equation using Reynolds averaging to obtain ūtx + ūxūxx +

ūxxxx = −u′xu′xx. To keep the computations as simple as possible we aim at finding the unclosed

term u′xu′xx as a function of u, ux and uxx in such a manner that the closed equations from the

class

utx + uxuxx + uxxxx = g(u, ux, uxx),

are still derivable from a variational principle. From now on we omit bars over u to simplify

the notation. The linearization operator associated with the right-hand side of this closed

class of potential KdV equations is given by D = gu + guxDx + guxxD2
x, which has the adjoint

D∗ = guxxD2
x + (2Dxguxx − gux)Dx + D2

xguxx − Dxgux + gu. Thus, condition (3.14) yields the

system

Dxguxx − gux = 0, D2
xguxx −Dxgux = 0

that must be satisfied by function g for an equation from the closed class of potential KdV

equations to remain variational. Solving this system of differential equations yields g = (c2ux +

c1)uxx + g1(u) as a particular solution, where c1 and c2 are arbitrary constants and g1 is an

arbitrary function of u. Hence

utx + uxuxx + uxxxx − (c2ux + c1)uxx − g1 = 0, (3.16)

is the only admissible form of equations from the class of closed potential KdV equations that

is an Euler–Lagrange equation. The associated Lagrangian of (3.16) is given by

L =
1

2
u2
xx −

1

6
(1− c2)u3

x −
1

2
utux −

c1

2
u2
x −G(u),

where G(u) =
∫
g1du. For arbitrary g1, the only point symmetries admitted by Eq. (3.16) are

generated by the vector fields ∂t and ∂x, which are variational and give rise to two local CLs

of (3.16).
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3.3 Conservative closure schemes for the shallow-water

equations

In this section we construct conservative parameterization schemes for the one-dimensional sys-

tem of shallow-water equations. In nondimensional form, this system reads as

∆1(t, x, u(1), h(1)) = ut + uux + hx = 0,

∆2(t, x, u(1), h(1)) = ht + uhx + hux = 0,
(3.17)

where u is the velocity and h is the height of the water column over a fixed reference level. For

the sake of simplicity, we assume a flat bottom topography in which case h can be considered as

the total height of the water column. The first equation is the momentum equation, the second

equation the shallow-water continuity equation.

Reynolds-averaging the above system (3.17) with the averaging interval T being finite and

following the averaging rule for products, uiuj = ūiūj + ui′uj′ , then leads to the averaged

shallow-water equations

ūt + ūūx + h̄x = −1

2
(u′2)x,

h̄t + ūh̄x + h̄ūx = −(h′u′)x.
(3.18)

The right-hand sides of the above system are the subgrid-scale quantities that must be param-

eterized, i.e. it is necessary to find a functional relation that allows one to express these terms

using only the grid-scale quantities, i.e.

−1

2
(u′2)x = f(t, x, ū(r1), h̄(q1)), −(h′u′)x = g(t, x, ū(r2), h̄(q2)),

where r1, r2, q1, q2 ∈ N0. It is the purpose of this section to give two examples of forms of the

parameterization functions f and g that lead to closed equations

ut + uux + hx = f, ht + uhx + hux = g (3.19)

possessing certain conservation laws. Here and in what follows, we omit the bars over averaged

variables in the closed class of shallow-water equations since there is no risk of confusion as only

averaged forms of dependent variables and their derivatives arise in such equations.

This notation is also convenient since in several of the examples given below, we consider the

related problem of finding right-hand sides f and g in system (3.19) preserving certain CLs of

system (3.17), i.e. we consider structure-preserving extensions of the shallow-water equations as

discussed in Remark 3.1.

Before determining ansatzes for f and g that possess CLs or preserve certain CLs holding for

the free shallow-water equations (3.18) it is instructive to determine the CLs of system (3.17).

We restrict ourselves to multipliers that depend on t, x, U and H, i.e. Λ1 = Λ1(t, x, U,H)

and Λ2 = Λ2(t, x, U,H), where U and H are arbitrary functions of t and x. The determining

equations (3.4) for multipliers Λ1 and Λ2 in this case become

EU (Λ1∆1(t, x, U (1), H(1)) + Λ2∆2(t, x, U (1), H(1))) ≡ 0,

EH(Λ1∆1(t, x, U (1), H(1)) + Λ2∆2(t, x, U (1), H(1))) ≡ 0,
(3.20)
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where the Euler operators EU and EH are given by

EU = ∂U −Dt∂Ut −Dx∂Ux + · · · , EH = ∂H −Dt∂Ht −Dx∂Hx + · · · .

Splitting the system (3.20) with respect to the derivatives of U and H, one obtains the following

system of determining equations for CL multipliers

Λ1
H − Λ2

U = 0, Λ1
U −HΛ2

H = 0, Λ2
t + UΛ2

x + Λ1
x = 0, Λ1

t + UΛ1
x +HΛ2

x = 0. (3.21)

Differentiating the third equation in system (3.21) with respect to H and multiplying the result-

ing equation with H, one obtains, upon recombining with the first two equations, the equation

Λ1
Ut + UΛ1

Ux +HΛ2
Ux = 0. (3.22)

Differentiating the last equation in system (3.21) with respect to U and then combining the

resulting equation with (3.22), one finds that Λ1
x = 0. Then differentiating the second equation

in (3.21) with respect to x one gets Λ2
Hx = 0 and thus Λ2

Ht = 0 in view of the third equation in

system (3.21). Differentiation of the fourth equation in (3.21) with respect to x yields Λ2
xx = 0

and hence Λ2
tx = 0 due to the third equation.

Using these results, the integration of system (3.21) leads to

Λ1 = −c1tH + λ1(U,H),

Λ2 = c1(x− tU) + λ2(U,H),
(3.23)

where c1 = const and λ1 = λ1(U,H) and λ2 = λ2(U,H) are any functions satisfying the system

λ1
H − λ2

U = 0 and λ1
U − Hλ2

H = 0. Hence there are an infinite number of associated CLs,

which reflects the possibility of linearizing the quasilinear system (3.17) using a hodograph

transformation (interchanging the dependent and independent variables), see also Section 3.3.3.

More details on the connection between CLs and linearization of partial differential equations

can be found in [3, 5].

3.3.1 Conservative parameterization schemes via direct classification

In this subsection we give an example for the construction of conservative parameterization

schemes using the technique of direct CL classification.

As an example, consider the problem of finding diffusion terms of the form

ut + uux + hx − F (h, ux, hx)uxx = 0,

ht + uhx + hux = 0,
(3.24)

allowing for CLs arising from multipliers of the form Λ1 = Λ1(t, x, U,H) and Λ2 = Λ2(t, x, U,H),

where U and H are arbitrary functions of t and x. The problem is to first determine correspond-

ing CLs arising for arbitrary F . Following this, we determine particular forms of F that yield

additional CLs. The classification is done up to equivalence.

We should like to stress that this ansatz is a particular form of the more general class identified

in Eq. (3.19) for which f = F (h, ux, hx)uxx and g = 0. We decided to work with this class

subsequently because it is simple enough to allow us to illustrate the construction of conservative

parameterization schemes in full detail without cluttering the presentation with technical details.

On the other hand, this ansatz is physically interesting as it corresponds to adding a variable-

coefficient viscous term to the free shallow-water equations.
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Theorem 3.3. The equivalence algebra g∼ of the class of one-dimensional dissipative shallow-

water equations is generated by the following basis elements

∂t, ∂x, t∂x + ∂u, t∂t − u∂u − 2h∂h − F∂F , x∂x + u∂u + 2h∂h + 2F∂F . (3.25)

Besides the associated continuous equivalence transformations (3.25), the class of equations (3.24)

admits two independent discrete equivalence transformations, which are given by (t, x, u, h, F ) 7→
(−t,−x, u, h,−F ) and (t, x, u, h, F ) 7→ (−t, x,−u, h,−F ), respectively. The continuous and dis-

crete equivalence transformations form the equivalence group G∼ of the class (3.24).

The determining equations for CL multipliers Λ1 and Λ2 are given by

Λ1
H − Λ2

U = 0, Λ1
U −HΛ2

H = 0, Λ1
x + UΛ2

x + Λ2
t = 0,

Λ1FHx = 0, HxΛ1FHUx + (UxΛ1
U +HxΛ1

H + Λ1
x)FUx + 2Λ1

UF = 0,

2HxΛ1FHHx + 2(UxΛ1
U +HxΛ1

H + Λ1
x)FHx + Λ1FH + FΛ1

H = 0,

HxΛ1FHHx + (Λ1
x + UxΛ1

U +HxΛ1
H)FHx − Λ1FH − Λ1

HF = 0,

H2
xΛ1FHH + 2(UxHxΛ1

U +H2
xΛ1

H +HxΛ1
x)FH + (U2

xΛ1
UU + 2UxHxΛ1

UH +

H2
xΛ1

HH + 2UxΛ1
Ux + 2HxΛ1

Hx + Λ1
xx)F + UΛ1

x +HΛ2
x + Λ1

t = 0.

(3.26)

Assuming F to be arbitrary, one can split the above system with respect to the various

derivatives of F , which then leads to the solution Λ1 = 0 and Λ2 = const. That is, for arbitrary

F , the only CL admitted by system (3.24), corresponding to the specified class of multipliers, is

conservation of mass.

We now consider particular forms of F for which system (3.24) possesses additional CLs.

From the classifying condition Λ1FHx = 0 in system (3.26) it follows that Λ1 = 0 when FHx 6= 0.

In this case, no CL extension exists. Thus, we only study the case of FHx = 0 subsequently.

In this case, the system of determining equations (3.26) simplifies significantly since all terms

involving derivatives of FHx vanish. Consequently, it is possible to split the resulting equations

with respect to the powers of Hx. The resulting system of determining equations is given by

Λ1
H − Λ2

U = 0, Λ1
U −HΛ2

H = 0, Λ1
x + UΛ2

x + Λ2
t = 0, (3.27a)

Λ1FH + FΛ1
H = 0, (3.27b)

(UxΛ1
U + Λ1

x)FUx + 2Λ1
UF = 0, (3.27c)

(U2
xΛ1

UU + 2UxΛ1
Ux + Λ1

xx)F + UΛ1
x +HΛ2

x + Λ1
t = 0. (3.27d)

Equations (3.27a) do not involve the constitutive function F and thus can be integrated imme-

diately. This results in

Λ1 = −1

2
c2tU

2 + (c1H + c2x+ c3)U − c2tH lnH − α1(t)H − 1

2
α′′1(t)x2

− α′2(t)x+ α3(t),

Λ2 =
1

2
c1U

2 − (α1(t) + c2t)U − (c2(Ut− x)− c3) lnH + c1H + α′1(t)x+ α2(t),

(3.28)

where α1(t), α2(t) and α3(t) are arbitrary smooth functions of t, a prime denotes the derivative

with respect to t and ci, i = 1, . . . , 3, are arbitrary constants.

Each of equations (3.27b)–(3.27d) explicitly involves the constitutive function F and these

four equations are solved using compatibility analysis. Thus, different cases arise.
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Case (I), FH = 0. From Eq. (3.27b) it follows that Λ1
H = 0 and Eq. (3.27a) implies that

Λ2
U = 0. From the form of the multipliers (3.28) we find that c1 = c2 = 0, α1(t) = 0 and thus

the multipliers in this case are of the form

Λ1 = c3U − α′2(t)x+ α3(t), Λ2 = c3 lnH + α2(t),

Substituting this into Eq. (3.27d) results in

α′2(t)U + α′′2(t)x− α′3(t) = 0,

which leads to α2(t) = const = α2 and α3(t) = const = α3. Eq. (3.27c) then reduces to

c3(UxFUx + 2F ) = 0.

This equation implies that either (i) c3 = 0 and F = F (Ux) is arbitrary or (ii) c3 6= 0 and

F = c0/U
2
x , with c0 being the integration constant. Note that in this case Ux 6= 0 must

hold, which excludes uniform velocity fields from the following consideration. Since c0 6= 0 by

assumption, we can use the transformations from the equivalence group G∼ to scale c0 = 1.

Thus in subcase (i) there is one additional CL which is of the form

Dtu+ Dx

(
1

2
u2 + h−

∫
F (ux)dux

)
= 0. (3.29)

In subcase (ii), the multipliers are

Λ1 = c3U + α3, Λ2 = c3 lnH + α2

so that here there are two additional CLs. The CL associated with α3 = const is CL (3.29)

provided that F = 1/u2
x. The second CL associated with c3 is of the form

Dt

(
1

2
u2 + (h lnh− h)− t

)
+ Dx

(
1

3
u2 + h lnh+

1

ux

)
= 0.

Case (II), FH 6= 0. Substituting Λ1 in the form given in Eq. (3.28) into Eq. (3.27b) we can split

the resulting equation(
− 1

2
c2tU

2 + (c1H + c2x+ c3)U − c2tH lnH − α1(t)H − 1

2
α′′1(t)x2 − α′2(t)x+ α3(t)

)
FH

+ (c1U − c2t(1 + lnH)− α1(t))F = 0,

with respect to powers of U and x since F = F (H,Ux) only. Splitting with respect to U2,

x2 and x implies that c2 = 0, α1(t) = α1
1t + α0

1 and α2(t) = const = α2, respectively, where

α1
1, α

0
1 = const. Differentiating the simplified equation twice with respect to t leads to α′′3(t) = 0

or α3(t) = α1
3t+ α0

3, α1
3, α

0
3 = const. The above equation thus simplifies to(

(c1H + c3)U − (α1
1t+ α0

1)H + α1
3t+ α0

3

)
FH +

(
c1U − α1

1t− α0
1

)
F = 0. (3.30)

Plugging the simplified form of Λ1 and Λ2 into Eq. (3.27d) leads to α1
3 = 0. Splitting Eq. (3.30)

with respect to t and U yields the following system of three equations

α1
1HFH + α1

1F = 0, (c1H + c3)FH + c1F = 0, (α0
1H − α0

3)FH + α0
1F = 0. (3.31a)
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At the same time, the remaining classifying equation (3.27c) gives

(c1H + c3)(2F + UxFUx) = 0. (3.31b)

System (3.31) allows one to find four inequivalent solutions. One either has (i) (c1, c3, α
1
1) =

(0, 0, 0), (ii) (c1, c3) 6= (0, 0), α1
1 = 0 and α0

1 = δc1, α0
3 = −δc3, (iii) (c1, c3, α

0
3) = (0, 0, 0) and

α0
1 = −δα1

1 or (iv) (c3, α
0
3) = (0, 0), c1 6= 0 and α1

1 = δc1, α0
1 = εc1, δ, ε = const. In all other cases

F = 0, which is excluded from consideration. In subcase (i), the classifiyng equations (3.31) are

integrated to give

F =
F 1(Ux)

α0
1H − α0

3

,

where F 1 = F 1(Ux) is an arbitrary non-vanishing smooth function of Ux and α0
1 6= 0 since

otherwise the assumption FH 6= 0 would be contradicted. In this subcase, the multipliers Λ1

and Λ2 are given by

Λ1 = α0
1H − α0

3, Λ2 = α0
1U + α2.

The two CLs that correspond to these characteristics are conservation of mass, which follows

from the multipliers (Λ1,Λ2) = (0, α2) and

Dt(α
0
1hu− α0

3u) + Dx

(
1

2
α0

1h
2 − 1

2
α0

3u
2 + α0

1hu
2 − α0

3h−
∫
g(ux)dux

)
= 0,

for the multipliers (Λ1,Λ2) = (α0
1H − α0

3, α
0
1U).

In subcase (ii), the solution of (3.31) is F = c0U
−2
x /(c1H + c3) and using the equivalence

transformations from G∼ one can put c0 = 1. The multipliers Λ1 and Λ2 are of the form

Λ1 = (c1H + c3)(U − δ), Λ2 =
1

2
c1U

2 − δc1U + c3 lnH + c1H + α2.

The CLs associated with the found multipliers are again conservation of mass associated with

(Λ1,Λ2) = (0, α2) and

Dt(c1hu+ c3u) + Dx

(
1

2
(c3u

2 + c1h
2) + (c1u

2 + c3)h+
1

ux

)
= 0

for the multiplier (Λ1,Λ2) = (c1H + c3, c1U). The third CL, corresponding to the multipliers

(Λ1,Λ2) = ((c1H + c3)U, c1U
2/2 + c3 lnH + c1H), is

Dt

(
1

2
(c1h+ c3)u2 + c3(h lnh− h) +

1

2
c1h

2 − t
)

+ Dx

(
1

2
c1hu

3 +
1

3
c3u

3 +

c3hu lnh+ c1h
2u+

u

ux

)
= 0.

In subcase (iii) the solution of system (3.31) is F = H−1F 1(Ux), for an arbitrary non-

vanishing smooth function F 1(Ux). Here the multipliers are of the form

Λ1 = α1
1(δ − t)H, Λ2 = α1

1(x− Ut) + δa1
1U + α2.

The three CLs associated with these multipliers are again conservation of mass (Λ1 = 0,Λ2 =

α2), the CL

Dt(xh− thu) + Dx

(
xhu− thu2 − 1

2
th2 + t

∫
F 1(ux)dux

)
= 0,
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corresponding to (Λ1,Λ2) = (−tH, x− Ut) and the CL

Dt(hu) + Dx

(
1

2
h2 + hu2 −

∫
F 1(ux)dux

)
= 0

which stems from the multipliers (Λ1,Λ2) = (H,U).

In the final subcase (iv) we obtain F = c0H
−1U−2

x from the integration of the system (3.31).

Again c0 = 1 mod G∼. The multipliers in this case are

Λ1 = (c1(U − δt)− εc1)H, Λ2 =
1

2
c1U

2 + c1H + δc1(x− Ut)− εc1U + α2.

Besides the obvious conservation of mass, the three other CLs include

Dt(xh− thu) + Dx

(
xhu− thu2 − 1

2
th2 − t

ux

)
= 0,

stemming from (Λ1,Λ2) = (−tH, x− Ut),

Dt(hu) + Dx

(
1

2
h2 + hu2 +

1

ux

)
= 0

which is obtained from the multipliers (Λ1,Λ2) = (H,U), and conservation of energy

Dt

(
1

2
hu2 +

1

2
h2 − t

)
+ Dx

(
1

2
hu3 + h2u+

u

ux

)
= 0,

associated with the multipliers (Λ1,Λ2) = (UH,U2/2 +H)

Comparing the results of the two cases FH = 0 and FH 6= 0 we have proved the following.

Theorem 3.4. For F 6= 0 any equation from the class of dissipative systems of one-dimensional

shallow-water equations (3.24) has at most four linearly independent conservation laws arising

from multipliers of the form Λ1 = Λ1(t, x, U,H) and Λ2 = Λ2(t, x, U,H). A complete list of

G∼-inequivalent equations and their associated conservation laws is given in Table 3.1, where

F 1 = F 1(ux) is an arbitrary non-vanishing smooth function of ux and c1 and c2 are arbitrary

constants with c2 6= 0.

3.3.2 Conservative parameterization schemes via inverse classification

In this subsection, two examples are presented that illustrate the procedure for finding conser-

vative parameterization schemes through inverse group classification.

Parameterizations conserving energy, mass and momentum. In this example we focus

on four physical CLs, namely conservation of mass-specific momentum, mass, momentum and

energy which correspond to the multipliers

Λ1 = c1 + c3H + c4UH, Λ2 = c2 + c3U + c4

(
1

2
U2 +H

)
, (3.32)

for c1, . . . , c4 ∈ R for the shallow-water equations (3.17). It can be checked that the above

multipliers (3.32) satisfy the system of multiplier determining equations (3.21) and thus yield
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Table 3.1: Conservation law classification of a class of one-dimensional dissipative shallow-water

equations

Form of F Conservation laws

∀F CL1 = Dth+ Dx(hu) = 0

F =
F 1(ux)

(c1h+ c2)

CL1 = 0,

Dt(c1hu+ c2u) + Dx

(
1

2
c1h

2 +
1

2
c2u

2 + c1hu
2 + c2 −

∫
F 1(ux)dux

)
= 0

F =
1

(c1h+ c2)u2
x

CL1 = 0,

Dt(c1hu+ c2u) + Dx

(
1

2
(c2u

2 + c1h
2) + (c1u

2 + c2)h+
1

ux

)
= 0,

Dt

(
1

2
(c1h+ c2)u2 + c2(h lnh− h) +

1

2
c1h

2 − t
)

+

Dx

(
1

2
c1hu

3 +
1

3
c2u

3 + c2hu lnh+ c1h
2u+

u

ux

)
= 0

F =
F 1(ux)

h

CL1 = 0,

Dt(xh− thu) + Dx

(
xhu− thu2 − 1

2 th
2 + t

∫
F 1(ux)dux

)
= 0,

Dt(hu) + Dx

(
1
2h

2 + hu2 −
∫
F 1(ux)dux

)
= 0

F =
1

hu2
x

CL1 = 0,

Dt(xh− thu) + Dx

(
xhu− thu2 − 1

2
th2 − t

ux

)
= 0,

Dt(hu) + Dx

(
1

2
h2 + hu2 +

1

ux

)
= 0,

Dt

(
1

2
hu2 +

1

2
h2 − t

)
+ Dx

(
1

2
hu3 + h2u+

u

ux

)
= 0

CLs for the shallow-water equations (3.17). The canonical forms Dtρ+DxX = 0 of the associated

CLs are

c1 : ρ = u, X = 1
2u

2 + h mass-specific momentum,

c2 : ρ = h, X = uh mass

c3 : ρ = uh, X = u2h+ 1
2h

2 momentum

c4 : ρ = 1
2(u2h+ h2) X = 1

2hu
3 + h2u energy.

We now consider the problem of finding parameterization schemes (3.19) that preserve the

above four multipliers. For the sake of demonstration we limit ourselves to constitutive functions

of the form

f = f(x, u, h, ux, hx), g = g(x, u, h, ux, hx),

where here and in what follows we omit the bars and the averaging of the dependent variables

is to be understood. That is, we look for functions f and g that satisfy

Λ1(∆1 − f) + Λ2(∆2 − g) = Dtρ+ DxX0, (3.33)

for the four multipliers (3.32) where ∆1 = ut + uux + hx, ∆2 = ht + uhx + hux as before. Note

that adding input terms to the shallow-water equations (3.17) will in general lead to modified
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expressions for X, which is why we use X0 in the CL (3.33). However, the conserved quantity

ρ remains unchanged since the parameterization functions do not depend explicitly on t or

derivatives of the unknown functions with respect to t.

Applying separately the Euler operators EU and EH with respect to U and H of Eq. (3.33),

one obtains the system of determining equations for CL multipliers. Since the multipliers Λ1

and Λ2 are already prescribed, the resulting system

EU (Λ1(∆1 − f) + Λ2(∆2 − g)) = 0, EH(Λ1(∆1 − f) + Λ2(∆2 − g)) = 0,

is now the system of the determining equations for the parameterization functions f and g. The

determining equations can be split with respect to the constants c1, c2, c3, c4 and the uncon-

strained variables which are t, Ut, Ht, Utx, Htx, Uxx and Hxx. Splitting with respect to the

highest derivatives arising yields the elementary equations

fUxUx = fHxUx = fHxHx = gUxUx = gHxUx = gHxHx = 0,

which can be integrated to give the following constrained form for the functions f and g,

f = f1(x, U,H)Ux + f2(x, U,H)Hx + f3(x, U,H),

g = g1(x, U,H)Ux + g2(x, U,H)Hx + g3(x, U,H).

The remaining determining equations can be split to yield the system

f3 = g3 = 0, f1
x = f2

x = 0, g2 = f1,

g1 −Hf2 = 0, f1
H − f2

U = 0, f1
U −Hf2

H − f2 = 0.
(3.34)

System (3.34) can be integrated to give the most general form of the functions f and g admitting

CLs of interest. In particular, one obtains

f = f1Ux + f2Hx,

g = f2HUx + f1Hx.
(3.35)

A particular class of solutions is given by

f1 = (α1 sin
√
bU + α2 cos

√
bU)

(
α3J0(2

√
bH) + α4Y0(2

√
bH)

)
+ α5,

f2 =
1√
H

(α1 cos
√
bU − α2 sin

√
bU)

(
α3J1(2

√
bH) + α4Y1(2

√
bH)

)
.

(3.36)

In this solution, α1, . . . , α5, b = const, b > 0 and Jn and Yn are the Bessel functions of the first

and second kind, respectively.

The form (3.36) for f1 and f2 does not lead to a particularly physical parameterization ansatz.

Physically more relevant forms for f and g can be found upon imposing other restrictions on

these functions, which involves finding another interesting set of solutions of (3.34). An example

of such a construction is the subclass of parameterization schemes of the form (3.35) which in

addition to (3.34) satisfies the equation f1
U = 0. In this case, the functions f1 and f2 in (3.35)

are given by

f1 = β1 lnH + β2, f2 =
β1U + β3

H
,

where β1, β2, β3 are arbitrary constants.
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Conservative momentum dissipation schemes. As discussed in Remark 3.1, apart from

the problem of finding conservative parameterization schemes another question of physical im-

portance is to construct input terms that preserve some of the geometric structure of the initial

system.

We illustrate this idea by constructing the most general dissipation term of the form

ut + uux + hx = f(x, h, hx, ux, uxx), ht + uhx + hux = 0,

for the shallow-water equations that preserves the multipliers Λ1 = c0 and Λ2 = c1, i.e. we set

f = f(x, h, hx, ux, uxx) and g = 0 in system (3.19). We do not aim at conserving momentum

or energy in this case, because our aim in this example is to construct a dissipation for the

shallow-water equations, which may violate energy and/or momentum conservation.

Using the same procedure as outlined in the previous example, we find that f should be of

the form

f = f1uxx +

(∫
f1
hdux + f2

)
hx +

∫ (∫
f1
xhdux + f2

x

)
dh+ cux + f3, (3.37)

where c ∈ R, f1 = f1(x, h, ux), f2 = f2(x, h) and f3 = f3(x).

From the form of (3.37), one observes that the requirement of conserving both mass and

mass-specific momentum leads to a quasi-linear dissipation scheme, i.e. f is linear in terms of

uxx.

3.3.3 Conservative and invariant parameterization

We now turn to the problem of finding parameterization schemes that are both conservative and

preserve certain symmetries of the original (unaveraged) system of differential equations. We

illustrate this idea with the two examples of the previous section.

The maximal Lie invariance algebra g of the system of one-dimensional shallow-water equa-

tions (3.17) is infinite dimensional and has the following basis elements

t∂t + x∂x, x∂x + u∂u + 2h∂h, t∂x + ∂u,

(2x− 6tu)∂t + (6h− 3u2)t∂x + (u2 + 4h)∂u + 4hu∂h, τ(h, u)∂t + ζ(h, u)∂x,
(3.38)

where the functions τ and ζ run through the set of solutions of the system

ζh − uτh + τu = 0, ζu − uτu + hτh = 0.

The infinite dimensional part of g indicates the existence of a linearization transformation, which

is given through the hodograph transformation, i.e. τ = t and ζ = x are the new dependent

variables and u and h are the new independent variables.

The question of which symmetries one aims to preserve when constructing a (conservative)

parameterization scheme should be answered using physical arguments. For example, processes

that are to be parameterized in the framework of classical mechanics should be represented in

such a manner so as to be invariant with respect to the Galilean group. Choices for subgroups

to be preserved by a parameterization scheme can be also motivated from compatibility with

certain boundary-value problems, see also the related discussion in [4].

As outlined in Section 3.3.3, when constructing parameterization schemes that are required

to be both invariant and conservative one can follow two ways, namely using direct or inverse
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group classification. We now use the examples worked out in the previous section to illustrate

both ways.

Invariant conservative parameterization using direct classification. The direct group

classification method can be illustrated with the first example from the previous section. Es-

sentially, the only freedom one has left with the parameterization (3.35)–(3.36) is to set to zero

some of the constants α1, . . . , α5 and investigate which symmetries the resulting systems have.

This analysis should be done up to equivalence of the class of equations of the form (3.35)–(3.36).

The kernel of the maximal Lie invariance algebra from this class is given by the subalgebra

of g consisting of the basis elements

g∩ = 〈t∂t + x∂x, ∂t, ∂x〉.

It turns out that the only extension of this kernel algebra arises when α1 = α2 = α3 = α4 = 0

and α5 = c 6= 0. However, in this case the transformation ũ = u− c maps the resulting case to

the initial shallow-water equations (3.17), i.e. the parameterization becomes trivial. Stated in

another way, the constant α5 is inessential for the classification problem of the class (3.35)–(3.36),

which has the two inequivalent solutions (α1, α2, α3, α4) 6= (0, 0, 0, 0) and (α1, α2, α3, α4) =

(0, 0, 0, 0). Only the first solution leads to a nontrivial parameterization scheme. However,

as in this case the admitted symmetry algebra is only g∩ and thus does not include Galilean

transformations, one might question the physical relevance of the resulting parameterization

especially in the light of the discussion in the beginning of this section.

A similar analysis could be carried out with the other parameterization schemes of the

form (3.35) that can be constructed by finding only particular solutions of the system (3.34).

As in the previous case, these classes of parameterizations essentially only depend on certain

constants. The classification problem then basically reduces to finding those constants that can

be set to zero by a proper transformation of the equation variables (inessential constants) and

studying the classification problem with respect to the remaining (essential) constants. This is

a straightforward task and is not considered further in this paper.

Invariant conservative parameterization using inverse classification. We now focus

on the problem of finding elements of the class of shallow-water equations (3.19) with f given

by (3.37) and g = 0 that are invariant under a certain subgroup G1 of the maximal Lie invari-

ance (pseudo)group G of the shallow-water equations. That is, we use the inverse symmetry

classification strategy to find models from this class. As a symmetry subgroup G1, we single out

the four-parameter subgroup of G that is generated by the four-dimensional Lie subalgebra g1

of g with the basis elements

∂t, ∂x, t∂x + ∂u, t∂t + (1 + d)x∂x + du∂u + 2dh∂h,

for an arbitrary constant d ∈ R. The reason for choosing this particular subalgebra is that

for physical arguments we require our dissipation scheme to be invariant under the Galilean

group (generated by the first three elements of g1) and to have a scaling symmetry. We only

require invariance under a single scaling instead of the two scalings admitted by the original

shallow-water equations (3.17) as adding dissipation to a hydrodynamical system usually breaks

one scaling symmetry. For example, the shallow-water system with classical linear dissipation,

f = uxx has the above scaling symmetry provided d = −1/2.

As discussed in Section 3.3.3 one can use the replacement theorem to construct parameteri-

zation schemes that are both conservative and invariant. To this end, we determine the second
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order differential invariants of the Lie algebra g1. They can be found by using infinitesimal

techniques through prolongation of g1 to the action on second derivatives of u and h, and then

invoking the infinitesimal invariance criterion [4, 5, 11, 30, 42]. These invariants can also be

found using the moving frame method [9, 9, 10]. In particular, on the space of equation vari-

ables for the class (3.19) with f satisfying (3.37) and g = 0, which is the subspace of the second

jet space J2 with coordinates (t, x, u, h, ut, ux, ht, hx, uxx), there are five elementary invariants

given by

I1 = hu2d
x , I2 = hxu

d−1
x , I3 = uxxu

−(2+d)
x ,

I4 = ud−1
x (ut + uux), I5 = u2d−1

x (ht + uhx).
(3.39)

The invariant representation of system (3.17) is therefore

I4 + I2 = ud−1
x ∆1, I5 + I1 = u2d−1

x ∆2

from which it follows that the multipliers Γ1
1, Γ2

1, Γ1
2 and Γ2

2 in system (3.9) are Γ1
1 = ud−1

x ,

Γ2
1 = 0, Γ1

2 = 0 and Γ2
2 = u2d−1

x .

The system of shallow-water equations with the dissipation scheme (3.37) is invariant under

the group generated by the elements of g1 provided that

Γ1
1f = f̃(I1, I2, I3) (3.40)

holds for some function f̃ that can depend at most on the invariants I1, I2 and I3 since none of

the functions f1, f2 and f3 in (3.37) depends on ut or ht.

We now determine some dissipation schemes that fulfill the above requirement. For the sake

of simplicity, we assume that f2 = f3 = 0, since we are mainly interested in the second-order

term proportional to uxx and thus in finding functions f1 that lead to invariant and conservative

diffusion schemes. As none of the invariants I1, I2 and I3 depends on x we have that f1
x = 0.

The function f̃ should depend linearly on I3 to match with uxx in f . Comparing the coefficients

of uxx we find that

f1 = u−(1+2d)
x α(I1).

Note that α cannot depend on I2, since f1 does not depend on hx. The remaining condition

that has to hold is that

hx

∫
f1
hdux = u1−d

x β(I1, I2).

The function β now cannot depend on I3 as there is no uxx term in the above left-hand side.

Since the left-hand side is linear in hx, we find that β = I2γ(I1) and thus get∫
αI1u

−1
x dux = γ(I1).

which imposes a relation between the functions α and γ. This relation is particularly straight-

forward to evaluate for polynomial functions α. To give an example, let us set α = 2cdI2
1 , for

c ∈ R. This leads to the shallow-water equations with dissipation in the form

ut + uux + hx = Dx

(
ch2(ux)2d

)
, ht + uhx + hux = 0.

The usual linear dissipation f = νuxx, ν ∈ R, falls into this class when putting d = −1/2

and using α(I1) = ν.
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3.4 Conclusion

In this paper we have studied the problem of finding physical parameterization schemes that lead

to closed systems of averaged differential equations which possess nontrivial local conservation

laws. A main motivation for our work is that by its formulation, one cannot expected to find an

exact solution to the parameterization problem. The determination of the entire subgrid-scale

structure of a real-world process when one has at their disposal only the grid-scale information

is not feasible for nontrivial physical problems. Hence, any auxiliary information that can be

used to limit the possible form of a parameterization scheme by imposing some physically and

geometrically relevant structural constraints is highly useful. The preservation of symmetries

and conservation laws can serve as such relevant constraints since these two properties are closely

linked with the physics encoded in a system of differential equations.

A systematic toolbox of methods that allows one to systematically find parameterization

schemes with symmetry properties using group classification techniques was formulated in [6, 26].

As far as we know, this paper is the first to use the analog toolbox for finding parameterization

schemes preserving conservation laws.

The results of this paper illustrate that the requirement of preserving a particular set of con-

servation laws when constructing physical parameterization schemes can lead to rather specific

forms for these schemes. This is in striking contrast to the case of invariant parameteriza-

tion schemes, since here there are in general an infinite number of possibilities to construct a

subgrid-scale closure possessing a prescribed maximal Lie invariance group. Moreover, as to be

expected, the more conservation laws one aims to conserve when constructing a subgrid-scale

closure or any other additional model for a system of differential equations, the less freedom

one has to adjust the closure by including other desirable properties. Thus, the requirement

of preserving certain conservation laws (and symmetries) can lead to rather specific parameter-

ization ansatzes which in consequence could potentially simplify the construction and testing

procedures for subgrid-scale closure models.

In the present paper, the primary focus of the presentation was to give a careful exposition of

the different ideologies for finding conservative closure schemes. The system of one-dimensional

shallow-water equations served as a proof-of-the-concept example but did not reveal new physical

insights. More realistic examples of conservative parameterization schemes for the governing

equations of hydro-thermodynamics will be presented elsewhere.
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Invariant discretization schemes are derived for the one- and two-dimensional shallow-water

equations with periodic boundary conditions. While originally designed for constructing invari-

ant finite difference schemes, we extend the usage of difference invariants to allow constructing

of invariant finite volume methods as well. It is found that the classical invariant schemes con-

verge to the Lagrangian formulation of the shallow-water equations. These schemes require to

redistribute the grid points according to the physical fluid velocity, i.e. the mesh cannot remain

fixed in the course of the numerical integration. Invariant Eulerian discretization schemes are

proposed for the shallow-water equations in computational coordinates. Instead of using the

fluid velocity as the grid velocity, an invariant moving mesh generator is invoked in order to de-

termine the location of the grid points at the subsequent time level. The numerical conservation

of energy, mass and momentum is evaluated for both the invariant and non-invariant schemes.

4.1 Introduction

Discretization schemes that preserve characteristic properties of systems of differential equations

received an increasing attention over the past years and led to the development of the field of ge-

ometric numerical integration. The principal motivation for this approach is that controlling the

local discretization error, as is done in most of the classical numerical methods, can fail to cap-

ture essential qualitative features of the underlying problem, which might be equally important

in order to obtain reasonable integration results. Such features can include, but are not neces-

sarily exhausted by, conservation laws, point symmetries, a Hamiltonian structure, conservation
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of phase-space volume and asymptotic characteristics. Various geometric numerical integration

schemes have been developed that capture these properties in the course of discretization, such

as conservation laws and the Hamiltonian structure [4, 33, 43], Lie symmetries [2, 6, 9, 10, 12, 52]

and phase-space volume [26, 47].

In the present paper, we aim to concentrate on the problem of deriving discretization schemes

with symmetry properties by developing appropriate finite difference and finite volume schemes

for the shallow-water equations. In particular, we are concerned with the problem of finding

discretization schemes that are invariant under the maximal Lie invariance group admitted by

the shallow-water equations with (double) periodic boundary conditions. Choosing the shallow-

water equations for such an investigation can be motivated as they constitute a prominent,

simple, yet fully-nonlinear model of fluid mechanics exhibiting various features of the origi-

nal set of governing equations of hydrodynamics, such as the simultaneous occurrence of both

fast (divergent) and slow (vortical) waves, the existence of conservation laws, symmetries and

a Hamiltonian form. Moreover, the shallow-water equations always served as an important

intermediate model to test new numerical schemes [2, 28, 32, 43–45].

Similarly as conservation laws, symmetries have important implications on the solutions of

differential equations. When simulating the dynamics of a classical mechanical system in a con-

stantly moving coordinate system, it should be a clear desire that the numerical model to be used

for that problem is Galilean invariant as otherwise physical laws can be violated. It is also well

known [8, 10, 11] that the shape of a solution of a system of differential equation near a blow-up

point can tend to a group-invariant solution of this system. Often group-invariant solutions

well describe so-called intermediate asymptotic behavior of the solutions after a sufficiently long

period of evolution. For the simulation of invariant solutions, symmetry-preserving discretiza-

tion schemes can give better numerical results than standard schemes that do not preserve the

geometry of differential equations.

The design of invariant discretization schemes for evolution equations in general requires the

explicit treatment of meshes that are not time-space orthogonal, i.e. time-adaptive grids. Such

grids pose several challenges from the numerical point of view that are up to now not well

investigated in the field of invariant numerical schemes. On the other hand, meshes that adapt

according to the development of the numerical solution are an extensively investigated subject

in the field of numerical mathematics, see e.g. [11, 49]. The question not explicitly answered so

far is whether the problem of finding discretization schemes with symmetry properties can be

embedded into the study of adaptive numerical schemes in the multidimensional case. In the

present paper, we discuss a possible answer to that problem, exemplified with the shallow-water

equations.

The outline of the paper is as follows: Properties of the shallow-water equations are dis-

cussed in Section 4.2. Section 5.2 is devoted to a review of common techniques that allows one

to construct invariant finite difference schemes. In Section 4.4 we derive invariant discretiza-

tion schemes for the one-dimensional shallow-water equations. This is done both by using the

Lagrangian description of the shallow-water equations and by setting up an invariant grid gen-

erator for Eulerian schemes in computational coordinates. In Section 4.5 we discuss strategies

for the design of invariant numerical models in higher dimensions and illustrate them with the

two-dimensional shallow-water equations. Again, both Lagrangian schemes in the physical co-

ordinates and Eulerian schemes in computational coordinates with an invariant grid generator

are introduced. For the first scheme we use an invariant finite volume discretization, while the
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second scheme is based on finite differences. A summary and concluding remarks can be found

in the final Section 4.6.

4.2 Symmetries of the shallow-water equations

The nondimensionalized system of shallow-water equations in Cartesian coordinates is

ut + uux + vuy + hx = 0,

vt + uvx + vvy + hy = 0,

ht + uhx + vhy + h(ux + vy) = 0,

(4.1)

where v = (u, v) is the fluid velocity in the plane and h is the height of the fluid column over

a fixed reference level within the fluid. The bottom topography is assumed to be flat here for

simplicity. Treating non-flat topographies would lead to the inclusion of additional source terms

in system (4.1). The shallow-water equations are derived from the Euler equations for an ideal

fluid under the assumptions of validity of the hydro-static approximation, constance of the fluid

density and that vertical motions are of much smaller scale than horizontal motions [41].

The shallow-water equations (4.1) can be represented in Hamiltonian form [35] upon using

{F ,G} =

∫ (
qk · δF

δv
× δG
δv
− δF
δv
· ∇δG

δh
+
δG
δv
· ∇δF

δh

)
dA

as Poisson bracket, where F and G are functionals of v and h, q = ζ/h = (vx − uy)/h is the

potential vorticity, k denotes the vertical unit vector, dA = dxdy is the area element and the

integration extends over the domain of the entire fluid. The Hamiltonian for the shallow-water

equations is given by the total energy

H =
1

2

∫ (
hv2 + h2

)
dA.

Additional conserved quantities are associated with the above non-canonical Poisson bracket.

For any function f of the potential vorticity q, the integral

Cf =

∫
hf(q) dA

is conserved on solutions of the shallow-water equations. This class of conserved quantities

contains the mass M = C1, the circulation Z = Cq and the potential enstrophy E = Cq2/2. Two

more conserved quantities are the momenta in the x- and y-directions,

Px =

∫
hudA, Py =

∫
hv dA.

The maximal Lie invariance algebra g2 of the two-dimensional shallow-water equations (4.1)

is nine-dimensional, see e.g. [19, 40]. A basis of this algebra consists of the vector fields

∂t, ∂x, ∂y, t∂x + ∂u, t∂y + ∂v,

t∂t + x∂x + y∂y, x∂x + y∂y + u∂u + v∂v + 2h∂h,

− y∂x + x∂y − v∂u + u∂v, t2∂t + tx∂x + ty∂y + (x− tu)∂u + (y − tv)∂v − 2th∂h.
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These vector fields generate one-parametric Lie symmetry groups, which correspond to: (i) time-

translations, (ii)–(iii) space translations, (iv)–(v) Galilean transformations, (vi)–(vii) scalings,

(viii) rotations and (ix) inversions in t.

In what follows, we will also use the one-dimensional version of system (4.1), in which case

we set v = 0 and drop the dependence of u and h on y. The resulting system reads

ut + uux + hx = 0, ht + uhx + hux = 0, (4.2)

and preserves the one-dimensional versions of total energy, mass and momentum,

H =
1

2

∫ (
hu2 + h2

)
dx, M =

∫
hdx, P =

∫
hudx.

It is well known that the maximal Lie invariance algebra g1 of system (4.2) is infinite dimen-

sional and spanned by the vector fields

t∂t + x∂x, x∂x + u∂u + 2h∂h, t∂x + ∂u,

(2x− 6tu)∂t + (6h− 3u2)t∂x + (u2 + 4h)∂u + 4hu∂h, f(h, u)∂t + g(h, u)∂x,

where the functions f and g run through the set of solutions of the system

gh − ufh + fu = 0, gu − ufu + hfh = 0. (4.3)

The existence of the latter generator is owed to the possibility of linearization of system (4.2) to

system (4.3) by means of the hodograph transformation in which u and h are assumed as the new

independent variables and f = t and g = x are the new unknown functions. The linearization

by the hodograph transformation permuting the pairs of dependent and independent variables

is a general property of homogeneous first-order systems of partial differential equations in two

independent variables and two unknown functions that are linear in derivatives with coefficients

depending only on the unknown functions. See also [30, p. 154] for the symmetry interpretation

of the linearization of the one-dimensional shallow-water equations. Note that system (4.3) is

reduced to a single Tricomi equation. More precisely, excluding g by cross differentiation, we ob-

tain the equation fuu = hfhh+2fh. The substitution φ = hf then leads to the Tricomi equation

φuu = hφhh. Another way for the reduction is to rewrite the equation fuu = hfhh + 2fh in the

form h3fuu = h2(h2fh)h and to carry out the transformation z = 1/h which yields the similar

Tricomi equation fuu = z3fzz. Symmetry analysis of such equations was carried out in [7, 9].

4.3 Construction of invariant numerical discretization schemes

The problem of constructing discretization schemes that preserve symmetries of the correspond-

ing differential equations was first systematically addressed by Dorodnitsyn and his collabora-

tors [2, 6–8, 8, 21]. As there are an infinite number of possibilities to approximate a differential

equation by means of finite differences, one might single out those among all possible difference

schemes which inherit symmetries of the original differential equations. Dorodnitsyn’s approach

can be subsumed in the following way: First determine the maximal Lie invariance algebra of the

model under consideration. For many classical hydrodynamical problems, this task is already

completed [30, 31]. Hereafter, a discretization stencil has to be chosen. The generators of Lie

symmetries are then prolonged to all points of the stencil. From these prolonged generators,

the invariants of the extended group action on the stencil are determined. The final step then
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is to assemble the obtained invariants together to a difference approximation of the original

differential equation. By difference approximation it is meant that in the continuous limit, the

invariant finite difference scheme reduces to the original differential equation. In much the same

way, also the equations governing the positions of the grid points are composed in an invariant

way. In the continuous limits, these grid equations reduce to some trivial identities.

Altogether, this method is a straightforward application of inverse group classification, using

transformation groups acting on functions defined on a discrete set of points rather than on

a continuous space. In the usual inverse group classification one starts with a particular Lie

group G and aims at finding those systems of differential equations that admit G as a symmetry

group. In practice those systems are found by computing differential invariants (i.e. invariants

that involve derivatives of dependent variables) of G. Any function of differential invariants is a

differential invariant of G and, subject to some regularity condition, any system of differential

equations can be expressed in terms of differential invariants of its maximal Lie invariance

group [38]. The Dorodnitsyn method works by selecting the maximal Lie symmetry group of a

system of differential equations as the initial Lie group G. By extending the action of G to the

points of the discretization stencil one is able to compute invariants of the extended action, i.e.

difference invariants of G. As in the continuous case, any function of difference invariants is a

difference invariant. Constructing a difference approximation of a system of differential equations

using difference invariants therefore leads to a symmetry-preserving discretization scheme.

A common feature of difference schemes constructed by the above method is that grid points

might not remain fixed in the course of the numerical integration. Precise criteria for a grid to be

uniform, orthogonal and possessing flat time layers are formulated as conditions on coefficients

of infinitesimal symmetry generators and are broken, e.g. for Galilean boosts and inversions [6].

This means that for such symmetries it is not possible to use isotropic or static grids. Hence,

the problem of establishing good conditions governing the position of grid points both spatially

and temporally becomes vital.

Up to now the reviewed technique has been applied to physically rather simple models,

usually only involving time and one space dimension [2, 8, 8, 21, 52]. It is understandable that

the multidimensional case is even more delicate, as there is an increasing number of possibilities

for assembling the difference invariants to finite difference schemes. In addition, grids can evolve

differently in distinct spatial dimensions, which might cause severe numerical problems if not

treated appropriately, such as tangling meshes. In the present paper, we aim to discuss ways of

overcoming the latter problem.

An alternate approach of constructing finite difference schemes with symmetry properties

uses moving frames in the Fels and Olver formulation [9]. In contrast to the Dorodnitsyn

approach, where finite difference schemes are constructed from the outset, in the moving frame

method the concept of invariantization of existing schemes plays the key role. This technique

can be summed up as follows [12, 22]: Determine the Lie symmetry group of the given system of

differential equations. This part is standard and usually involves exponentiation of elements of

the maximal Lie invariance algebra of the system. Subsequently, a moving frame associated with

the Lie symmetry group is constructed. Roughly speaking, the moving frame is an equivariant

function that returns the unique group element mapping a given point to an element of a chosen

submanifold (the cross-section), which intersects each group orbit once and transversally. Since

the conditions for a submanifold to be a cross-section to the group orbits are quite general, there

is a freedom in choosing it and hence in constructing the associated moving frame. Once the
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moving frame is obtained, it can be used to map an arbitrary function to an invariant function.

This is a general property of any moving frame which allows determining usual invariants and

differential invariants of a group action [18, 36]. In the same way, it is possible to take a given

difference scheme (considered as a function of grid points) for a system of differential equations

and apply the moving frame to it. By this procedure, the given scheme is transformed to a

new scheme that will be invariant under the same Lie group as has been used to determine the

moving frame.

The main benefit of this method is the possibility of using existing finite difference schemes as

a starting point in the development of invariant schemes. Consequently, such invariant schemes

could eventually be implemented into existing numerical models with limited effort. At the same

time, the freedom in constructing a moving frame can make it somewhat difficult to predict the

precise form of invariantized expressions and, therefore, to arrive at a scheme that is not only

invariant but also has some desirable numerical properties, as e.g. discussed in [9]. Although

difference invariants can be assembled to invariant discretization schemes in a variety of ways,

the form of the particular difference invariants usually imposes enough hints in order to find

reasonable finite difference approximations of a given system of differential equations. As with

the Dorodnitsyn method described above, invariantization of existing numerical schemes may

also lead to grids that evolve during numerical integration.

Another method for the construction of schemes with certain invariance properties was pro-

posed in [7] for equations describing blow-up problems, see also [8, 10, 11]. The main idea in this

approach is to use adaptive moving meshes at once because they are well suited for problems that

develop shocks after a finite integration time. As a moving mesh complicates the discretization

of differential equations in the physical space, the system to be discretized is first transformed

into so-called computational coordinates that remain orthogonal and do not evolve during the

numerical integration. The physical system is then discretized in the computational coordinates.

It is advocated in this approach that for equations exhibiting blow-ups and for the description

of the solution near the singularity, scale invariance plays an exceptional role. Therefore, scale

invariance is required to be preserved in the course of discretization. The evolution of the mesh

is formulated as an auxiliary system of differential equations, the so-called moving mesh partial

differential equations. The auxiliary system is then selected in such a manner so as to preserve

the scale invariance of the original physical model. A straightforward extension to the above

approach is to require the mesh equations to not only possess the scale symmetries but also the

other symmetries that the system of physical differential equations admits. The following prop-

erty is basic for this extension: The prolongation of any point symmetry of the initial system L of

differential equations to the computational coordinates by means of the identical transformation

is a point symmetry of the counterpart of L in terms of the computational coordinates.

In the present paper, we will introduce yet one further approach for the construction of in-

variant discretization schemes which will be essential for multidimensional systems of differential

equations. It rests on first expressing the system of differential equations under consideration

in terms of computational coordinates and then extending the symmetry transformations of the

original system to the system written in computational variables. Once it is understood how

the system behaves under the extended symmetry transformations, one constructs a finite dif-

ference scheme that is transformed by the discretized version of the extended transformations in

a similar way. In addition, the extra differential equations that control the location of the grid

points are discretized in an invariant way, e.g. by using the finite difference invariants.
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The reason why it is necessary to develop one more technique for the construction of invariant

discretization schemes is twofold. Firstly, it is rather difficult to set up a proper invariant

scheme for systems of differential equation using difference invariants as basic building blocks.

For multidimensional moving meshes an additional problem is to find proper finite difference

analogs of derivatives. Secondly, it can be (and, in general, will be) desirable to include additional

qualitative properties of differential equations in the construction of invariant discretization

schemes. Within the invariantization technique it might be tedious to ensure the numerical

preservation of certain conservation laws, even if the initial system includes equations represented

as conservation laws, which is precisely the case for the shallow-water equations written in

momentum form. A similar remark holds for the Dorodnitsyn approach. An exception is given

for equations derived from a variational principle for which, in view of the discrete version of

the Noether identity, conservation laws and symmetries can be simultaneously preserved in the

course of a proper invariant discretization of the associated Lagrangian [8]. There is still no

algorithm using only difference invariants (or the invariantization map) that guarantees that the

resulting invariant scheme will admits certain conservation laws. On the other hand, with the

new approach to be introduced in the present paper, it is possible to construct, in a quite direct

way, schemes that are both invariant and preserve some of the conservation laws possessed by

the initial system.

4.4 Invariant numerical models for the one-dimensional

shallow-water equations

In Section 4.2 we discussed the Lie symmetries of the shallow-water equations without any

relation to boundary value problems. However, when setting up a numerical model for a specific

set of problems, the explicit treatment of certain boundary conditions is usually inevitable. As a

rule, the Lie symmetries possessed by a boundary value problem form only a subgroup (often even

trivial one) of the maximal Lie symmetry group admitted by the involved system of differential

equations [4]. Stated in another way, a specific boundary value problem usually admits only

a small subset of the symmetries of the associated system of differential equations considered

without boundary and initial conditions. This is in particular the case for various differential

equations arising in hydrodynamics, which admit wide Lie invariance groups in the absence of

boundary and initial conditions [1, 4–6, 30, 31]. This is also the case for the shallow-water

equations as shown in the present section. Therefore, it is necessary to find a way to incorporate

the boundary and initial conditions considered into the numerical model to be developed.

4.4.1 Selection of symmetries using boundary conditions

In order to design invariant numerical schemes for a system of differential equations, two principal

strategies can be adopted.

In the first approach, which is applied in most of the previous works on invariant dis-

cretization [6], numerical schemes preserving the entire maximal Lie invariance groups of the

corresponding systems are developed and then implemented for the specific physical config-

urations of interest. The drawback of this approach is that the practical implementation of

a numerical scheme always requires an explicit treatment of a boundary value problem. As

was said above, for the boundary conditions arising in hydrodynamics most often (e.g. peri-

odic, reflective or absorbing), the maximal Lie invariance groups of systems without boundary
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conditions are usually much wider than those of particular boundary value problems. Using

the first approach may therefore lead to the overly restrictive requirement that all the sym-

metries of the considered system of differential equation are equally important in the course

of invariant discretization. For a particular boundary value problem, however, this may not

be the case, as some of the symmetries of the differential equation might not be admitted

at all.

This is why we adopt the second approach here, which only requires the preservation of

symmetries that are compatible with the class of specific boundary value problems under con-

sideration. The apparent drawback of this approach is that, if one aims to test different kinds

of boundary conditions, it can be necessary to design a new scheme for each configuration, as

different symmetry groups may arise under varying specific settings. On the other hand, for

a model to be used for a particular purpose (e.g. a weather or climate prediction model) the

boundary conditions are generally fixed at the stage of model development and therefore do not

change subsequently. Another advantage of the second approach is of more physical nature.

The restriction imposed on symmetries in that they map a given boundary value problem to

itself is too restrictive even from the physical perspective. When transforming a given refer-

ence frame to another reference frame, the boundary value problems of the reference frames

involved are also mapped to each other. Therefore, it is not natural to require appropriate

symmetries of a system of differential equations to preserve a particular boundary value prob-

lem but rather to only impose that these symmetries map boundary value problems from a

class of such problems (e.g. periodic domains of any size with varying initial time and initial

conditions) to each other. Such transformations are known as equivalence transformations and

when deriving symmetry-preserving discretization schemes, we require a subgroup of the max-

imal Lie invariance group of the original system of differential equation to be compatible with

the structure of a predefined class of boundary value problems, i.e. elements of the subgroup

should act as equivalence transformations on the boundary conditions rather than as symmetry

transformations.

The relaxed condition of requiring the finite difference schemes to be invariant only under the

transformations admitted by a class of boundary value problems thus provides a natural selection

criterion for subgroups of a maximal Lie invariance group to be preserved numerically. In view

of the particular nature of the infinite-dimensional maximal Lie invariance algebra g1 of the

one-dimensional shallow-water equations (or, more generally, systems of differential equations

arising in hydrodynamics), it might be a cumbersome or even useless task to attempt preserving

all these symmetries in the respective discrete models.

Among the most natural boundary conditions for the one-dimensional shallow-water equa-

tions in the setting of geophysical fluid dynamics are periodic ones, which we aim to study here.

These boundary conditions are advantageous as they are not as restrictive as, e.g., Dirichlet

boundary conditions from the pure symmetry point of view and generally lead to the selec-

tion of symmetries that have a clear physical interpretation. The subalgebra s1 of g1 which is

compatible with periodic boundary conditions is spanned by the vector fields

∂t, ∂x, t∂x + ∂u, t∂t + x∂x, x∂x + u∂u + 2h∂h. (4.4)

Even if we would neglect initial conditions, only elements from the narrower subalgebra 〈∂t, ∂x,
t∂x + ∂u, t∂t − u∂u − 2h∂h〉 generate one-parametric symmetry groups of such a boundary value

problem as scalings with respect to x are not admitted once a domain (periodicity) length is fixed.

However, the inclusion of scaling symmetries in the subsequent consideration is justified as they
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are equivalence transformations of the chosen class of boundary value problems. In other words,

upon preserving the subalgebra s1 we are still able to test different domain lengths. In this sense,

the preservation of scaling transformations plays an important role for the class of boundary value

problems for the one-dimensional shallow-water equations with periodic boundary conditions and

any domain size even if scalings are no proper symmetry transformations for a specific numerical

integration.

4.4.2 Classical invariant schemes and beyond

We begin our study of invariant numerical schemes for the shallow-water equations using the

classical construction proposed by Dorodnitsyn. Within this framework, we have to prolong

the selected subalgebra s1 to the discretization stencils which we aim to use. These stencils are

depicted in Fig. 4.1. As the symmetry group associated with s1 does not violate the criterion

for using flat time layers, see [6] for more details, all points in the spatial domain are defined at

the same time. However, preserving Galilean invariance in a numerical scheme it is impossible

to use a fixed grid, i.e. x̂i 6= xi. Here and in what follows variables with hat and without

hat denote values on the grid at the time levels t + τ and t, respectively, and τ is the time

step. The possibility of evolving grids in general also leads to nonhomogeneous spacings in

the course of the integration, i.e. x̂i+1 − x̂i 6= x̂i − x̂i−1 even if the initial grid {xi} is equally

spaced.

Figure 4.1: Stencils for invariant schemes of the one-dimensional shallow-water equations. An

explicit (Euler forward) and an implicit (Euler backward) scheme is defined using the points

indicated by filled and dashed circles, respectively.

Prolonging the vector fields (4.4) to the points indicated in Fig. 4.1 gives

∂t, ∂xi + ∂xi+1 + ∂xi−1 + ∂x̂i + ∂x̂i+1
+ ∂x̂i−1

,

t(∂xi + ∂xi+1 + ∂xi−1) + (t+ τ)(∂x̂i + ∂x̂i+1
+ ∂x̂i−1

) +

∂ui + ∂ui+1 + ∂ui−1 + ∂ûi + ∂ûi+1
+ ∂ûi−1

,

t∂t + τ∂τ + xi∂xi + xi+1∂xi+1 + xi−1∂xi−1 + x̂i∂x̂i + x̂i+1∂x̂i+1
+ x̂i−1∂x̂i−1

,

xi∂xi + xi+1∂xi+1 + xi−1∂xi−1 + x̂i∂x̂i + x̂i+1∂x̂i+1
+ x̂i−1∂x̂i−1

+

ui∂ui + ui+1∂ui+1 + ui−1∂ui−1 + ûi∂ûi + ûi+1∂ûi+1
+ ûi−1∂ûi−1

+

2hi∂hi + 2hi+1∂hi+1
+ 2hi−1∂hi−1

+ 2ĥi∂ĥi + 2ĥi+1∂ĥi+1
+ 2ĥi−1∂ĥi−1

.

(4.5)
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To construct an explicit (Euler forward) numerical scheme, we have to restrict ourselves

in (4.5) to the values which are defined at the filled circles depicted in Fig. 4.1. A convenient

complete set of functionally independent difference invariants then is

I0 =
xi+1 − xi
xi − xi−1

, I1 =
ẋi − ui

xi+1 − xi−1
τ, I2 =

ûi − ui
xi+1 − xi−1

τ,

I3 =
ui+1 − ui−1

xi+1 − xi−1
τ, I4 =

ui+1 − ui
xi+1 − xi

τ, I5 =
hi−1

(xi+1 − xi−1)2
τ2,

I6 =
hi

(xi+1 − xi−1)2
τ2, I7 =

hi+1

(xi+1 − xi−1)2
τ2, I8 =

ĥi
(xi+1 − xi−1)2

τ2,

(4.6)

where ẋi = (x̂i − xi)/τ by definition is the mesh velocity. These invariants are found from

integrating the system of first-order quasilinear partial differential equations vj(I) = 0, where

vj , j = 1, . . . , 5, are the prolonged vector fields presented in (4.5). Such a system for invariants

admits precisely mi = ms − r functionally independent solutions, where ms is the number of

stencil variables and r is the rank of involved vector fields. For the explicit scheme, we have

ms = 14, r = 5 and hence mi = 9.

Using the difference invariants of the set (4.6) we can approximate (4.2) via

I1 = 0, I2 + I7 − I5 = 0, I8 − I6 + I6I3 = 0,

or, explicitly,

ẋi = ui,
ûi − ui
τ

+
hi+1 − hi−1

xi+1 − xi−1
= 0,

ĥi − hi
τ

+ hi
ui+1 − ui−1

xi+1 − xi−1
= 0. (4.7)

In the continuous limit the above scheme leads to the following system of differential equations

dx

dt
= u,

du

dt
+
∂h

∂x
= 0,

dh

dt
+ h

∂u

∂x
= 0, (4.8)

which is (4.2) in Lagrangian variables.

As the Euler forward scheme is conditionally stable, it is beneficial to construct an implicit

invariant numerical scheme. A simple implicit scheme is the Euler backward scheme and it can

be constructed in a similar way as the invariant Euler forward scheme. However, we prefer to

at once construct a trapezoidal scheme, which has in general a greater accuracy. To accomplish

this we additionally need the difference invariants

I9 =
ẋi − ûi

xi+1 − xi−1
τ, I10 =

ûi+1 − ûi−1

x̂i+1 − x̂i−1
τ, I11 =

ĥi+1 − ĥi−1

(xi+1 − xi−1)(x̂i+1 − x̂i−1)
τ2. (4.9)

Note that {I0, . . . , I11} is not a complete set of functionally independent invariants for the

transformation group generated by the vector fields (4.5) on the trapezoidal stencil as the total

number of variables on this stencil equals 20 and hence a functional basis of related invariants

consists of 15 invariants. By combining the invariants I1–I3 and I5–I11 we construct

I1 + I9 = 0, I2 +
1

2
(I7 − I5 + I11) = 0, I8 − I6 +

1

2
(I6I3 + I8I10) = 0,

which boils down to the form

ẋi =
1

2
(ui + ûi),

ûi − ui
τ

+
1

2

(
hi+1 − hi−1

xi+1 − xi−1
+
ĥi+1 − ĥi−1

x̂i+1 − x̂i−1

)
= 0,

ĥi − hi
τ

+
1

2

(
hi
ui+1 − ui−1

xi+1 − xi−1
+ ĥi

ûi+1 − ûi−1

x̂i+1 − x̂i−1

)
= 0.

(4.10)
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This scheme also converges to (4.8).

The problem with the above schemes in particular and with the difference invariants ap-

proach to the construction of invariant schemes in general is that it is hard to control properties

other than symmetries which the resulting discretizations admit. It can be checked by direct

computation that the above schemes violate even the mass conservation law (conservation of

momentum and energy is violated as well). This violation of fundamental conservation laws is a

direct consequence of the construction method of the invariant finite difference schemes, which

only takes into account local information on ui and hi (i.e. the difference invariants) but provides

no guideline ensuring the preservation of global feature by the numerical solution.

In the present case, this problem can be partially circumvented by discretizing the shallow-

water equations not in the form (4.8) but rather in the momentum form

Equ = (uh)t +

(
hu2 +

1

2
h2

)
x

= 0, Eqh = ht + (uh)x = 0. (4.11)

An invariant finite difference approximation of this system using an Euler time step is

ẋi = ui, ûiĥi
x̂i+1 − x̂i−1

xi+1 − xi−1
− uihi +

τ

2

h2
i+1 − h2

i−1

xi+1 − xi−1
= 0, ĥi

x̂i+1 − x̂i−1

xi+1 − xi−1
− hi = 0,

while the invariant trapezoidal scheme is

ẋi =
1

2
(ui + ûi), ûiĥi

x̂i+1 − x̂i−1

xi+1 − xi−1
− uihi +

τ

4

(
h2
i+1 − h2

i−1

xi+1 − xi−1
+
ĥ2
i+1 − ĥ2

i−1

x̂i+1 − x̂i−1

)
= 0,

ĥi
x̂i+1 − x̂i−1

xi+1 − xi−1
− hi = 0.

(4.12)

The schemes constructed this way numerically preserve the mass conservation law. The explicit

scheme in addition preserves the momentum, while the implicit scheme (4.12) does not preserve

momentum exactly, as x̂i+1 − x̂i−1 6= xi+1 − xi−1 in general. This condition, however, would be

required to yield exact conservation of momentum but as the change in the spacings xi+1−xi−1

is not abrupt, the violation of momentum conservation of the scheme (4.12) is rather small,

see the result of a numerical integration using (4.12) below. None of these schemes respects

conservation of energy.

In the continuous limits both the explicit and implicit discretizations give

dx

dt
= u,

d(uh)

dt
+

1

2

∂h2

∂x
= 0,

dh

dt
+ h

∂u

∂x
= 0,

which is (4.11) expressed in Lagrangian variables. Similar as the schemes (4.7) and (4.10) the

above two invariant schemes for the momentum form of the shallow-water equations could be

expressed in terms of difference invariants. As these expressions are considerably more involved

as the analog expressions for (4.7) and (4.10), we do not present these difference invariants forms

here. The reason for the difference invariants expressions being more complicated in the present

case can be traced back to the result of the Galilean transformation t̃ = t, x̃ = x+ε1t, ũ = u+ε1,

when applied to (4.11), which yields

Ẽqh = Eqh, Ẽqu = Equ + ε1Eqh. (4.13)

The transformation of the momentum equation thus yields a linear combination of the momen-

tum equation with the continuity equation. This implies that the momentum equation itself
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cannot be expressed in terms of differential invariants but only in combination with the conti-

nuity equation. It is thus not natural to approximate the momentum equation using difference

invariants. At the same time, checking that the proposed conservative schemes are indeed invari-

ant can be shown directly by acting with the prolonged vector fields (4.5) on them and verifying

that the results of these operations yield zero on the solutions of the numerical scheme.

The result of a numerical integration taking harmonic initial conditions both for u and h

using the scheme (4.12) is depicted in Fig. 4.2. As the evolution of the mesh points is directly

coupled to the (initially harmonic) physical velocity, the single mesh points quasi-oscillate around

their initial positions (Fig. 4.2a). No special ability of the mesh to follow the developing shock

(Fig. 4.2b, showing the numerical solution of h at time t = 3) is visible, which is one of the major

disadvantages of the scheme (4.12). The scheme conserves mass up to machine precision (10−16)

but it dissipates energy, with the relative change (H(t) − H(0))/H(0) of energy being of the

order 10−5 at the end of the integration. The relative change in momentum in this integration

is of order 10−14 without a positive or negative trend. The values of M, H and P at time t are

evaluated using the formulas

M =
1

2

∑
i

hi(xi+1 − xi−1), H =
1

4

∑
i

(hiu
2
i + h2

i )(xi+1 − xi−1),

P=
1

2

∑
i

hiui(xi+1 − xi−1),

respectively.

Figure 4.2: Numerical integration of the one-dimensional shallow-water equations (4.2) using

the scheme (4.10) with τ = 0.001 and N = 51 grid points on the domain [0, 2π] over the time

interval [0, 3]. The initial conditions are u = A sinx, and h = h0 +A sin(x+ ϕ0), with A = 0.4,

ϕ0 = π/6 and h0 = 10. (a) Evolution of the discretization grid. (b) Numerical solution for h at

t = 3.
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4.4.3 Invariant discretization on equidistributing meshes

So far, we were mainly concerned with assembling difference invariants in a proper way, so

as to guarantee the invariance of the resulting finite difference schemes. That is, the invari-

ance condition was the relevant starting point in the design of the above schemes. The main

problem with this approach is the lack of an explicit error control for the proposed numeri-

cal models. When setting up a numerical scheme, it is of primary interest to ensure not only

the discrete preservation of qualitative features of differential equations. Also classical issues

from numerical analysis have to be addressed. In the light of adaptive moving meshes, these

issues mainly concern the prevention of abruptly changing grids, mesh racing and mesh tan-

gling, which can significantly degrade the numerical solution and ultimately lead to convergence

failure.

When dealing with finite difference schemes on adaptive moving meshes, one usually re-

gards the mesh movement as a time-dependent coordinate transformation from a fixed logical

(computational) domain to the physical domain of the system of differential equations. The

computational coordinates are defined to index the positions of the grid points in the mesh.

As in any regular grid each grid point keeps its position relative to its neighbors in the mesh

even in the presence of adaption, it is convenient to take the (spacial) computational coordinates

as time-independent, Cartesian and orthogonal, with uniform spacing on the unit interval (up

to scaling). In the one-dimensional case considered here, the step of the spacial computational

coordinate ξ equals 1/(N − 1), where N is the number of grid points at a fixed time level. In

order to use computational coordinates, it is necessary to transform the system of differential

equations from the physical space to the index space, see e.g. [8, 11].

The relation of the usage of computational coordinates to invariant numerical schemes will be

illustrated again with the one-dimensional system of shallow-water equations. The central idea

is that any finite difference discretization of the shallow-water equations on a moving mesh in

computational coordinates is invariant under the Lie group generated by the vector fields (4.5).

Indeed, under the transformation t = θ, x = x(θ, ξ) to the computational coordinates (θ, ξ), the

one-dimensional shallow-water equations (4.2) takes the form

ũθ + (ũ− xθ)
ũξ
xξ

+
1

xξ
h̃ξ = 0, h̃θ + (ũ− xθ)

h̃ξ
xξ

+
1

xξ
h̃ũξ = 0, (4.14)

where ũ = u(θ, x(θ, ξ)), h̃ = h(θ, x(θ, ξ)). It is obvious that any usual finite difference discretiza-

tion of (4.14) possesses the symmetry group requested. For example, discretizing using forward

differences in time and central differences in space, from the above system we obtain

ûi − ui
τ

+ (ui − ẋi)
ui+1 − ui−1

xi+1 − xi−1
+
hi+1 − hi−1

xi+1 − xi−1
= 0,

ĥi − hi
τ

+ (ui − ẋi)
hi+1 − hi−1

xi+1 − xi−1
+ hi

ui+1 − ui−1

xi+1 − xi−1
= 0,

where ui = ũ(θ, ξi) = u(t, xi(t)), hi = h̃(θ, ξi) = h(t, xi(t)) and ûi and ĥi denote the same values

at θ+τ . This discretization coincides with the second and the third equation of the system (4.7)

if we assume the grid evolution to be Lagrangian of the form ẋi = ui.
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In much the same way, an invariant implicit discretization (trapezoidal rule) can be obtained

from (4.14), which reads

ûi − ui
τ

+
1

2

(
ui + ûi

2
− ẋi

)(
ui+1 − ui−1

xi+1 − xi−1
+
ûi+1 − ûi−1

x̂i+1 − x̂i−1

)
+

1

2

(
hi+1 − hi−1

xi+1 − xi−1
+
ĥi+1 − ĥi−1

x̂i+1 − x̂i−1

)
= 0,

ĥi − hi
τ

+
1

2

(
ui + ûi

2
− ẋi

)(
hi+1 − hi−1

xi+1 − xi−1
+
ĥi+1 − ĥi−1

x̂i+1 − x̂i−1

)
+

1

2

(
hi
ui+1 − ui−1

xi+1 − xi−1
+ ĥi

ûi+1 − ûi−1

x̂i+1 − x̂i−1

)
= 0.

Again, in the Lagrangian case ẋi = (ui + ûi)/2, this scheme coincides with the scheme (4.10).

None of these two schemes preserves mass and momentum, as they approximate the repre-

sentation (4.14) of the shallow-water equations, where the equations are not in conserved form.

It is possible to discretize the conserved form (4.11) using computational variables as well, which

boils down to

ûiĥi
x̂i+1 − x̂i−1

xi+1 − xi−1
− uihi + τA(uh) +

τ

2
D(h2) = 0, ĥi

x̂i+1 − x̂i−1

xi+1 − xi−1
− hi − τA(h) = 0,

for the explicit Euler scheme (preserving mass and momentum) and to

ûiĥi
x̂i+1 − x̂i−1

xi+1 − xi−1
− uihi +

τ

2
(A(uh) + Â(uh)) +

τ

4
(D(h2) + D̂(h2)) = 0,

ĥi
x̂i+1 − x̂i−1

xi+1 − xi−1
− hi −

τ

2
(A(h) + Â(h)) = 0,

(4.15)

for the implicit trapezoidal discretization. In both schemes we denote

A(z) =
(ui+1 − ẋi+1)zi+1 − (ui−1 − ẋi−1)zi−1

xi+1 − xi−1
, D(z) =

zi+1 − zi−1

xi+1 − xi−1
,

and Â(z) and D̂(z) have the same forms as A(z) and D(z) with all the variables replaced by

the associated variables on the next time step θ+ τ , only keeping the grid velocity the same. In

the continuous limit, these schemes converge to

(xξF
t)θ + (F x − F txθ)ξ = 0,

which is indeed (4.11) in computational variables using F t = (h, hu) and F x = (hu, hu2 + 1
2h

2).

The above observation can be easily extended to other invariant schemes for evolution equa-

tions admitting Galilean transformations as symmetries. Its main benefit is that it allows us

to establish a connection to the theory of discretization on adaptive moving meshes. This may

aid in tackling the problem of finding invariant finite difference schemes which also have good

numerical properties.

In order to complete the invariant schemes in computational coordinates, it is necessary to

determine the mesh velocity ẋi in an invariant way. This can be done using equidistributing

meshes. Classically, a mesh is called equidistributed if the relation∫ x(ξ)

a
ρ(x)dx = ξ

∫ b

a
ρ(x)dx
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holds for the continuous mapping x = x(ξ) : [0, 1] → [a, b], see e.g. [11]. The function ρ =

ρ(x) is called the monitor function. It determines the regions of concentration of the grid.

Differentiating this equation twice with respect to ξ, one obtains

(ρxξ)ξ = 0, (4.16)

with the boundary conditions x(0) = a and x(1) = b, which is satisfied for an equidistributed

mesh. As we consider periodic boundary conditions, we should modify the classical framework of

equidistributing meshes and replace the boundary conditions for x(ξ) by setting x(1)−x(0) = 2π

and xξ(0) = xξ(1). The periodic conditions for x(ξ) are agreed with the invariance requested.

The above schemes in computational coordinates will therefore be completely invariant if we

obtain the grid on the next level (and therefore the grid velocity ẋi = (x̂i − xi)/τ) from an

invariant discretization of the equidistribution principle (7.37). The discretization

(ρi+1 + ρi)(x̂i+i − x̂i)− (ρi + ρi−1)(x̂i − x̂i−1) = 0, (4.17)

is invariant provided that we choose an invariant monitor function ρ. An ansatz for ρ motivated

from the theory of adaptive grids is, e.g., the arc-length(-like) monitor function

ρ =
√

1 + αu2
x

with α being the (positive) adaption constant. This monitor function is invariant with respect

to vector fields (4.4) excluding only the scale operator t∂t + x∂x but the corresponding scalings

are equivalence transformations for the set of such monitor functions, where the parameter α

varies. The above ansatz for ρ can be discretized in an invariant way via

ρi =

√
1 + α

(
ui+1 − ui−1

xi+1 − xi−1

)2

. (4.18)

The resulting form of Eq. (4.17) can then be solved either using an iterative method, such

as Jacobi or Gauß–Seidel iteration, or by relaxation, e.g. using the moving mesh PDE ap-

proach [8, 11].

Remark 4.1. For the equation (7.37) to possess a Lie symmetry algebra g which is contained in

the linear span s1 of vector fields (4.4) trivially extended to ξ, it suffices for the monitor function ρ

to be an invariant of g. On solutions of the shallow-water equations (4.2) we can assume without

loss of generality that the function ρ does not depend on derivatives of u and h involving differ-

entiation with respect to t. Then the general form of ρ which is an invariant of the pure Galilean

algebra 〈∂t, ∂x, t∂x + ∂u〉 is given by an arbitrary smooth function of derivatives of u and h with

respect to x including h itself but not u. In order to attain invariance with respect to scale trans-

formations, the function ρ should depend only on specific products of powers of the above deriva-

tives. At the same time, the incorporation of geometric properties of solutions (e.g., the length of

a graph between neighbouring grid points) to the monitor function is more important than scale

invariance. Therefore, scale transformations can be allowed to act in a relaxed way, as equiv-

alence transformations on a selected narrowed set of monitor functions. An obvious form that

satisfies this requirement is the arc-length monitor function ρ =
√

1 + αu2
x. Alternatively one

could use, e.g., the similar functions ρ =
√

1 + αh2
x and ρ =

√
1 + αu2

x + βh2
x or the curvature-

related monitor functions ρ =
√

1 + αu2
xx, ρ =

√
1 + αh2

xx and ρ =
√

1 + αu2
xx + βh2

xx, where

α and β are positive constant.
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Remark 4.2. The method for the construction of an invariant discretization of a differential

equation in combination with a numerical grid generator was discussed, e.g., in [9, 10, 12]. In

contrast to the method employed above, in [10] the space of stencil variables was also prolonged

to the monitor function, which is not necessarily chosen in an invariant way. In order to arrive at

a completely invariant model, we however regard it important that the equidistribution principle

is discretized in an invariant fashion too, see also the discussion in Section 4.6. Moreover, as the

monitor function involves independent variables, unknown functions and their derivatives, it is

possible to express its discretization using the same basis difference invariants of stencil variables

that is needed for the physical differential equation discretization. In other words, no explicit

prolongation to the monitor function is necessary within the framework of our approach.

In Fig. 4.3 we show the integration of the one-dimensional shallow-water equations using the

scheme (4.15), (4.17) with arc-length monitor function discretization (4.18) utilizing the same

initial conditions as those chosen for the integration shown in Fig. 4.2. It is clearly visible that

the mesh points almost remain fixed as long as the shock is not developed. Once the shock is

traveling through the domain, the mesh points are able to sufficiently adapt to yield increased

resolution in the region near the shock (as additionally shown in Fig. 4.3c). Again the scheme

approximately conserves mass and momentum but dissipates energy. The relative errors in the

momentum and energy conservation are approximately the same as in the case of the Lagrangian

schemes in the previous subsection.

It is worthwhile pointing out that the time step of the integration shown in Fig. 4.3 is relatively

small. The reason for this is that using the scheme (4.15) and (4.17)–(4.18) we decouple the

solution of the physical differential equation and the equation controlling the location of grid

points. If time steps are not small, a severe time lag in the mesh movement would occur

and the resulting mesh would not satisfy the equidistribution principle close enough to give a

satisfactory adaptivity. The above problem was extensively addressed in [11]. It can be overcome

via the iterative solution of the physical and mesh equations a number of times, which leads to a

reduction of the time lag in the mesh movement. Such a strategy could be readily adopted with

the scheme (4.15) and (4.17)–(4.18) because a repeated iterative integration does not break the

invariance of this scheme.

In order to facilitate the comparison of distinct types of invariant numerical schemes, we also

keep the time step small in the integration of the Lagrangian scheme for the one-dimensional

shallow-water equations which is presented in Fig. 4.2.

4.5 Invariant numerical models for the two-dimensional

shallow-water equations

4.5.1 Selection of symmetries using boundary conditions

The domains most often considered in geophysical fluid dynamics for the numerical integration

of the two-dimensional shallow-water equations on a plane are either a channel with periodic

boundary conditions in the East–West direction and rigid boundaries in the North–South di-

rection or a domain with double periodic boundary conditions. As the second configuration

is more challenging from the point of view of invariant numerical schemes, we will employ it

subsequently.
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Figure 4.3: Numerical integration of the one-dimensional shallow-water equations (4.2) using

the scheme (4.15) with τ = 0.001 and N = 51 grid points on the domain [0, 2π] over the time

interval [0, 3]. The initial conditions are u = A sinx, and h = h0 +A sin(x+ ϕ0), with A = 0.4,

ϕ0 = π/6 and h0 = 10. The trapezoidal rule is used for time integration and the arc-length

monitor function is chosen for grid adaption setting α = 0.8. (a) Evolution of the discretization

grid. (b) Numerical solution for h at t = 3. (c) Magnitude of the derivative ux of the solution

for the scheme (4.15). Light colors refer to high values of |ux|.

Lie symmetry operators of the two-dimensional shallow-water equations (4.1) with peri-

odic boundary conditions in both the East–West and North–South directions form the five-

dimensional subalgebra s2 of the maximal Lie invariance algebra g2 of the equations (4.1) without

additional constraints. A basis of s2 is given by

∂t, ∂x, ∂y, t∂x + ∂u, t∂y + ∂v. (4.19)

As in the previous Section 4.4 we could additionally include the scaling symmetries of the equa-

tions (4.1) in the subalgebra s2, referring to them as equivalence transformations of the class

of doubly periodic boundary value problems. The reason why we did not include these scalings

above is because all the discretizations for the shallow-water equations we use subsequently do

not change the scaling properties of that system. This means that these discretizations satisfy

the required scaling properties already by construction. On the other hand, the additional pres-

ence of scaling operators would slightly complicate the expressions for the difference invariants
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computed below, without giving any significant new information (the additional arising coeffi-

cients will factor out anyway for the resulting schemes). Only in the course of setting up the

invariant grid generator, it will be necessary to explicitly take into account the specific scaling

symmetries, which will consistently be done in Section 4.5.3. Note that both symmetries (4.19)

and scaling symmetries of the two-dimensional shallow-water equations (4.1) generate equiva-

lence transformations of the set of relevant initial conditions.

As can be envisioned from the consideration of the numerical models of the one-dimensional

shallow-water equations discussed in Section 4.4, discretization schemes for the two-dimensional

shallow-water equations will be invariant under Galilean symmetries only if they are based on

adaptive grids. As for the channel model Galilean transformations are only admitted in the

x-direction, it suffices for a grid to be adaptive in the x-direction. This in particular means that

we can use a uniform spacing in the y-direction and have a spatial grid with changing resolution

only along the channel. On the other hand, the shallow-water equations with double periodic

boundary conditions require the treatment of adaptive grids in both the x- and y-direction.

An initial orthogonal spatial grid is driven to a non-orthogonal grid, which makes the direct

evaluation of finite difference derivatives much more elaborate. This problem is treated upon

using a finite volume formulation of that scheme.

For simplicity, all the schemes are developed on an Arakawa A-grid subsequently, i.e. the

variables u, v, h are defined in the same respective points. See e.g. [42] for a discussion of

different types of staggered grids for the shallow-water equations. The usage of other types of

grid staggering can be done in a similar way as that shown for the A-grid subsequently.

4.5.2 Invariant numerical schemes with double periodic boundary conditions:

Lagrangian scheme

The main difficulty with adaptive grids in both the x- and y-direction is that it can become

cumbersome to directly evaluate the gradients of the dependent variables on such curvilinear

grids by finite differences. As discussed in Section 4.4, a prominent strategy to overcome this

difficulty is to introduce a mapping from the computational (logical) coordinates (ξ, η) to the

physical coordinates (x, y). This will be done in the subsequent Section 4.5.3.

For the sake of demonstration we take another, more direct approach here, namely using

the finite volume formulation of the divergence operator, see e.g. [44]. Using the theorem of

Gauß–Ostrogradsky, we can approximate the divergence ∇· f of a vector-function f over a single

grid cell with area A and edge lengths li as

∇ · f ≈ 1

A

4∑
i=1

(fi · ni)li.

In the above formula, ni denotes the outward directed unit vector at the single cell edges.

As it is possible to cast the shallow-water equations (4.1) into conserved (momentum) form

Eqh = ht + (hu)x + (hv)y = 0,

Equ = (hu)t +

(
hu2 +

1

2
h2

)
x

+ (huv)y = 0,

Eqv = (hv)t + (huv)x +

(
hv2 +

1

2
h2

)
y

= 0,

(4.20)
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the above approximation of the divergence operator is sufficient to discretize the two-dimensional

shallow-water equations using the finite volume form.1 On the other hand, a finite volume

discretization is readily applicable on adaptive grids, as it is not necessary to approximate

derivatives by finite differences in such a formulation.

So as to discretize (4.20) in an invariant way using the Dorodnitsyn method we would need

a set of difference invariants and construct the discretization using these invariants as building

blocks for the numerical scheme. The problem with this approach is the same as reported in

the one-dimensional case. The Galilean transformation t̃ = t, x̃ = x + ε1t, ỹ = y + ε2t, h̃ = h,

ũ = u+ ε1, ṽ = v + ε2 maps the system (4.20) to

Ẽqh = Eqh, Ẽqu = Equ + ε1Eqh, Ẽqv = Eqv + ε2Eqh, (4.21)

i.e. it leads to a combination of the momentum equations with the continuity equation. Ex-

pressing the momentum equations in terms of differential invariants thus again only works by

combining these equations with the continuity equation. As in the one-dimensional case, it is

therefore not natural to attempt finding an invariant approximation of the momentum form of

the shallow-water equations using difference invariants.

At the same time, the Lagrangian form of the shallow-water equations (4.1), which is

dx

dt
= u,

dy

dt
= v,

dh

dt
+ h

(
∂u

∂x
+
∂v

∂y

)
= 0,

du

dt
+
∂h

∂x
= 0,

dv

dt
+
∂h

∂y
= 0, (4.22)

can be approximated using the finite volume method as well. Expressing an invariant discretiza-

tion of (4.22) in terms of difference invariants is considerably easier than doing the same for an

invariant discretization of (4.20). As in the one-dimensional case, the drawback of using (4.22)

as a starting point is that the resulting scheme does not approximate a conserved form and thus

neither preserves mass, momenta nor energy.

The stencil of the discretizations we aim to use is given in Fig. 4.4. All the dependent

variables are defined in the centroids of the respective polygons. The fluxes through the edges

will govern the evolution of these centroid values. In order to facilitate the computation of

the fluxes it is necessary to determine the values of w = (u, v, h) in the cell corners, which is

done by interpolation. While in principle any type of interpolation can be used, we employ

natural neighbors interpolation for this purpose, i.e. the values at the cell corners are wj =∑4
κ=1 ρ

κ,jwκ,j0 , where j = 1, . . . , 4 and wκ,j0 are the values of w in the centers of those cells

having in common the corner denoted by j. The interpolation weights ρκ,j are determined in

the following way. The Voronoi tessellation generated by the cell centers is constructed. Then a

new tessellation is computed in which the point (xj , yj) is introduced as an additional generator.

Let denote by APκ0 the area of the Voronoi cell of the original tessellation associated with the

center point P κ0 = (xκ0 , y
κ
0 ) and by APj the area of the new cell associated with the corner point

Pj = (xj , yj) introduced for the second tessellation. Then the weights ρκ,j are computed as

ρκ,j = (APj ∩ APκ0 )/APj . Once the values wj are obtained, they can be regarded as proper

stencil variables.

The prolongations of the symmetry operators (4.19) on the variables of the stencil shown in

1For equations including curl-terms, they can be converted into finite volume representation using the Stokes

theorem.
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Figure 4.4: Stencil for the invariant Lagrangian schemes for the two-dimensional shallow-water

equations with double periodic boundary conditions. The dependent variables w = (u, v, h) are

defined in the center (x0, y0) of the cells of the respective polygons. The fluxes are computed

using the values at the corners (xk, yk), k = 1 . . . 4 of the cells, which are obtained by interpolation

from the values at the polygon centroids. Variables with hat are those at the subsequent time

step.

Fig. 4.4 read

∂t,
4∑
i=0

(∂xi + ∂x̂i),
4∑
i=0

(∂yi + ∂ŷi),

4∑
i=0

(t∂xi + (t+ τ)∂x̂i + ∂ui + ∂ûi),
4∑
i=0

(t∂yi + (t+ τ)∂ŷi + ∂vi + ∂v̂i).

(4.23)

These prolongations are well agreed with the above interpolation procedure. The difference

invariants of the set (4.23) are given by

τ, hi, ĥi, xi − xj , yi − yj , x̂i − xj − τuk, ŷi − yj − τvk,
ui − uj , ûi − uj , vi − vj , v̂i − vj ,

where the indices i, j and k take the values 0, . . . , 4. Note that of course not all of the above

difference invariants are independent if i, j and k separately run through all possible values.

A simple explicit invariant scheme (Euler forward scheme) that can be constructed using

these invariants is

x̂0 − x0

τ
− u0 = 0,

ŷ0 − y0

τ
− v0 = 0,

ĥ0 − h0

τ
+
h0

2A

4∑
i=1

[(ui + ui+1)(yi+1 − yi)− (vi + vi+1)(xi+1 − xi)] = 0,

û0 − u0

τ
+

1

2A

4∑
i=1

(hi + hi+1)(yi+1 − yi) = 0,

v̂0 − v0

τ
− 1

2A

4∑
i=1

(hi + hi+1)(xi+1 − xi) = 0,

(4.24)
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where A = 1
2

∑4
i=1(xiyi+1 − xi+1yi) is the area of the polygon spanned by (x1, y1), . . . , (x4, y4)

and (x5, y5, u5, v5, h5) = (x1, y1, u1, v1, h1) by definition. As in the one-dimensional case, in the

continuous limit this scheme converges to the Lagrangian representation of the two-dimensional

shallow-water equations (4.22).

In a similar manner, we can formulate the implicit scheme (trapezoidal rule)

x̂0 − x0

τ
− 1

2
(u0 + û0) = 0,

ŷ0 − y0

τ
− 1

2
(v0 + v̂0) = 0,

ĥ0 − h0

τ
+
h0

4A

4∑
i=1

[(ui + ui+1)(yi+1 − yi)− (vi + vi+1)(xi+1 − xi)] +

ĥ0

4Â

4∑
i=1

[(ûi + ûi+1)(ŷi+1 − ŷi)− (v̂i + v̂i+1)(x̂i+1 − x̂i)] = 0,

û0 − u0

τ
+

1

4A

4∑
i=1

(hi + hi+1)(yi+1 − yi) +
1

4Â

4∑
i=1

(ĥi + ĥi+1)(ŷi+1 − ŷi) = 0,

v̂0 − v0

τ
− 1

4A

4∑
i=1

(hi + hi+1)(xi+1 − xi)−
1

4Â

4∑
i=1

(ĥi + ĥi+1)(x̂i+1 − x̂i) = 0.

(4.25)

Fig. 4.5 shows the result of a numerical integration with the scheme (4.25) supplemented with

periodic boundary conditions and specific initial conditions. The numerical solution of the

water height h at t = 2 is shown in the left panel. The right panel depicts the associated

discretization grid at t = 2. As in the case of the one-dimensional Lagrangian scheme, a strong

distortion of the grid cells is visible, which is not directly related to pronounced features in

the numerical solution, but rather a consequence of the Lagrangian grid movement. As both

the discretizations (4.24) and (4.25) do not approximate the conserved form of the shallow-

water equations (4.20), they neither conserve the mass M and the momenta Px, Py nor the

energy H.

It should be stressed that it is possible to formulate an invariant finite volume scheme for the

conserved form of the shallow-water equations (4.20), similar as was shown in the previous section

for the one-dimensional case. As said above, the problem of doing this systematically within

the Dorodnitsyn approach is that it can be hard to find a proper combination of elementary

difference invariants that allows one to approximate the momentum form of the shallow-water

equations. This is why we will show an alternative way of constructing invariant numerical

schemes for the two-dimensional shallow-water equations in the following section, which will

avoid the technical complications that can arise when using the difference invariants method for

the construction of symmetry-preserving numerical schemes.

4.5.3 Invariant numerical schemes with double periodic boundary conditions:

Eulerian scheme

Though the finite volume discretization developed in Section 4.5.2 is suitable from the point

of view of invariance preservation, it is not ideal from the viewpoint of numerical analysis.

In general, Lagrangian schemes are not in widespread use as they can easily lead to tangling

meshes or rapidly changing grids through the spatial domain. For the same reason, numerical

schemes in hydrodynamics are usually formulated in terms of Eulerian variables (or using some

combination of Eulerian and Lagrangian schemes). An invariant scheme on an adaptive grid
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Figure 4.5: Numerical integration of the two-dimensional shallow-water equations (4.1) using

the scheme (4.25) with τ = 0.001 and Nx×Ny = 71×71 grid points on the square [0, 2π]× [0, 2π]

over the time interval [0, 2]. The initial conditions are u = A sin(x + ϕ0) sin y, v = A sinx sin y

and h = h0 +A cos(x+ϕ0) cos y, with A = 0.4, ϕ0 = π/6 and h0 = 10. Left: Numerical solution

for h at t = 2. Right: Spatial discretization grid at t = 2.

can be formulated by combining the idea of having an invariant grid generator proposed in

Section 4.4.3 with the discretization in computational coordinates. More specifically, we consider

the momentum form (4.20) of the two-dimensional shallow-water equations and re-write it in

the computational coordinates θ = t, ξ = ξ(t, x, y), η = η(t, x, y):

∂

∂θ
(JF t) +

∂

∂ξ
(JξtF

t + JξxF
x + JξyF

y) +
∂

∂η
(JηtF

t + JηxF
x + JηyF

y) = 0, (4.26)

where F t = (h, hu, hv), F x = (hu, hu2 + 1
2h

2, huv), F y = (hv, huv, hv2 + 1
2h

2) and

J = xξyη − xηyξ, ξt = −ξxxθ − ξyyθ, ηt = −ηxxθ − ηyyθ,

ξx =
yη
J
, ξy = −xη

J
, ηx = −

yξ
J
, ηy =

xξ
J
.

The invariance of the system (4.26) with respect to shifts of the former independent variables

t, x and y is obvious since the left-hand sides of equations of the system (which we denote by

Eqh, Equ and Eqv, respectively) do not explicitly involve these variables. Therefore, any finite

difference approximation of (4.26) is invariant with respect to the above shifts extended to the

corresponding stencil, cf. (4.23). Note that any involved transformation is trivially extended

to the computational coordinates ξ and η, i.e., they are not transformed. The scale symmetry

transformations of the shallow-water equations (4.1) are automatically preserved in the course of

a proper finite difference approximation of (4.26), see the related discussion in Section 4.5.1. In

order to make clear the invariance with respect to Galilean boosts, we recombine terms in (4.26)

substituting Jξt = −Jξxxθ − Jξyyθ and Jηt = −Jηxxθ − Jηyyθ:

∂

∂θ
(JF t) +

∂

∂ξ

(
Jξx(F x − xθF t) + Jξy(F

y − yθF t)
)

+

∂

∂η

(
Jηx(F x − xθF t) + Jηy(F

y − yθF t)
)

= 0,
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The Galilean boost t̃ = t, x̃ = x + ε1t, ỹ = y + ε2t, h̃ = h, ũ = u + ε1, ṽ = v + ε2 maps the

system (4.26) to the system with

Ẽqh = Eqh, Ẽqu = Equ + ε1Eqh, Ẽqv = Eqv + ε2Eqh.

Note that this is the same transformation law in computational variables as it is in the physical

space (4.21). The main idea for finding invariant numerical schemes of (4.26) is to construct the

discretization in such a manner that the discrete counterpart of the system (4.26) is transformed

similarly by the extension of the Galilean boost to the stencil points. In order to preserve Galilean

boosts as symmetries in the course of discretization, it suffices

• to use the same discretization schemes for all the equations of the system (4.26), just

varying the number of the corresponding components of F t, F x and F y;

• to evaluate all the copies of Jξx (resp. the components F t and F x) related to the block

Jξx(F x − xθF
t) in the same grid point and in the same way; the same rule should be

applied for the other similar blocks, Jξy(F
y− yθF t), Jηx(F x−xθF t) and Jηy(F

y− yθF t).

For example, consider the trapezoidal scheme for the system (4.26)

ĴjkF̂
t
jk − JjkF tjk
τ

+
Ujk + Ûjk

2
+
Vjk + V̂jk

2
= 0, (4.27)

where τ is the step in θ = t,

Ujk =
1

2∆ξ
[(Jξt)j+1/2,k(F

t
jk + F tj+1,k)− (Jξt)j−1/2,k(F

t
jk + F tj−1,k) +

(Jξx)j+1/2,k(F
x
jk + F xj+1,k)− (Jξx)j−1/2,k(F

x
jk + F xj−1,k) +

(Jξy)j+1/2,k(F
y
jk + F yj+1,k)− (Jξy)j−1/2,k(F

y
jk + F yj−1,k)],

Vjk =
1

2∆η
[(Jηt)j,k+1/2(F tjk + F tj,k+1)− (Jηt)j,k−1/2(F tjk + F tj,k−1) +

(Jηx)j,k+1/2(F xjk + F xj,k+1)− (Jηx)j,k−1/2(F xjk + F xj,k−1) +

(Jηy)j,k+1/2(F yjk + F yj,k+1)− (Jηy)j,k−1/2(F yjk + F yj,k−1)],

the values J , Jξx = yη, Jξy = −xη, Jηx = −yξ, Jηy = xξ, Jξt and Jηt are discretized in the

following way:

Jjk =
1

4∆ξ∆η
[(xj+1,k − xj−1,k)(yj,k+1 − yj,k−1)− (xj,k+1 − xj,k−1)(yj+1,k − yj−1,k)],

(Jξx)j±1/2,k =
1

4∆η
(yj,k+1 − yj,k−1 + yj±1,k+1 − yj±1,k−1),

(Jξy)j±1/2,k = − 1

4∆η
(xj,k+1 − xj,k−1 + xj±1,k+1 − xj±1,k−1),

(Jηx)j,k±1/2 = − 1

4∆ξ
(yj+1,k − yj−1,k + yj+1,k±1 − yj−1,k±1),

(Jηy)j,k±1/2 =
1

4∆ξ
(xj+1,k − xj−1,k + xj+1,k±1 − xj−1,k±1),

(Jξt)j±1/2,k = −(Jξx)j±1/2,k
ẋjk + ẋj±1,k

2
− (Jξy)j±1/2,k

ẏjk + ẏj±1,k

2
,

(Jηt)j,k±1/2 = −(Jηx)j,k±1/2
ẋjk + ẋj,k±1

2
− (Jηy)j,k±1/2

ẏjk + ẏj,k±1

2
,
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where ẋjk = (x̂jk − xjk)/τ and ẏjk = (ŷjk − yjk)/τ are by definition the mesh velocities in the

x- and y-direction, respectively, and by hat we mark the corresponding values at the time θ+ τ .

In particular, we take

ˆ(Jξt)j±1/2,k = − ˆ(Jξx)j±1/2,k

ẋjk + ẋj±1,k

2
− ˆ(Jξy)j±1/2,k

ẏjk + ẏj±1,k

2
,

ˆ(Jηt)j,k±1/2 = − ˆ(Jηx)j,k±1/2

ẋjk + ẋj,k±1

2
− ˆ(Jηy)j,k±1/2

ẏjk + ẏj,k±1

2
.

As the system of difference equations (4.27) satisfies the above conditions, it is invariant with

respect to properly extended Galilean boosts.

Remark 4.3. The usage of computational coordinates also enlightens the subtle change of the

meaning of the time derivatives in a number of papers devoted to the construction of invariant

numerical schemes, such as in [21, 52]. While in the standard (Eulerian) discretization, the

continuous limit of the form (û − u)/τ yields the partial derivative ut, in the framework of

invariant schemes these terms are often to be interpreted as Lagrangian time derivatives u̇

(see also Section 4.4.2). This immediate transition from an Eulerian (partial) time derivative

to a Lagrangian (total) time derivative is a necessary consequence of the intermediate step

of discretizing an equation in computational coordinates assuming that the grid evolution is

described by the equations ẋ = u, and ẏ = v, see also the discussion in [43].

Remark 4.4. It should be noted that computational coordinates have a clear physical meaning

in the present context. As they do not change during the evolution of the grid, they can be

interpreted as the Lagrangian variables (fluid labels) of fluid mechanics provided we again assume

a Lagrangian grid evolution. A prominent way to choose these fluid labels is by setting them to

equal the Cartesian coordinates at the onset of evolution. By definition, this is the same role

that computational coordinates play in the numerics of moving meshes. Stated in another way,

the requirement of maintaining invariance of the discretization scheme and discretization stencil

of the shallow-water equations under the Galilean group naturally boils down to discretize these

equations in computational coordinates.

It then remains to specify the grid velocities ẋ and ẏ in order to complete the scheme given

in (4.27). This can be done in a similar manner as in Section 4.4.3 using the idea of equidistribut-

ing meshes (though, strictly speaking, equidistribution in higher dimensions is not sufficient to

uniquely determine an adaptive grid, see e.g. the discussion in [11]). Thus, the grid will be

determined from the system of elliptic equations

∇ξ · (G∇ξx) = 0, ∇ξ · (G∇ξy) = 0, (4.28)

where ∇ξ denotes the gradient in the space of computational coordinates (ξ, η), G = wI is the

matrix-valued monitor function, for I being the two-by-two unit matrix and w = w(x, y) being a

weight function which depends on the (numerical) solution of the shallow-water equations [18].

An invariant discretization of the first equation reads

1

∆ξ

(
wi+1/2,j

x̂i+1,j − x̂ij
∆ξ

− wi−1/2,j
x̂ij − x̂i−1,j

∆ξ

)
+

1

∆η

(
wi,j+1/2

x̂i,j+1 − x̂ij
∆η

− wi,j−1/2
x̂ij − x̂i,j−1

∆η

)
= 0,
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where

wi+1/2,j =
wi+1,j + wij

2
, wi−1/2,j =

wij + wi−1,j

2
,

wi,j+1/2 =
wi,j+1 + wij

2
, wi,j−1/2 =

wij + wi,j−1

2

and similar for the second equation, provided that w is approximated by a difference invariant of

the algebra s2, which is spanned by the vector fields (4.19). Once again, straightforward choices

for w that can be discretized using difference invariants are

w1 =
√

1 + α(u2
x + u2

y + v2
x + v2

y), w2 =
√

1 + α(hxx + hyy)2,

but of course other forms for w are possible as well. Similarly to the one-dimensional case, cf.

Remark 4.1, the general form of w which is an invariant of the algebra s2 is given by an arbitrary

smooth function of derivatives of u, v and h with respect to x and y including h itself but not u

and v. At the same time, we should also take into accout other desired properties of w. Both the

functions w1 and w2 are invariant with respect to shifts and Galilean boosts generated by vector

fields (4.19), the scalings generated by the vector field x∂x + y∂y + u∂u + v∂v + 2h∂h and even

rotations. All the scaling symmetries of the shallow-water equations are at least equivalence

transformations for the sets of functions of such forms, where the parameter α is varied.

It should also be stressed that the grid generator based on system (4.28) is a rather simple one.

More advanced formulations of grid generators exist, e.g. by using a general positive definite and

symmetric matrix G. Alternatively, the grids at a certain time level could be computed using

moving mesh partial differential equations [8, 11], provided it would be possible to discretize

such equations in an invariant way.

A different methodology is to use so-called velocity based moving mesh strategies. Unlike the

location based methods, which were exclusively used in the present paper, then not the location of

the grid points is determined directly but rather equations for the mesh velocity are formulated.

Velocity based strategies, such as the method involving the geometric conservation law [11, 17],

provide alternative ways of formulating grid equations that give a basis to realize invariant mov-

ing mesh equations. See also [48], where the term geometric conservation law was introduced.

In Fig. 4.6 we repeat the numerical integration of the two-dimensional shallow-water equations

with the setting of Fig. 4.5 but now using the scheme (4.27) in combination with a grid generator

based on w2. Similarly to the case of the one-dimensional shallow-water equations it can be seen

from Fig. 4.6 that the usage of a grid generator leads to grids that are not as distorted as those

obtained from a purely Lagrangian scheme. Moreover, the regions of grid concentration are now

directly linked to the physical behavior of the numerical solution for the dependent variable h.

The scheme (4.27) is mass and momenta conserving but, as all the other schemes presented in

the paper, dissipates the energy. The conserved quantities are evaluated at time t as

M = ∆ξ∆η
∑
j,k

hjkJjk, Px = ∆ξ∆η
∑
j,k

hjkujkJjk,

Py = ∆ξ∆η
∑
j,k

hjkvjkJjk, H =
1

2
∆ξ∆η

∑
j,k

(hjk(u
2
jk + v2

jk) + h2
jk)Jjk.

4.6 Conclusion

The present paper is devoted to the construction of several invariant numerical schemes mod-

eling shallow-water dynamics. In particular, we aim to describe a possible bridge between the
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Figure 4.6: Numerical integration of the two-dimensional shallow-water equations (4.1) using

the scheme (4.27) with τ = 0.001 and Nx×Ny = 71×71 grid points on the square [0, 2π]× [0, 2π]

over the time interval [0, 2]. The initial conditions are u = A sin(x + ϕ0) sin y, v = A sinx sin y

and h = h0 + A cos(x + ϕ0) cos y, with A = 0.4, ϕ0 = π/6 and h0 = 10. As a weight function,

w2 =
√

1 + α(hxx + hyy)2 is chosen with α = 0.4. (a) Numerical solution for h at t = 2. (b)

Spatial discretization grid at t = 2. (c) The weight function at t = 2.

formalism of constructing invariant numerical schemes and the existing theory on adaptive mov-

ing meshes. Such a bridge was already indicated in the literature. Indeed, there already exist a

number of investigations devoted to the importance of scale invariance in the theory of moving

mesh equations. Thus, in [7, 8, 10] (see also [11, p. 111] and references therein) a moving mesh

partial differential equation was constructed that preserves the scale invariance of the physical

differential equation to be discretized. The extension of this idea to setting up a grid generator

that is invariant with respect to (a suitable subgroup of) the maximal Lie invariance group of

a system of differential equations is therefore straightforward and was conceptually indicated

in the aforementioned sources. The idea of introducing computational coordinates into invari-

ant numerical schemes has also been successfully demonstrated for one-dimensional nonlinear

Schrödinger equations [8].
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We require our discretization schemes to be invariant with respect to the subgroup of the

maximal Lie symmetry group of the (resp. one- or two-dimensional) shallow-water equations ad-

mitted when imposing periodic boundary conditions. From the physical point of view it is natural

to assume that appropriate symmetries of the system of differential equations under considera-

tions act as equivalence transformations on a joint class of physically relevant boundary value

problems. Imposing periodic boundary conditions for varying intervals in the one-dimensional

case (resp. for rectangular domains of varying sizes whose sides are parallel to coordinate axes

in the two-dimensional case) while both the initial time and initial conditions also vary, we

select the subgroup generated by the time and space translations, the Galilean boosts and the

scalings symmetries of the shallow-water equations. Other subgroups might be chosen as well,

but for wide or even infinite-dimensional maximal Lie invariance (pseudo)groups admitted by

the prominent models in hydrodynamics it can be quite intricate to justify the choice for such

subgroups from the physical point of view.

In general, the inclusion of well-proven principles in the study of invariant numerical schemes

is a task requested. The invariant schemes for numerous evolution equations constructed so far

were mostly purely Lagrangian schemes. However, these schemes are not in prevalent use in prac-

tice as they usually lead to complicated mesh geometries which might eventually (at least locally)

degrade the quality of the numerical solution. This can be seen directly by comparing Figures 4.5

and 4.6, where the stronger distortion of the grid lines in the Lagrangian scheme is manifest

already after a relatively short period of integration. Therefore, the formulation of invariant grid

generators coupled with suitable invariant discrete counterparts of physical systems of differential

equations is a practicable way for symmetry preserving numerical integration of these systems.

A further novel feature of the present paper is the construction of invariant numerical schemes

for higher-dimensional systems of partial differential equations. Higher-dimensional schemes

are especially challenging if it is not possible to use fixed orthogonal grids. In the course

of constructing such schemes for the two-dimensional shallow-water equations we have shown

that invariant discretizations are not only restricted to finite difference schemes. It is possible

and straightforward to also formulate finite volume discretizations that preserve symmetries of

systems of differential equations. In a similar manner, other discretization techniques, such as

the finite element method, could be employed as well.

This problem can be tackled by transforming the system under consideration into computa-

tional coordinates. We have shown that the transition to these coordinates is a natural step in

the course of the construction of Galilean invariant discrete schemes. The key to the construc-

tion is then not to simply combine difference invariants as proposed in the original method by

Dorodnitsyn but to study the transformation laws of the equations in computational coordinates

for the respective symmetries. These laws are trivial for all the admitted symmetries except for

the Galilean boosts. For Galilean invariance it is found that the new momentum equations are

given as the combination of the old momentum and continuity equations. An invariant dis-

cretization is therefore achieved by finding proper discrete counterparts of these transformation

laws rather than combining difference invariants.

Because the main objective of this paper is to demonstrate different strategies for finding

invariant discretization schemes exemplified with the shallow-water equations, the discretization

schemes considered are kept as simple as possible. This concerns both the design of the schemes

themselves (e.g. using only two-level time integration methods and unstaggered grids) as well as

the solution of the resulting algebraic equations, which is done in the most direct and straight-
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forward manner. More advanced integration and algebraic solution techniques can be readily

adopted but their discussion is restrained to keep the focus of the paper on the conceptual aspect

of introducing the Lie symmetry approach in the framework of numerical modeling as far as pos-

sible. For example, the extension to more advanced time integration methods such as arbitrary

Runge–Kutta or general time-splitting schemes can be done by extension of the discretization

stencils via inclusion of further time layers. Similarly, the usage of staggered grids can be facili-

tated by adding further points to the stencil on the same time layer. The procedure of invariant

discretization involving wider stencils then follows precisely the same techniques as outlined and

used in the present paper. Within the approach based on the construction of difference invari-

ants, both ways of extending the stencils will lead to a larger number of invariants and thus to

an increased number of possibilities for combining them to a particular discretization scheme.

It was mentioned in the introduction that a system of differential equations might possess

various qualitative properties that one should aim to preserve in the course of setting up a

numerical model. Besides symmetries, it is of outstanding importance to monitor the behavior

of conserved quantities possessed by the system under consideration. This is a problem of

central importance in long-term integrations of such systems as a systematic failure in capturing

conservation laws may lead to unrealistic numerical results (e.g. loss of mass or wrong turbulence

spectra). Proper discretizations of the momentum form of the shallow-water equations conserve

the mass and momenta exactly or to high order, but none of them is actually energy conserving.

This should not come as a complete surprise as setting up energy conserving schemes for the

shallow-water equations is a quite nontrivial problem , see e.g. the schemes proposed in [2, 32, 45].

The inclusion of additional conserved quantities in the construction of invariant discretization

schemes will therefore be one of our future research topics.

From a more general point of view, the requirement of preserving symmetries in a discretiza-

tion scheme might lead to a geometric justification for using adaptive meshes. Though there

are several classes of physical problems (such as blow-ups) for which adaptive meshes are well

suited, the usage of such meshes is not undisputed in the numerical analysis and geophysical

fluid dynamics communities. The drawbacks of moving meshes, such as an additional level of

complexity of the schemes or the computational overhead resulting from computing and stor-

ing the mesh points at each time level must be well opposed to their potential benefits in a

case-by-case basis. The result that the numerical preservation of important structural property

like symmetries automatically requires to use moving meshes can thus be seen as a geomet-

ric argument for allowing adaptive discretization grid for certain classes of physical differential

equations. Moreover, the usage of a grid redistribution equation (or r-adaptivity) as advocated

in the present paper is also most suitable because it can be efficiently implemented within the

framework of parallel computing.
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Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance

group of the one-dimensional linear heat equation are determined. These invariant schemes

are constructed using the invariantization procedure for non-invariant schemes of the heat

equation in computational coordinates. We propose a new methodology for handling moving

discretization grids which are generally indispensable for invariant numerical schemes. The

idea is to use the invariant grid equation, which determines the locations of the grid point

at the next time level only for a single integration step and then to project the obtained

solution to the regular grid using invariant interpolation schemes. This guarantees that the

scheme is invariant and allows one to work on the simpler stationary grids. The discretization

errors of the invariant schemes are established and their convergence rates are estimated.

Numerical tests are carried out to shed some light on the numerical properties of invariant

discretization schemes using the proposed evolution–projection strategy.

5.1 Introduction

Discretization schemes for differential equations that are not solely constructed for the sake of

reducing the local discretization error as much as possible, but rather to preserve some of the

intrinsic properties of these differential equations have become increasingly popular over the last

decades. While preserving one of these properties, namely conservation laws, led to the design

of conservative discretization schemes which are quite popular in the scientific community [4,

26, 33] (and in particular in the geosciences, e.g. [18, 32]), there are other geometric features
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of differential equations that can be attempted to be preserved as well that have received less

attention from the side of numerical analysis so far. One of these features are symmetries of

differential equations. While there have been theoretical advancements on the methodologies

of finding numerical schemes that preserve the maximal Lie invariance groups of systems of

differential equations over the past 20 years or so [6, 12, 21, 52], little is known about the

numerical properties of these invariant schemes. A part of the problem is that while conservation

laws are always properties of the solutions of a differential equation, symmetries are by definition

properties of differential equations. Therefore, it is a standing question whether a discretization

scheme that preserves numerically a property of a differential equation also improves the quality

of the numerical solution of that discretized differential equation.

The present paper is devoted to an investigation of this question and related problems ex-

emplified with invariant discretization schemes for the linear heat equation. The heat equation

is particularly suited for this investigation as it is a canonical example in the group analysis

of differential and difference equations. Moreover, there are already several studies devoted to

invariant numerical schemes for this equation [2, 8, 52]. At the same time, in none of these

existing works a deeper background analysis of the numerical properties (e.g. order of approx-

imation or stability) of the developed schemes was investigated. A first account on numerical

properties of invariant numerical schemes for the heat equation was given in [12], in which a

numerical comparison of invariant and non-invariant schemes for the heat equation regarding

accuracy was presented.

There are several reasons why less attention has been paid so far on the numerical analysis of

invariant schemes (with the exception of the works [9, 12]). One of the reasons is that the field of

invariant discretization schemes is still in its early stages, with new conceptual algorithms being

developed only recently [4, 6–8, 12, 13, 21, 22]. Another reason is that invariant finite difference

schemes generally require the use of adaptive moving meshes, i.e. it is necessary to include a non-

trivial mesh equation in the discretization problem. Moving meshes lead to non-uniform grid

point distributions and, in the multi-dimensional case, to non-orthogonal grids. The analysis of

schemes on such meshes is considerably more difficult than that for related difference schemes

on fixed, uniform and orthogonal meshes. Due to this second reason, most invariant numerical

schemes so far have been constructed only for (1+1)-dimensional single evolution equations, as in

that case moving meshes can be handled still with limited effort. Although we will be concerned

with a (1+1)-dimensional equation in the present paper too, the methods used subsequently can

be employed in the multi-dimensional case without substantial modification.

The new approach we propose here is to use the invariant grid equation only for a single time

step and then to interpolate the solution to the regular grid. The important observation is that

this interpolation can be done in an invariant way, i.e. projecting the solution does not break

the invariance of the scheme itself. At the same time, the possibility to project the solution of

an invariant scheme to a regular grid is highly desirable as in the multi-dimensional case a freely

evolving grid can cause severe numerical problems. Moreover, for realistic numerical models, as

e.g. employed in weather and climate predictions, it is in general hard to use adaptive meshes

as the discretization of the governing equations is only one part of such model. Other parts are

related to the numerical data assimilation, i.e. the preparation of the initial conditions for the

numerical model and this step usually involves the forecasting model itself. As the assimilation

of the initial conditions cannot be done on an evolving mesh (because the data are given at fixed

locations only) this at once renders invariant schemes on moving meshes impractical. Equally
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important, any realistic numerical model for a nonlinear system of partial differential equations

has to contain subgrid-scale models, which mimic the effects of processes taking place at those

scales that the numerical model is not capable of resolving explicitly [34, 35]. The construction

of subgrid-scale models for non-resolved physical processes involves in general ad-hoc arguments

and these arguments rely on the particular scale on which the unresolved processes take place.

As a moving mesh locally changes the resolution and thus impacts what processes are explicitly

resolved by a numerical model, subgrid-scale schemes have to be designed that can operate on

grids with varying resolution. For realistic processes (which are usually not self-similar), this

might be difficult to achieve in practice.

All what was said above objects against invariant numerical schemes for multi-dimensional

systems of differential equations using freely evolving meshes. Thus, whether mathematically

feasible or not, such schemes would be of less practical interest. This is why other approaches

should be sought that on the one hand allow one to retain the invariance group of a system

of differential equations in the course of discretization and on the other hand yield schemes

that are practical to avoid the above mentioned and related problems. The proposed invariant

evolution–projection strategy we are going to introduce below may be considered as one such

approach.

The further organization of this article is as follows. The subsequent Section 5.2 features

a summary and some extensions on the various methods to construct invariant discretization

schemes. In Section 5.3 the heat equation along with its maximal Lie invariance group G is

presented. It is discussed which subgroup G1 of G we aim to present when constructing invari-

ant numerical discretization schemes. The selection of G1 is based on preserving the class of

periodic boundary value problems we are focussing on. Section 5.4 contains the construction of

an equivariant moving frame for G1 along with a presentation of some lower order differential

invariants of G1. In Section 5.5 invariant discretization schemes for the heat equation in compu-

tational coordinates are found. The local discretization errors of these schemes are established

in Section 5.6. In Section 5.7 we introduce the new idea of invariant interpolation schemes that

can be used to project the numerical solution obtained from an invariant scheme on a moving

mesh to the regular grid. The numerical analysis as well as some numerical tests for the schemes

proposed in this paper are found in Section 5.8. The summary of this article is presented in the

final Section 5.9.

5.2 Construction of invariant discretization schemes

The construction of invariant discretization schemes for differential equations can be seen as a

part of the ongoing effort to turn group analysis into an efficient tool for the analysis of difference

equations, see e.g. the review article [13]. As of now, there are three main methods that are

used to construct invariant discretization schemes.

5.2.1 Difference invariant method

The first method was developed by V. Dorodnitsyn, see [2, 6, 8, 13, 52]. It uses the infinitesimal

generators of one-parameter symmetry groups of the system of differential equations under

consideration that span the maximal Lie invariance algebra g of this system. These generators

are of the form

v = ζj(x, u)∂xj + ηα(x, u)∂uα = ζ(x, u)∂x + η(x, u)∂u,
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where x = (x1, . . . , xp) and u = (u1, . . . , uq) are the tuples of independent and dependent

variables, respectively. Here and in the following, the summation convention over repeated

indices is used. Rather than prolonging v to higher order derivatives of u with respect to x,

which is standard in the symmetry analysis of differential equations [4, 30, 42], in this method

the vector fields are prolonged to all the points of the discretization stencil, i.e. the collection of

grid points which are necessary to approximate a given system of differential equation up to a

desired order. This prolongation is of the form

pr v =

m∑
i=1

ζ(xi, ui)∂xi + η(xi, ui)∂ui ,

where xi = (x1
i , . . . , x

p
i ) and ui = (u1

i , . . . , u
q
i ), i.e. it is done by evaluating the vector field v at

all m stencil points zi = (xi, ui) and summing up the result. An example for such a prolongation

is given in Remark 5.1 in Section 5.5.

As a next step, the invariants of the group action are found by invoking the infinitesimal

invariance criterion [6, 42], which in the present case is pr v(I) = 0. The functions I that fulfill

this condition for all v ∈ g are termed difference invariants.

Once the difference invariants on the stencil space are found, one then has to assemble

these invariants together to a finite difference approximation of the given system of differential

equations. By construction, this procedure guarantees that the resulting numerical scheme is

invariant under the symmetry group of the original system of differential equations.

The main drawback of this method is that it might be hard to find a combination of dif-

ference invariants that approximates a system of differential equations in the multi-dimensional

case. The problem is, as discussed in the introduction, that invariant schemes generally re-

quire the use of moving and/or non-orthogonal grids. Formulating consistent discretization

schemes using difference invariants as building blocks on moving meshes is rather challenging in

higher dimensions and thus limited the application of this method to the case of single (1 + 1)-

dimensional evolution equations. We stress though that this problem only enters at the stage

of combining difference invariants to a discretization scheme. Computing difference invariants

in the multi-dimensional case can be done as effectively as computing differential invariants for

multi-dimensional problems using infinitesimal techniques.

5.2.2 Invariant moving mesh method

Retaining the invariance of finite difference schemes under the maximal Lie invariance groups

of physically relevant time-dependent differential equations often requires the use of moving

meshes. This is true both for the finite difference method discussed in the previous Section 5.2.1

and the moving frame method to be discussed in the next Section 5.2.3. This kind of mesh

adaptation in which the number of grid points remains constant throughout the integration is

referred to as r-adaptivity in the field of adaptive numerical schemes [8, 11].

The standard strategy to handle r-adaptive meshes is to regard the grid adaptation as a time-

dependent mapping from a fixed reference space of computational coordinates to the physical

space of the independent variables of the differential equation, i.e. x = x(ξ) for ξ = (ξ1, . . . , ξp)

being the computational variables. Without loss of generality, we assume that ξ1 = τ = t is the

time variable. The dependent variables u are expressed in the computational space by setting

ū(ξ) = u(x(ξ)). For the sake of simplicity we will omit the bars henceforth.
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The significance of the computational coordinates is to provide a reference frame that remains

stationary and orthogonal even in the presence of grid adaptation in the physical space of coor-

dinates. In the course of discretization the variable ξ labels the position of the grid points in the

mesh and this labeling stays unchanged during the mesh adaptation. Thus, the computational

variables can be interpreted physically as Lagrangian coordinates and their invariance under the

motion of the grid is equivalent to the identity of fluid particles in ideal hydrodynamics.

Because by construction the grid remains orthogonal in the ξ-coordinates, the usual finite

difference approximations for derivatives can be used in the space of computational variables.

This simplifies both the practical implementation of the discretization method and the numerical

analysis of the resulting schemes.

The expression of the initial physical system of differential equations in terms of computa-

tional variables leads to a system of equations that explicitly includes the mesh velocity xτ ,

which is yet to be determined in order to close the resulting numerical scheme. A prominent

strategy for determining the location of the grid points at the subsequent time level in the one-

dimensional case uses the equidistribution principle, which in its differential form is (ρxξ)ξ = 0,

where ρ is a monitor function that determines the areas of grid convergence and divergence. For

higher-dimensional problems, equidistribution has to be combined with heuristic arguments,

see [11] for more details.

The invariance of the initial differential equations is brought into the scheme by adequately

specifying the monitor function ρ. In [7] it was pointed out that using monitor functions that

preserving the scale-invariance of a differential equation is particularly relevant in cases where

the equation is capable of developing a blow-up solution in finite time, see also [8, 10, 20].

This finding is generalized upon requiring that the monitor function is chosen in a manner such

that the equidistribution principle is invariant under the same symmetry group as the original

differential equation. For a number of symmetry groups this appears to be possible, see [4] for

an example.

The invariant moving mesh method was recently extended in [4]. The idea of this extension is

to transform the initial system of differential equations to the space of computational coordinates

and to determine the form of the symmetry transformations in the computational space. The

equations in the computational space are then discretized such that the resulting scheme mimics

the transformation behavior of the continuous case. The main advantage of this approach is

that it allows one to retain an initial conserved form of the system of differential equations and

thus to numerically preserve certain conservation laws in the invariant scheme. This is relevant

as preserving conservation laws in the course of invariant numerical modeling is yet a pristine

problem. An exception to this is the discretization of equations that follow from variational

principles, which, if done in a proper way, can lead to the simultaneous preservation of both

symmetries and associated conservation laws, owing to the discrete Noether theorem. See, e.g. [8]

for an example of such an invariant Lagrangian discretization.

Another advantage of the extension proposed in [4] is that it allows one to find invariant

numerical schemes without the detour of difference invariants. This is essential as it can happen

that the single equations in a system of differential equations cannot be approximated directly

in terms on differential invariants but only in combination with other equations of that system.

If this is the case it is not natural to attempt to discretize the system using difference invariants

as this would lead to rather cumbersome discretization schemes.
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5.2.3 Moving frame method

The third method is the most recent one [9, 10, 12, 21, 22, 31]. It relies on the notion of

equivariant moving frames and their important property to provide a mapping that allows one

to associate an invariant function to any given function. As we will mostly work with this

method in the present paper, we describe it in greater detail here. We collect some important

notions on moving frames below, a more comprehensive exposition can be found in the original

references [9, 9, 10, 17, 18, 21].

Definition 5.1. Let G be a finite-dimensional Lie group acting on a manifold M . A (right)

moving frame ρ is a smooth map ρ : M → G satisfying the equivariance property

ρ(g · z) = ρ(z)g−1, (5.1)

for all z ∈M and g ∈ G.

Theorem 5.1. A moving frame exists in the neighborhood of a point z ∈ M if and only if the

group G acts freely and regularly near z.

Local freeness of a group action means that z̃ = g · z = z for all z from a sufficiently small

neighborhood of each point on M only holds for g being the identity transformation, which

implies that all the group orbits have the same dimension. Here and throughout the paper, a

tilde over a variable denotes the corresponding transformed form of that variable. Regularity

of a group action requires that there exists a neighborhood for each point z ∈ M , which is

intersected by the orbits of G into a pathwise connected subset.

When a group G does not act freely on M , its action can be made free upon extending it to a

suitably high-order jet space Jn = Jn(M,p) of M , 0 ≤ n ≤ ∞. Locally, the nth order jet space

of a p-dimensional submanifold of M has coordinates z(n) = (x, u(n)), where as in the previous

subsections x = (x1, . . . , xp) are considered as the independent variables, u = (u1, . . . , uq),

q = dimM −p, are the dependent variables and u(n) collects all the derivatives of u with respect

to x of order not greater than n including u as the zeroth order derivatives. In practice, the

prolongation of the group action of G on Jn is implemented using the chain rule.

Moving frames are determined using a normalization procedure. The steps to find a moving

frame for a group action G are the following: (i) Define a cross-section to the group orbits. A

cross-section C is any submanifold C ⊂ M of complementary dimension to the dimension r of

the group orbits, i.e. dimC = dimM−r, that intersects each group orbit once and transversally.

Usually coordinate cross-sections are chosen in which some of the coordinates of M (or of Jn

if the group action is not free on M) are set to constants, i.e. z1 = c1, . . . , zr = cr. (ii) The

algebraic system z̃1 = (g · z)1 = c1, . . . , z̃r = (g · z)r = cr is solved for the group parameters

g = (g1, . . . , gr). The resulting expression g = ρ(z) is the moving frame.

Moving frames can be used to map any given function to an invariant function by a procedure

called invariantization.

Definition 5.2. The invariantization of a real-valued function f : M → R using the (right)

moving frame ρ is the function ι(f), which is defined as ι(f)(z) = f(g · z)|g=ρ(z) = f(ρ(z) · z).

That the function ι(f) constructed in this way is indeed invariant follows from the equivari-

ance property (5.1) of the moving frame ρ,

ι(f)(g · z) = f(ρ(g · z)g · z) = f(ρ(z)g−1g · z) = f(ρ(z) · z) = ι(f)(z),
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which boils down to the definition of an invariant function I, i.e. I(g · z) = I(z). In practice, a

function f(z) is invariantized by first transforming its argument using the transformations from

G and then substituting the moving frame for the group parameters. By definition, an invariant

that is defined on the jet space Jn is a differential invariant.

Moving frames can also be constructed on a discrete space. In a finite difference approxima-

tion, derivatives of functions are approximated using a finite set of values of these functions, and

all the points needed to approximate the derivatives arising in a system of differential equations

are the points of the stencil introduced in Section 5.2.1. Because most of the interesting symme-

tries of differential equations that are broken in standard numerical schemes require the use of

non-orthogonal discretization meshes, it is beneficial to both regard x and u as the dependent

variables and the computational variables ξ as the independent variables as was discussed in the

previous Section 5.2.2.

Sampling the tuples from the extended computational space Mξ = {(ξ, z)} at discrete points,

i.e. at (ξi, z(ξi)) = (ξi, zi), one can introduce the space

M�nξ = {(w1, . . . , wn) | ξi 6= ξj for all i 6= j},

where wi = (ξi, zi), which can be identified as the joint product space of stencil variables.

Because the identifier ξi of the point wi is required to be unique, each element of M�nξ only

includes distinct grid points in the physical space of equation variables. The dimension of the

space M�nξ depends on the number of independent and dependent variables in the system of

differential equations and the desired order of accuracy of the approximated derivatives.

It is possible to carry out the construction of the moving frame on M�nξ , i.e. to define the

moving frame by an equivariant mapping ρ�nξ : M�nξ → G, where G acts on M�nξ by the product

action, g · (w1, . . . , wn) = (g · w1, . . . , g · wn). Note that the extension of the group action to

the computational variables ξ is trivial, i.e. they remain unaffected by G, ξ̃ = g · ξ = ξ, see [4].

The compatibility between the moving frame ρ�nξ and the moving frame ρ on the space M (or

an appropriate jet space Jn), i.e. that ρ�nξ → ρ in the continuous limit is assured provided

that the cross-section defining the moving frame ρ�nξ in the continuous limit converges to the

cross-section defining the moving frame ρ. Once the moving frame is constructed on the discrete

space M�nξ of stencil variables, it can be used to invariantize any numerical scheme expressed in

computational coordinates. This will be explicitly shown in Sections 5.5 and 5.6 where we will

construct invariant schemes for the heat equation.

It is essential that the construction of the moving frame on the grid point space is carried out

in terms of computational coordinates rather than physical coordinates. This can be illustrated

by the following simple example.

Example 7. The Laplace equation uxx+uyy = 0 is, inter alia, invariant under the one-parameter

group of rotations SO(2), x̃ = x cos ε−y sin ε, ỹ = x sin ε+y cos ε. Let us obtain the moving frame

ρ for this group action from the normalization condition ux = 0, i.e. we determine the moving

frame on the first jet space J1(M, 2), ρ = ρ(x, y, u, ux, uy). Prolonging the transformations

from SO(2) to the derivative ux leads to ũx̃ = ux cos ε − uy sin ε and thus the moving frame is

ε = arctan(ux/uy).

Let us now find the product frame from the discrete normalization condition ud
x = 0. Com-

puting ud
x in the näıve way, ud

x = (ui+1 − ui−1)/(xi+1 − xi−1), we fail as

ũd
x̃ =

ui+1 − ui−1

(xi+1 − xi−1) cos ε− (yi+1 − yi−1) sin ε
= 0,
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cannot be solved for the group parameter ε. On the other hand, setting u = u(x(ξ1, ξ2), y(ξ1, ξ2))

and expressing ud
x in terms of the computational variables ξ1, ξ2, the normalization ud

x = 0 reads

ũd
x̃ =

ũd
ξ1 ỹ

d
ξ2 − ũ

d
ξ2 ỹ

d
ξ1

x̃d
ξ1
ỹd
ξ2
− x̃d

ξ2
ỹd
ξ1

=
ud
ξ1(xd

ξ2 sin ε+ yd
ξ2 cos ε)− ud

ξ2(xd
ξ1 sin ε+ yd

ξ1 cos ε)

xd
ξ1
yd
ξ2
− xd

ξ2
yd
ξ1

= 0.

This expression can be solved for ε and it gives

ε = arctan

(
ud
ξ1y

d
ξ2 − u

d
ξ2x

d
ξ1

ud
ξ2
yd
ξ1
− ud

ξ1
xd
ξ2

)
= arctan

(
ud
x

ud
y

)
,

which in the continuous limit goes to ε = arctan(ux/uy) as required.

5.3 Lie symmetries of the heat equation

The one-dimensional linear heat transport equation is

ut − uxx = 0, (5.2)

where we scaled the thermal diffusivity ν to 1, i.e. Eq. (5.2) is in non-dimensional form.

The heat equation (5.2) admits the following infinitesimal generators of one-parameter groups,

which generate the maximal Lie invariance algebra g of Eq. (5.2):

∂t, ∂x, u∂u, 2t∂t + x∂x, 2t∂x − xu∂u,
4t2∂t + 4tx∂x − (x2 + 2t)u∂u, α(t, x)∂u,

(5.3)

where α runs through the set of solutions of Eq. (5.2), see e.g. [42]. These vector fields generate

(i) time-translations, (ii) space translations, (iii) scalings in u, (iv) simultaneous scalings in t

and x, (v) Galilean boosts, (vi) inversions and (vii) the superposition principle symmetry.

In this paper, we will construct invariant numerical schemes for a class of initial value problems

of the heat equation using periodic boundary conditions. This class of initial-boundary value

problems only admits a subgroup of the symmetry group of the heat equation as inversions are

no longer admitted; inversions do not send an initial value problem from the considered class to

another initial value problem. The symmetries associated with the first five vector fields in (5.3)

are compatible with the class of initial-boundary value problems we are interested in, i.e. they

map the class of initial-boundary value problems for the heat equation under consideration to

itself. This re-interpretation of symmetries of differential equations without initial and boundary

conditions as equivalence transformations for a class of initial-boundary value problems was

recently pointed out in [4].

In what follows we will thus focus our attention on constructing numerical schemes that pre-

serve the symmetries generated by the first five operators of (5.3). The associated subalgebra of

g will be denoted by g1. We do not require to preserve the linearity operator here by construc-

tion. At the same time, as will be shown in Section (5.8) the numerical schemes we propose in

this paper preserve the linearity property up to the discretization error expected.
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5.4 Moving frame and differential invariants

for the heat equation

We determine the moving frame for the subgroup G1 of transformations associated with the

subalgebra g1. Transformations of G1 are of the form

t̃ = e2ε4(t+ ε1), x̃ = eε4(x+ ε2 + 2ε5t), ũ = eε3−ε5x−ε
2
5tu. (5.4)

Because the group action of G1 is not free on M = {(t, x, u)} we construct the moving frame

on a suitably high-order jet space. In the present case, the group action of G1 becomes free on

J1 = J1(M, 2). Thus, it is necessary to extend the transformations (5.4) to derivatives of u with

respect to t and x.

Using the chain rule we can compute the transformed operators of total differentiation, which

read as

Dt̃ = e−2ε4(Dt − 2ε5Dx), Dx̃ = e−ε4Dx,

where Dx = ∂x +ux∂u +utx∂ut +uxx∂ux + . . . and Dt = ∂t +ut∂u +utt∂ut +utx∂ux + . . . denote

the usual operators of total differentiation. With the transformed total differentiation operators

at hand it is possible to compute the transformed partial derivatives of u with respect to t and x.

The transformation rules for the lowest order derivatives are

ũt̃ = e−2ε4+ε3−ε5x−ε25t(ut − 2ε5ux + ε2
5u), ũx̃ = e−ε4+ε3−ε5x−ε25t(ux − ε5u),

ũx̃x̃ = e−2ε4+ε3−ε5x−ε25t(uxx − 2ε5ux + ε2
5u).

In fact, for the construction of the moving frame already the knowledge of the first order deriva-

tives is sufficient.

We compute the moving frame for the five-parameter group of transformations of the form (5.4)

using the following normalization conditions which determine a valid cross-section to the group

orbits of the prolonged action of G1 on J1,

t = 0, x = 0, u = 1, ut = 1, ux = 0. (5.5)

The moving frame is computed by taking the transformed form of the normalization conditions,

t̃ = 0, x̃ = 0, ũ = 1, ũt̃ = 1 and ũx̃ = 0 and by solving the resulting algebraic system for the group

parameters ε1, . . . , ε5. The result of this computation is the following moving frame g = ρ(z(1)),

ε1 = −t, ε2 = −
(
x+ 2t

ux
u

)
, ε3 = −

(
lnu− xux

u
− tu

2
x

u2

)
,

ε4 = ln

√
ut
u
− u2

x

u2
, ε5 =

ux
u
.

(5.6)

With the moving frame at hand, we can invariantize any of the partial derivatives of u with

respect to t and x and thus obtain a complete set of differential invariants for the subgroup G1

of the maximal Lie invariance group of the heat equation. As an example, invariantizing the

derivative uxx, i.e. computing ι(uxx) as (g · uxx)|g=ρ(z(1)) we produce the differential invariant

ι(uxx) =
uu2

xx − u2
x

uut − u2
x

.
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Invariantizing the heat equation, i.e. computing ι(ut− uxx) = 0 and recalling that ι(ut) = 1, we

obtain

u(ut − uxx)

uut − u2
x

= 0,

which yields the original heat equation expressed in terms of differential invariants. This re-

expression of a differential equation using the differential invariants of its symmetry group is

known as the replacement theorem [9].

5.5 Invariant discretization of the heat equation

The invariant discretization of Eq. (5.2) cannot be done on a fixed, uniform grid. To see this, let

us check the transformation behavior of the grid equation xn+1
i −xni = 0, which is the definition

of a stationary grid, under the transformations (5.4). This yields

x̃n+1
i − x̃ni = eε4(xn+1

i − xni + 2ε5(tn+1 − tn)),

which is only zero in the case when ε5 = 0. Stated in another way, a discretization on a fixed

grid can at most preserve the symmetry subgroup of G, which is generated by the first four

elements of the maximal Lie invariance algebra g of the heat equation (5.3).

Thus, the discretization of (5.2) preserving G1 will require the use of moving grids. For this

reason it is convenient to express (5.2) in terms of computational coordinates initially, i.e. we

set u(τ, ξ) = u(τ, x(τ, ξ)), where ξ is the single spatial computational variable and τ = t. The

heat equation in this set of coordinates reads

uτ − xτ
uξ
xξ
− 1

x2
ξ

(
uξξ −

xξξ
xξ
uξ

)
= 0. (5.7)

So as to find the invariant discretization of the heat equation in the form (5.7), we deter-

mine the moving frame in the space of stencil variables M�4ξ using the discrete analogs of the

normalization conditions (5.5) expressed in terms of computational coordinates.

For the sake of convenience we introduce the notation h+ = xni+1 − xni , h− = xni − xni−1,

∆τ = τn+1 − τn. The discretization stencil we use is depicted in Fig. 5.1.

Figure 5.1: Stencil for an invariant discretization scheme of the heat equation.

The appropriate normalization conditions for a compatible moving frame ρ�4ξ are

τn = 0, xni = 0, uni = 1, ud
t = 1, ud

x = 0, (5.8)
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where

ud
t =

un+1
i − uni

∆τ
− xd

τ

uni+1 − uni−1

h+ + h−
, ud

x =
uni+1 − uni−1

h+ + h−

are the discretizations of the first time and space derivatives expressed in computational coor-

dinates and xd
τ = (xn+1

i − xni )/∆τ is the discrete grid velocity. Replacing the single equations

in the above normalization conditions by their respective transformed expressions and solving

the resulting algebraic system for the group parameters we obtain the following moving frame

on the space of stencil variables M�4ξ ,

ε1 = −τn, ε2 = −(xni + 2τn(lnu)d
x), ε3 = −

(
lnuni − xni (lnu)d

x − τn((lnu)d
x)2
)
,

ε4 =
1

2
ln

(
exp

(
−∆τ(xd

τ (lnu)d
x + ((lnu)d

x)2)
)
un+1
i − uni

uni ∆τ

)
, ε5 = (lnu)d

x,
(5.9)

where we introduced (lnu)d
x = (lnuni+1 − lnuni−1)/(h+ + h−). This moving frame is compatible

with the moving frame (5.6) in that it converges to (5.6) in the continuous limit ∆ξ → 0 and

∆τ → 0 upon using

h+ = xξ∆ξ + xξξ(∆ξ)
2/2 +O(∆ξ3), h− = xξ∆ξ − xξξ(∆ξ)2/2 +O(∆ξ3),

xn+1
i = xni + xτ∆τ +O(∆τ2), uni+1 = uni + uξ∆ξ + uξξ(∆ξ)

2/2 +O(∆ξ3),

uni−1 = uni − uξ∆ξ + uξξ(∆ξ)
2/2−O(∆ξ3), un+1

i = uni + uτ∆τ +O(∆τ2).

(5.10)

The moving frame (5.9) can now be used to invariantize any non-invariant finite difference

discretization of (5.7) on M�4ξ . To illustrate this, we invariantize the standard FTCS (forward

in time centered in space) scheme

ud
t −

4

(h+ + h−)2

(
uni+1 + uni−1 − 2uni − (h+ − h−)ud

x

)
= 0.

This is done by first replacing all terms by their respective transformed expressions and substi-

tuting the moving frame (5.9) for the arising group parameters. The result of this procedure is

the invariant scheme

S =
exp

(
−∆τ

(
xd
τ (lnu)d

x + ((lnu)d
x)2
))
un+1
i − uni

∆τ
−

4

(
uni+1

(
uni+1

uni−1

)−h+/(h++h−)

+ uni−1

(
uni+1

uni−1

)h−/(h++h−)

− 2uni

)
(h+ + h−)2

= 0.

(5.11)

Again, it can be checked that the above scheme (5.11) indeed converges to (5.7) in the limit of

∆ξ → 0 and ∆τ → 0. This will be shown explicitly in Section 5.6, where we establish the order

of approximation of (5.11).

So as to complete the scheme (5.11) it is necessary to determine xn+1
i , which is the ingredient

missing in (5.11). There are different ways to determine a grid equation, such as using the

equidistribution principle as outlined in Section 5.2.2. The problem with this strategy in the

present case is that while it might be beneficial from the numerical point of view, it might not be

easy to obtain an invariant discretization of this principle which does not lead to a fully coupled

equation–grid system. In other words, it can happen that the grid equation includes values of
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u at both tn and tn+1. While this coupling is not a problem in the one-dimensional case, it can

lead to a severe restriction of the applicability for multi-dimensional equations as solving the

coupled equation–grid system might then be too expensive.

A G1-invariant grid equation that circumvents the aforementioned coupling problem can be

derived from the invariantization of xn+1
i . This invariantization yields

ι(xn+1
i ) = eε4

(
xn+1
i − xni +

2∆τ

h+ + h−
(lnuni−1 − lnuni+1)

)
,

where we did not explicitly substitute the frame value for ε4. An appropriate grid is then given

through ι(xn+1
i ) = 0, or

M = xn+1
i − xni +

2∆τ

h+ + h−
(lnuni−1 − lnuni+1) = 0. (5.12)

This grid equation is quite similar to the grid equation

xn+1
i − xni +

2∆τ

h+ + h−

(
h+

h−
ln

(
uni−1

uni

)
− h−

h+
ln

(
uni+1

uni

))
= 0, (5.13)

which was found in [2, 8] using the method of difference invariants. This last grid (5.13) is not

only invariant under the subgroup G1 but under the whole maximal Lie invariance group G of

the heat equation. In the continuous limit, both equation (5.12) and (5.13) converge to

xτ = − 2

xξ
(lnu)ξ.

We have tested all our numerical schemes with both (5.12) and (5.13) and found that the

resulting schemes give asymptotically the same numerical results. In fact, as in the evolution–

projection strategy that will be introduced in Section 5.7 we have h+ = h− = h, Eq. (5.12)

and (5.13) coincide.

Remark 5.1. While the invariantization algorithm guarantees that the scheme (5.11) is indeed

invariant under the subgroup G1 of the maximal Lie invariance group of the heat equation,

the invariance can be checked in a straightforward fashion using the infinitesimal invariance

criterion as invoked in the Dorodnitsyn method discussed in Section 5.2.1. Let us recall that this

criterion states that an invariant I of a group action is annihilated by the associated infinitesimal

generators, i.e. v(I) = 0 for all v ∈ g. Because in the present case, the invariants are defined on

the stencil space with coordinates τn,∆τ, xni , x
n
i+1, x

n
i−1, x

n+1
i , uni , u

n
i+1, u

n
i−1 and un+1

i , we have

to prolong the operators of g accordingly. The prolongations of the first five operators of (5.3)

to the variables of the stencil are

∂τn , ∂xni + ∂xni+1
+ ∂xni−1

+ ∂xn+1
i

, uni ∂uni + uni+1∂uni+1
+ uni−1∂uni−1

+ un+1
i ∂un+1

i
,

2τn∂τn + 2∆τ∂∆τ + xni ∂xni + xni+1∂xni+1
+ xni−1∂xni−1

+ xn+1
i ∂xn+1

i
, 2τn(∂xni + ∂xni+1

+

∂xni−1
) + 2(τn + ∆τ)∂xn+1

i
− xni uni ∂uni − x

n
i+1u

n
i+1∂uni+1

− xni−1u
n
i−1∂uni−1

− xn+1
i un+1

i ∂un+1
i

,

see [6, 13] for more details. It can be checked that pr v(S) = 0 and pr v(M) = 0 hold on S = 0

and M = 0 for all the prolonged infinitesimal generators and thus S = 0 is a proper invariant

numerical scheme and M = 0 an invariant grid equation.
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Remark 5.2. The heat equation is a linear partial differential equation in two independent

variables. One might thus consider to set up a grid equation not only for spatial but also

for temporal adaptation. The reason why we refrain from spatial-temporal adaptation here

is that the symmetry group G of the heat equation is compatible with flat time layers, i.e.

tni+1 − tni = 0 is a G-invariant equation. Improving the invariant numerical scheme constructed

above using temporal adaptation would thus not allow one a fair comparison against the original

non-invariant FTCS scheme for the heat equation. Moreover, flat time layers are well-agreed with

the physics of the heat transfer problem, which affects all points of the domain simultaneously.

5.6 Numerical properties of the invariant scheme

In this section we investigate the numerical properties of the scheme (5.11) and related schemes.

We start our consideration with the estimation of the local truncation error of the scheme. The

study of this question is relevant because so far little is known about the relation between the

order of a non-invariant scheme and its invariantized counterpart.

The discretization of the heat equation in computational coordinates (5.7) can be formally

represented as

ud
τ − xd

τ

ud
ξ

xd
ξ

− 1

(xd
ξ )2

(
ud
ξξ −

xd
ξξ

xd
ξ

ud
ξ

)
= 0, (5.14)

where in the present case we assume that derivatives are approximated with the aid of a standard

FTCS scheme. More general schemes will be considered after the order of the invariantized FTCS

scheme is established.

Theorem 5.2. The order of the invariant scheme (5.11) is the same as the order of the

scheme (5.14), namely first order in time and second order in space, provided that an Euler

forward step and second order centered differences are used to approximate the time and space

derivatives arising in both the differential equation (5.14) and the normalization conditions (5.8).

Proof. Invariantizing the scheme (5.14) using the normalization conditions (5.8) leads to

1− 4

ι((xd
ξ )2)

ι(ud
ξξ) = 0, (5.15)

where ι(f)(z) denotes the invariantization of the function f(z). By definition, invariantization

of a function f(z) means to transform the argument z and plug in the moving frame for the

group parameters. In the present case, the transformed form of (5.15) can be written as

1− 4eε3−ε5x−ε
2
5t−2ε4

(xd
ξ )2

(e−ε5h
+
uni+1 + eε5h

−
uni−1 − 2uni ) = 0.

Using the normalization condition uni = 1 we obtain that

ũni = 1 = eε3−ε5x−ε
2
5tuni

and thus the last expression can be recast as

e2ε4uni −
4

(h+ + h−)2
(e−ε5h

+
uni+1 + eε5h

−
uni−1 − 2uni ) = 0. (5.16)
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Let us now determine the local discretization error in the parameter ε5. The respective moving

frame component is

ε5 =
lnuni+1 − lnuni−1

h+ + h−
,

which upon using (5.10) expands to

ε5 =
1

xξ

uξ
uni

+O(∆ξ2). (5.17)

Substituting ε5 into the second term of Eq. (5.16) and expanding the exponential functions in

the same term into Taylor series, we obtain after some rearranging

e2ε4uni −
1

x2
ξ∆ξ

2 +O(∆ξ4)

(
uni+1 + uni−1 − 2uni − ε5

(
xξ∆ξ(u

n
i+1 − uni−1) +

1

2
xξξ∆ξ

2(uni+1 + uni−1)

)
+

1

2
ε2

2x
2
ξ∆ξ

2(uni+1 + uni−1) +O(∆ξ4)

)
= 0.

This can be further simplified to

e2ε4uni −
1

x2
ξ

(
uξξ −

u2
ξ

uni
−
xξξ
xξ
uξ

)
+O(∆ξ2) = 0. (5.18)

It now remains to expand the first term in Eq. (5.18). The moving frame component for ε4

in (5.9) can be recast as

e2ε4uni =

exp

(
−∆τ

(
xn+1
i − xni

∆τ

lnuni+1 − lnuni−1

h+ − h−
+

(
lnuni+1 − lnuni−1

h+ − h−

)2
))

un+1
i − uni

∆τ

Using xn+1
i = xni + xτ∆τ +O(∆τ2) and un+1

i = uni + uτ∆τ +O(∆τ2) and again expanding the

exponential function into a Taylor series, we derive

e2ε4uni = uτ − xτ
uξ
xξ
− 1

x2
ξ

u2
ξ

uni
+O(∆τ,∆ξ2).

Plugging this into Eq. (5.18) we arrive at

uτ − xτ
uξ
xξ
− 1

x2
ξ

(
uξξ −

xξξ
xξ
uξ

)
+O(∆τ,∆ξ2) = 0,

which completes the proof of the theorem.

A more general statement is the following one:

Theorem 5.3. The order of spatial discretization of an invariant finite difference scheme for

the heat equation in computational variables equals the order p ∈ N of the spatial discretization of

the associated non-invariant finite difference scheme provided that centered differences of order

p are used to approximate both the derivatives in the heat equation and in the normalization

conditions (5.8).
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Proof. In view of the general form (5.15) of the invariantization of scheme (5.14), we study the

invariantization of the terms xξ and uξξ.

The invariantization of (xd
ξ )2 = (xξ +O(∆ξp))2 is ι((xd

ξ )2) = e2ε4(x2
ξ +O(∆ξp)) and is of the

same order p if, as required, the moving frame component ε4 stems from the approximation of

ud
τ = 1 using pth order accuracy and thus only includes approximations of derivatives with that

accuracy.

Let us now investigate the invariantization of discretizations of uξξ. The general form of a

centered difference approximation of uξξ of even order p is

uξξ =
1

∆ξ2

p/2∑
j=−p/2

c2
p,ju

n
j +O(∆ξp),

where c2
p,j = 2c1

p,j/j, j ∈ A = {−p/2, . . . ,−1, 1, . . . , p/2}, c2
p,0 = −2

∑p/2
i=1 1/i2 and

c1
p,j =

(−1)j+1(p/2)!2

j(p/2 + j)!(p/2− j)!
, j ∈ A

and c1
p,0 = 0 are the coefficients from the pth order approximation of uξ, i.e.

uξ =
1

∆ξ

p/2∑
j=−p/2

c1
p,ju

n
j +O(∆ξp).

See [17] for a discussion of the algorithm for finding the weights ckp,j in higher-order finite

difference approximations of the kth derivative of u. The invariantization of uξξ is

ι(uξξ) =
1

∆ξ2

p/2∑
j=−p/2

c2
p,j exp(ε3 − ε5x

n
j − ε2

5τ
n)unj ,

or, upon using the normalization condition uni = 1,

ι(uξξ) =
1

∆ξ2

1

uni

p/2∑
j=−p/2

c2
p,j exp(−ε5∆xj)u

n
j , (5.19)

where we expand

∆xj = xnj − xni =

∞∑
k=1

(j∆ξ)k

k!

∂kx

∂ξk
, uni =

∞∑
l=0

(j∆ξ)l

l!

∂lu

∂ξl
.

Using the expressions for ∆xj and uni , the expression (5.19) can be expanded and rearranged in

powers of j∆ξ in the form

ι(uξξ) =
1

∆ξ2

1

uni

p/2∑
j=−p/2

∞∑
k=0

(−1)kc2
p,jAk(j∆ξ)

k,

where

A2 =
1

2

(
uξξ − ε5(2xξuξ + xξξu

n
i ) + ε2

5x
2
ξu
n
i

)
.
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The expressions for Ak, k 6= 2, are not required subsequently. The proof is completed upon

substituting for ε5 the corresponding moving frame component (which is of order p if the nor-

malization ud
x = 0 is approximated with pth order accuracy) and by noting that

p/2∑
j=−p/2

c2
p,jj

k =


0 for k ∈ {0, 1, 3, . . . p+ 2, 2n}, n ∈ N
2 for k = 2

ck 6= 0 else

where the precise values of the constants ck follow from evaluating the respective sums.

The scheme (5.11) is only of first order in time τ = t. To construct a scheme that is second

order in time, we can start with a non-invariant scheme (5.14) and discretize the time derivative

ud
τ with second order accuracy, i.e. we set ud

τ = (un+1
i −un−1

i )/(2∆τ), where un−1
i is the value of

u at the previous time step τn−1 = τn−∆τ . It is now necessary to check whether invariantizing

this leapfrog discretization leads to an invariant scheme that is also second order in time.

Theorem 5.4. Invariantization of the scheme (5.14) in which a leapfrog step and second or-

der centered differences are used to approximate the time and space derivatives, leads to an

invariant scheme that is both second order in time and space provided that the normalization

conditions (5.8) are approximated using discretizations that are of second order.

Proof. To prove this theorem it is sufficient to establish the order of the first term in Eq. (5.18).

We proceed in an analog manner as in the proof of Theorem 5.2, i.e. we discretize the normal-

ization condition ud
τ = 1 but now with second order accuracy. This yields

ũd
τ̃ =

eε3−ε5x
n
i −ε25τn

2e2ε4∆τ

(
e−ε5xτ∆τ−ε25∆τun+1

i − eε5xτ∆τ+ε25∆τun−1
i

)
= 1.

Using the normalization condition uni = 1 as before and expanding the exponential functions we

derive

e2ε4uni =
1

2∆τ

(
un+1
i − un−1

i −∆τ(ε5xτ + ε2
5)(un+1

i + un−1
i )

)
+O(∆τ2)

and upon noting that un+1
i + un−1

i = 2uni +O(∆τ2) we obtain

e2ε4uni = uτ − xτ
uξ
xξ
− 1

x2
ξ

u2
ξ

uni
+O(∆τ2,∆ξ2),

where we have substituted the expression (5.17) for ε5. Plugging this result into Eq. (5.18)

completes the proof of the theorem.

The actual form of the resulting invariant leapfrog scheme is

exp
(
−∆τ

(
x̂d
τ (lnu)d

x + ((lnu)d
x)2
))
un+1
i − exp

(
∆τ
(
x̌d
τ (lnu)d

x + ((lnu)d
x)2
))
un−1
i

2∆τ
−

4

(
uni+1

(
uni+1

uni−1

)−h+/(h++h−)

+ uni−1

(
uni+1

uni−1

)h−/(h++h−)

− 2uni

)
(h+ + h−)2

= 0,

(5.20)

where x̂d
τ = (xn+1

i − xni )/∆τ and x̌d
τ = (xni − x

n−1
i )/∆τ .

Higher order in time schemes can be constructed upon invariantizing multi-stage schemes.

Combining this result with the result established in Theorem 5.3 we have found the following:
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Corollary 5.1. Invariantizing a non-invariant finite difference scheme for the heat equation in

computational coordinates preserves the spatial and temporal order of the initial non-invariant

finite difference scheme provided that centered differences are used and the normalization con-

ditions for the moving frame are discretized with the same order as the respective derivatives in

the non-invariant finite difference scheme.

5.7 Invariant interpolation schemes

A common property of invariant numerical schemes for evolution equations possessing a nontriv-

ial maximal Lie invariance group is that it is not possible to use a fixed, orthogonal discretization

mesh. The continuous evolution of the mesh, if not handled properly, can lead to several un-

desirable properties, such as an overly strong concentration of grid points in certain regions

and therefore too poor a resolution in other parts of the integration domain. The problem gets

worse in the multi-dimensional case where mesh tangling or strongly skewed meshes can occur.

But even if the mesh movement can be managed in an optimal way there are various physical

problems for which continuously adapting grids pose a severe challenge. An example for this

are practically all models that are in operational use in weather and climate prediction. These

models employ sophisticated data assimilation strategies and are coupled to subgrid-scale pa-

rameterizations that aim to mimic the effects of unresolved processes on the grid scale variables.

Attempting to make use of data assimilation or parameterization schemes on moving meshes is

not only a technical problem that would cause a significant computational overhead compared

to standard schemes but also a conceptual challenge for it is unclear on how to design parame-

terization schemes that can operate on grids with varying resolution. In order to promote the

ideas of invariant numerical discretization schemes beyond their application to simple evolution

equations it is thus instructive to study possible ways of overcoming the limitations imposed by

the requirement of using moving meshes.

One straightforward idea is to use invariant schemes on fixed (i.e. non-invariant grids). As

was shown in [21] this can lead to improved numerical solutions compared to non-invariant

integrators, while still being excelled by the results that can be obtained using completely

invariant schemes. On the other hand, if moving (invariant) meshes are not tractable for a

particular class of problems, preserving the invariance of a system of differential equations at

least for the discretization of the system itself might be a possible trade-off to take.

Another idea is to use an evolution–projection strategy, which will be proposed in the follow-

ing. This concept relies on using the invariant scheme for the system of differential equations

together with the invariant mesh equations for a single time step followed by the projection of

the numerical solution back to the regular mesh. A similar strategy has proven successful in

semi-Lagrangian time integration schemes [33].

In the present case, the projection step can be practically realized by using interpolation.

Obviously, any standard interpolation scheme can be used to map the numerical solution un+1
i

defined at xn+1
i to the uniformly spaced ξ-grid. This, however, can break the invariance of the

numerical scheme as a whole and so the question arises whether it is possible to accomplish the

interpolation step in a symmetry-preserving fashion.

In the following we discuss two possible ways of formulating invariant interpolation schemes,

both of which can be used for finding interpolations that allow the re-mapping of the numerical

solution on a moving mesh to a fixed, Cartesian, equally-spaced grid. These ways are the
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invariantization of non-invariant interpolation schemes with moving frames and the construction

of interpolations using difference invariants.

Invariantization of interpolation schemes. The moving frame constructed in the course of

invariantizing a finite difference scheme can also be used to invariantize a certain interpolation

method. We exemplify this idea by invariantizing the formula for linear interpolation,

un+1
i (y) = un+1

i + (y − xn+1
i )

un+1
i+1 − u

n+1
i

xn+1
i+1 − x

n+1
i

,

where y ∈ [xn+1
i , xn+1

i+1 ]. The invariantization of this expression using a moving frame associated

with G1 yields the invariant interpolation formula

un+1
i (y) = Un+1

i + (y− xn+1
i )

Un+1
i+1 − U

n+1
i

xn+1
i+1 − x

n+1
i

, Un+1
i = exp((ln ûx̂)d(y− xn+1

i ))un+1
i . (5.21)

Note that we have used a slightly different moving frame for the invarianization as we have used

for invariantizing the finite difference scheme for the heat equation. Specifically, this moving

frame is constructed by replacing the normalization condition ud
x = 0 with ûd

x̂ = 0. The reason

for this is that the moving frame used earlier yielded ε5 = (lnux)d, i.e. it involves the solutions

of ui at the time step τn rather than at τn + ∆τ . Irrespectively of what normalization is

used, both interpolations are invariant. Setting y = ξi in the above interpolation formula yields

un+1
i on the regular computational grid. Note that the interpolation (5.21) is consistent in that

un+1
i (xn+1

i ) = un+1
i and un+1

i (xn+1
i+1 ) = un+1

i+1 .

In a similar manner more sophisticated interpolation schemes can be invariantized. In the fol-

lowing, we will use the invariantization of quadratic interpolation. Usual quadratic interpolation

is based on the expression

un+1(y) = un+1
i−1 Li−1(y) + un+1

i Li(y) + un+1
i+1 Li+1(y), Lj(y) =

i+1∏
k=i−1
k 6=j

y − xn+1
k

xn+1
j − xn+1

k

, (5.22)

where y ∈ [xn+1
i−1 , x

n+1
i+1 ] and Lj(y) are the Lagrangian interpolation polynomials. Invariantizing

this formula using the same moving frame as above we get

un+1(y) = Un+1
i−1 Li−1(y) + Un+1

i Li(y) + Un+1
i+1 Li+1(y), (5.23)

where Ui = exp((ln ûx̂)d(x̂−xn+1
i ))un+1

i , as in the case of the invariant linear interpolation (5.21).

Numerical examples using the invariant quadratic interpolation will be given in Section 5.8.

Interpolation using difference invariants. The product frame on the grid point space allows

invariantizing the elementary variables xni and uni , which yields the system of joint invariants.

In the continuous limit these invariants take the normalization values chosen for x and u to

construct the usual moving frame ρ [17]. On the other hand, on the discrete space M�nξ we only

normalize one xni (i, n fixed) among all the grid points xkl and the analog statement is true for

the associated values ukl . This means that the joint invariants ι(xkl ) and ι(ukl ), l 6= i, k 6= n, are

nontrivial and can be used to assemble invariant interpolation schemes.

In the present case, while we have normalized uni = 1 in the course of constructing the moving

frame ρ�4, we are free to use the moving frame to invariantized any ukl where l 6= i, k 6= n and

this will yield a proper (nontrivial) invariant on the discrete space M�4ξ . As above, we again

112



recompute the moving frame for G1 by replacing the normalization conditions uni = 1 and

ud
x = 0 with un+1

i = 0 and ûd
x̂ = 0, respectively, which yields new expressions for the moving

frame components of ε3 and ε5 given by

ε3 = −((lnun+1
i − xn+1

i (ln ûx̂)d − τn+1((lnux̂)d))2), ε5 = (ln ûx̂)d.

Using this modified moving frame, we then invarianize the variable un+1(ξi), which is the sought

value of u at the point (τn+1, ξi) of the computational domain. This invariantization yields

ι(un+1(ξi)) =
un+1(ξi)

un+1
i

exp((ln ûx̂)d(xn+1
i − ξi)).

Because in the continuous limit the invariantization of un+1(ξi) must reproduce the normalization

condition u = 1, we restrict the difference invariant to the manifold ι(un+1(ξi)) = 1. The

invariant interpolation is thus

un+1(ξi) = exp((ln ûx̂)d(ξi − xn+1
i ))un+1

i (5.24)

and it is again consistent as un+1(xn+1
i ) = un+1

i . More accurate interpolations could be con-

structed by combining the invariants ι(xkl ) and ι(ukl ) in a suitable way.

The advantage of the interpolation methods introduced in this section is that they are invariant

under the group G1, i.e. using these interpolation formulas to map un+1
i back to the ξ-grid does

not break the invariance of the numerical schemes for the heat equation, while still allowing one

to use a regular grid. Invariant interpolations thus allow avoiding the complications that moving

meshes impose on the applicability of symmetry-preserving finite difference discretizations.

5.8 Numerical verification

In order to verify the accuracy predicted above for the various schemes proposed, we set-up the

following problem. On a periodic domain x ∈ [0, 2π[, consider

ut = uxx,

u (x, t = 0) = sin(x− 1) + 2.

On a sequence of grids with N ∈ {2, 4, 8, . . . , 256}, the number of grid points, we compute the

error in the maximum norm between the numerical solution and the exact solution at t = 1.

The time step ∆τ is taken as proportional to h2, h = h+ = h−, in all simulations.

In each of the following figures, we plot the reference line corresponding to O
(
h2
)

dash–

dotted, and the L∞ error as black line where,

‖E‖L∞ = max
x∈[0,2π]

|u (x, 1)− uexact (x, 1)| .

Note that for all approaches described below we expect a second order convergence since the

numerical scheme being used is of second order, its invariantization was shown to preserve this

order and the quadratic interpolation and its invariantization is also of second order.

5.8.1 Invariant scheme without projection

In this test run we use the scheme (5.11) without projection. As a result, the solution is evolving

along the trajectories of the grid equation (5.12). Since the spacing between trajectories is not

constant, i.e. h+ and h− are changing in time, we choose to plot the error versus 1/N . In

Fig. 5.2, we observe the second order convergence expected.
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Figure 5.2: Convergence plot for the invariant scheme (5.11) with invariant grid equation (5.12)

and without re-mapping.

5.8.2 Invariant scheme with non-invariant quadratic interpolation

In this scheme we interpolate the solution of the invariant scheme (5.11) at every step back onto

the regular grid using standard Lagrange quadratic interpolation (5.22). As a result, we have

the solution on a regular grid with step-size h = 1/N . In Fig. 5.3, we observe the second order

convergence expected.

5.8.3 Invariant scheme with invariant quadratic interpolation

In this scheme, we interpolate the solution of the invariant scheme (5.11) at every step back

onto the regular grid using the invariant Lagrange quadratic interpolation (5.23) described in

the previous section. As for the case above, at each time step we have the solution on a regular

grid with step-size h = 1/N . In Fig. 5.4, we observe the second order convergence expected.

5.8.4 Linearity preservation in the invariant numerical scheme

Linearity is not preserved by construction in the schemes proposed. For this reason it is instruc-

tive to check numerically whether or not linearity is preserved in the fully invariant scheme.

Consider the initial value problem,

ut = uxx

u (x, t = 0) = (sin(x− 1) + 2) + (cosx+ 2),

the solution of which we call uexact. We then solve numerically the following two equations

uat = uaxx with ua(x, 0) = sin(x− 1) + 2,

ubt = ubxx with ub(x, 0) = cosx+ 2,
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Figure 5.3: Convergence plot for the invariant scheme (5.11) with invariant grid equation (5.12)

using non-invariant quadratic interpolation (5.22) as projection.

10
−2

10
−1

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

h

|u
−

u
e
x
a
c
t| L

∞

Figure 5.4: Convergence plot for the invariant scheme (5.11) with invariant grid equation (5.12)

using invariant quadratic interpolation (5.23) as projection.

and define us = ua + ub.

Fig. 5.5 depicts the L∞ error between uexact and us. We observe a convergence rate of second

order. In other words, despite the fully invariant numerical scheme does not explicitly preserve
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the symmetry associated with the linear superposition principle, we observe that the linearity

property is preserved approximately to the order of the method.
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Figure 5.5: Convergence plot for the linearity test using the invariant scheme (5.11) with invari-

ant grid equation (5.12) using invariant quadratic interpolation (5.23) as projection.

5.9 Conclusions

In this paper we construct invariant discretization schemes using the method of invariantization

via equivariant moving frames. The advantage of this technique is that it allows one to start with

a given non-invariant scheme and convert this initial scheme into a finite difference approximation

of a system of differential equations L that is invariant under the same maximal Lie invariance

group G (or a suitably chosen subgroup of G) as admitted by L.

The possibility of converting non-invariant numerical schemes into invariant discretizations

may lead to the overly optimistic speculation that the schemes constructed by invariantization

could be easily included in existing numerical models using the original scheme. The hurdle

preventing this in practice is that preserving symmetry groups of systems of evolution equations

more complicated than scalings or translations requires the use of moving grids. Converting

numerical models that use standard discretization schemes based on fixed lattices to (invariant)

discretization schemes on moving meshes is not an easy task. At the same time, rewriting

numerical models from scratch for the simulation of involved physical processes using symmetry-

preserving schemes might be a time-consuming and costly task too and it not certain that this

is feasible at all. Moreover, it is as of now unclear whether preserving symmetries in numerical

schemes for multi-dimensional systems of partial differential equations gives enough added value

compared to standard schemes that one might justify such an undertaking in practice.

This is why one relies on finding methods allowing one to efficiently include invariant dis-

cretization schemes into existing numerical models without the need to rewrite new models
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from scratch that incorporate the invariance methodology. The method proposed in this arti-

cle solves this problem by breaking the integration procedure into two steps, the time-stepping

using the invariant numerical scheme with an invariant numerical grid equation and the pro-

jection (interpolation) of the results obtained at intermediate grid points to the regular mesh.

This interpolation can be done in an invariant way by applying the moving frame map used

to invariantize the initial discretization scheme also to a particular interpolation method. An

alternative is to assemble the invariant interpolation method using joint invariants. Either way,

it is worthwhile pointing out that interpolations requiring only data given at a single time level

are already invariant under most symmetry groups as admitted by physical systems of differ-

ential equations. Thus, invariantization of interpolation formulas will often only lead to minor

modifications of the initial interpolation method chosen and the influence on the numerical so-

lution might be rather small. In the numerical tests carried out above for the heat equation,

the difference in the convergence properties we found when using invariant or non-invariant

interpolation methods is indeed small although using the invariant interpolation gave slightly

better numerical results. This is encouraging and the reason why we plan to further investigate

invariant numerical schemes using the projection procedure.

We illustrate the evolution–projection strategy by integrating the one-dimensional linear heat

equation with an invariant numerical scheme. The heat equation has been studied quite exten-

sively in light of its invariance properties and in particular it is a standard model for the con-

struction of invariant numerical schemes [2, 8, 52]. At the same time, a comprehensive numerical

analysis of such schemes was not given before and thus seems relevant to be reported. This is

another aim of the present paper. Again, the analysis of numerical properties of discretization

schemes is considerably easier if one can use non-evolving meshes.

Further work we intend to do is to employ the evolution–projection strategy to multi-

dimensional systems of differential equations using both higher-order discretization and inter-

polation schemes.
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In the recent paper by Bernardini et al. [J. Comput. Phys. 232 (2013), 1–6] the discrepancy

in the performance of finite difference and spectral models for simulations of flows with a

preferential direction of propagation was studied. In a simplified investigation carried out

using the viscous Burgers equation the authors attributed the poorer numerical results of

finite difference models to a violation of Galilean invariance in the discretization and propose

to carry out the computations in a reference frame moving with the bulk velocity of the flow.

Here we further discuss this problem and relate it to known results on invariant discretization

schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are

proposed and compared with the discretization using the remedy proposed by Bernardini

et al.

6.1 Introduction

In the recent paper [1] a possible remedy was discussed to improve the poor numerical behavior

of finite difference simulations of turbulent flows with a preferential propagation direction. It

was shown that the violation of Galilean invariance of the finite difference scheme is the most

likely explanation why it is necessary to use a significantly larger number of grid points in

finite difference calculations than in spectral methods to achieve comparably accurate numerical

results. The recommendation given in [1] is to carry out the finite difference computations in a

reference frame that moves with the constant stream-wise bulk velocity in the flow direction. It

was then shown for the example of Burgers equation that the finite difference model may yield

similar numerical results as spectral discretizations with approximately the same number of grid

points.
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In the present paper we further discuss this problem and the remedy proposed in [1]. In fact,

the problem found and analyzed in [1] has been investigated quite intensively in the field of group

analysis of differential and difference equations, see e.g. [3, 4, 6, 10, 12, 13, 21] and references

therein for some of the most recent results. In particular, it was established by Dorodnitsyn

and collaborators [6, 8, 8] that it is not possible to maintain the Galilean invariance of partial

differential equations in a finite difference model when the mesh does not move in the course

of the numerical integration. This result qualitatively explains why the method proposed in [1]

may work from the geometrical point of view.

The violation of Galilean invariance of stationary discretizations can be readily shown by

applying a Galilean boost, which in the one-dimensional case is

(t̃, x̃, ũ) = (t, x+ εt, u+ ε), (6.1)

where ε ∈ R, to the defining equation of the grid, xn+1
i − xni = 0. Here and in the following, an

upper index indicates the time level and a lower index the spatial grid point. The action of the

Galilean transformation (6.1) on this grid equation yields

x̃n+1
i − x̃ni = xn+1

i − xni + ε(tn+1 − tn),

which clearly fails to be invariant for ε 6= 0. Here we assumed that all the grid points are defined

on the same time layer, i.e. tni+1 = tni = tn. It can be checked that this assumption does not

violate the invariance of most of the equations of hydrodynamics, see also [6] for more details.

Unfortunately, to maintain Galilean invariance it is also not sufficient to carry out the nu-

merical simulations with a standard finite difference scheme in a constantly moving reference

frame as proposed in [1]. It can be verified numerically that the resulting numerical solutions in

the resting and in the convecting reference frames do not coincide, which is explicitly shown in

Figure 6.1 for a FTCS discretization of Burgers equation. In this figure, we display the numeri-

cal solution at t = 0.5 in the resting reference frame (solid line) and in a reference frame which

moves with constant velocity ε3 = 1 (solid line with triangles) as in [1].

Instead of using a non-invariant finite difference scheme in a convecting reference frame, it is

therefore desirable to construct proper finite difference discretizations that preserve the invari-

ance group of a physical differential equations. The above observation on the incompatibility

of stationary meshes with Galilean invariance have severe consequences on the design of finite

difference models for the equations of fluid dynamics. In fact, it renders necessary to come

up with strategies to combine the requirement of using moving meshes (in order to preserve

Galilean invariance) with approaches that lead to discretization schemes having good numerical

properties, such as stability, optimal grid adaptation (e.g. equidistribution of the discretization

error) and the possibility for a parallel implementation. From a more general point of view, it is

necessary to bridge the fields of group analysis and numerical analysis of differential equations.

To outline this connection for the example of Burgers equation considered in [1] is the main

aim of the present paper. In Section 6.2 we discuss invariant finite difference schemes for Burg-

ers equation. We construct three different types of invariant numerical schemes, namely La-

grangian discretizations, invariant adaptive Eulerian schemes and invariant schemes employing

an evolution–projection strategy. We relate these schemes to the remedy for reducing the effect

of violation of Galilean invariance proposed in [1]. Numerical results for the different schemes

discussed are presented in Section 6.3. The final Section 6.4 contains the conclusions of the

paper.
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Figure 6.1: Integration using the classical FTCS discretization of Burgers equation (6.2). Solid

line: Original integration in a resting reference frame. Solid lines with triangles: Integration

in a reference frame moving with constant velocity ε = 1 as in [1]. The results in the moving

reference frames were shifted back to the origin for proper comparison.

6.2 Invariant finite difference schemes for Burgers equations

As in [1], we introduce Burgers equation as a canonical example for high Reynolds number flows,

ut + uux − νuxx = 0, (6.2)

where ν > 0 is the viscosity, which could be scaled to 1 by means of an equivalence transforma-

tion. It is one of the most investigated models in the group analysis of differential equations,

see e.g. [4, 5, 42]. Its maximal Lie invariance algebra g is spanned by the basis elements

∂t, ∂x, t∂x + ∂u, 2t∂t + x∂x − u∂u, t2∂t + tx∂x + (x− tu)∂u. (6.3)

The associated one-parameter Lie symmetry groups are

Γ1 : (t, x, u) 7→ (t+ ε1, x, u),

Γ2 : (t, x, u) 7→ (t, x+ ε2, u),

Γ3 : (t, x, u) 7→ (t, x+ ε3t, u+ ε3),

Γ4 : (t, x, u) 7→ (e2ε4t, eε4x, e−ε4u),

Γ5 : (t, x, u) 7→
(

t

1− ε5t
,

x

1− ε5t
, u(1− ε5t) + ε5x

)
,

(6.4)

showing that Burgers equation (6.2) admits time translations, space translations, Galilean

boosts, scalings and time inversions as one-parameter symmetry transformations.

Invariant numerical schemes for Eq. (6.2) have already been investigated in the literature [6, 9,

10, 52]. The schemes constructed in these references preserve the entire five-parameter symmetry

group G of Burgers equation. However, as was discussed in [4], it is more natural to preserve

only those symmetries that are compatible with a particular set of initial and boundary value
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problems chosen. In the present, we focus on periodic boundary conditions. The time inversion

Γ5 is then not compatible with a periodic domain as it does not map any periodic function

u to another periodic function for ε5 6= 0. As a result we only aim to numerically preserve

the first four symmetry transformations Γ1–Γ4. These transformations form the subgroup G1

of the maximal Lie invariance group G of Burgers equation. It is also important to note that

the subgroup G1 is typical for various models of fluid mechanics. Consequently, the strategies

discussed below are also relevant for physically more interesting higher-dimensional models of

hydrodynamics, such as the Euler or Navier–Stokes equations.

Arguably, the most important observation established in the field of invariant finite difference

schemes is that it is generally not possible to maintain all symmetries of a system of differential

equations if the discretization scheme is constructed on a fixed, orthogonal discretization mesh [6,

13, 21]. In the case of Burgers equation, it is the presence of the Galilean transformations Γ3 that

prohibits the use of a fixed discretization mesh. This was explicitly shown in the introduction.

Hence, finite difference models operating on a fixed mesh cannot be Galilean invariant.

A possible remedy is to use the following expression as a discretization of Eq. (6.2)

un+1
i − uni

∆t
+
(
uni − ẋdi

) uni+1 − uni−1

xni+1 − xni−1

− 2ν

xni+1 − xni−1

(
uni+1 − uni
xni+1 − xni

−
uni − uni−1

xni − xni−1

)
= 0 (6.5)

where ẋdi = (xn+1
i −xni )/∆t. Applying the transformations Γ1–Γ4 one readily verifies the invari-

ance of this discretization. The reason for this scheme being invariant is that the introduced

grid velocity ẋdi transforms as ẋdi → ẋdi + ε4 under the action of the Galilean transformation and

the additional term involving ε4 is exactly compensated by the Galilean transformation of uni .

In other words, introducing a moving mesh into the discretization of Burgers equation restores

the Galilean invariance of the finite difference scheme. See [6, 12, 17, 21] for further details on

the systematic construction of invariant finite difference discretization schemes.

In [4] it was shown that the above discretization can be interpreted as a discretization of (6.2)

in terms of computational coordinates, i.e. in a coordinate system that remains fixed in the

presence of grid adaptation. To accomplish this transformation, one sets x = x(θ, ξ), where

θ = t and ξ = ξ(t, x) is the spatial computational coordinate. Transforming (6.2) to the (θ, ξ)

coordinates and discretizing the result using a FCTS scheme leads to (6.5).

The question remaining is how to determine the grid velocity ẋdi , which involves the yet un-

known location of the grid points on the subsequent time layer n+1. As pointed out in [21], there

are two main strategies to find xn+1
i : The first is to construct a grid equation that is invariant

under the same symmetry group as the discretization of the physical differential equation. The

second method is to regard the grid adaptation as unconstrained from the symmetry require-

ments imposed by the physical differential equation, i.e. to use a non-invariant grid equation.

We will mostly focus on the first method here as it is geometrically more grounded.

In the first method we require the grid equation to be invariant under the same symmetry

group as is the discretization of the physical differential equation. In the present case, this

amounts to constructing a grid equation that is invariant under the transformations Γ1–Γ4. One

simple possibility is to take

ẋdi − uni = 0, (6.6)

as this equation is obviously Galilean invariant and also does not violate the remaining trans-

formations from G1. This choice boils down to discretizing Burgers equation in Lagrangian
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coordinates, i.e. the grid velocity equals the physical velocity. Indeed, Lagrangian discretiza-

tion schemes are among the earliest examples of invariant discretizations for hydrodynamical

equations, see e.g. [6]. The problem with Lagrangian discretizations is that one in general does

not have proper control over the evolution of the grid points. This can be a severe problem,

especially in the multi-dimensional case, where grid points can concentrate in certain regions,

deteriorating the local resolution of the scheme in areas away from these concentration regions.

Perhaps numerically more satisfying are grid equations that couple the evolution of the grid

to the development of pronounced features in the numerical solution, i.e. to use proper grid

adaptation strategies. Linking grid adaptation to the construction of invariant discretization

schemes proved relevant in the numerical investigation of blow-up problems, see e.g. [7, 8, 11].

A possible way to realize an invariant adaptive grid is based on the equidistribution principle

for a monitor function ρ,

(ρxξ)ξ = 0, (6.7)

which plays a central role in the construction of r-adaptive numerical schemes in one space

dimension. See again [8, 11] and references therein for an extensive discussion of the concept

of equidistributing meshes. An invariant equidistributing mesh is obtained by discretizing (6.7)

in a G1-invariant way. The general feasibility of this approach depends on the structure of the

symmetry group one aims to preserve [4] but in general it can be realized for the symmetry

groups one usually encounters in hydrodynamics. The basis for this approach is to choose a

proper monitor function ρ, that leads to a form of (6.7) that is invariant under the symmetry

subgroup G1 of Burgers equation and then to discretize this expression in an invariant way. A

G1-invariant monitor function is

ρ =
√

1 + αu2
x,

which coincides with the arc-length function for α = 1. The reason for including a generic α in

this expression is that the term ux is not scale invariant, i.e. it transforms as ũx̃ = e−2ε3ux and

thus, as it stands, ρ is not scale invariant. Extending the scalings of (t, x, u) to an equivalence

transformation involving α by adopting the transformation rule α̃ = e2ε3α then indeed leads to

a G1-invariant function ρ. It should be stressed though that no such extension of the Galilean

transformation to an equivalence transformation is needed to guarantee the Galilean invariance

of the resulting form of the equidistribution principle (6.7).

Using the modified arc-length weight function, a possible G1-invariant discretization of (6.7)

is

(ρni+1 + ρni )(xn+1
i+1 − x

n+1
i )− (ρni + ρni−1)(xn+1

i − xn+1
i−1 ) = 0,

ρni =

√
1 + α

uni+1 − uni−1

xni+1 − xni−1

,
(6.8)

which can be solved using a relaxation scheme, such as e.g. Gauß-Seidel iteration to obtain

xn+1
i and hence to complete the invariant numerical scheme (6.5). More sophisticated ways to

solve (6.7) are conceivable as well and could be used to improve the quality of the resulting

adaptive discretization scheme.

A further possibility for the construction of invariant numerical schemes is to invoke an

evolution–projection strategy. This idea was put forward in [40, 50] for the non-invariant dis-

cretization of advection equations and extended in [3] to find an invariant discretization of the
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linear heat equation. The main approach in the evolution–projection strategy is to use the in-

variant numerical scheme and the invariant mesh equation only for a single integration step and

to use a projection operator (i.e. an interpolation) to map the solution from the off-grid points

back to the initial, uniformly spaced mesh. If the interpolation is done in an invariant way, i.e.

the interpolation used preserves the invariance (sub)group of the system of differential equations

being discretized, then the entire discretization procedure becomes invariant. The advantage of

this approach is that moving meshes can be completely avoided.

In the present case of Burgers equation (6.2) we observe that classical interpolation schemes

such as linear, quadratic or cubic spline interpolation already preserve the invariance subgroup

G1. This means that we can use the aforementioned interpolations to re-map the solution un+1
i

defined at the points xn+1
i back to x̂n+1

i ∈ {xni }, without breaking the invariance of the scheme.

We show this explicitly for linear interpolation here, which is defined as

u(x̂n+1
i ) = un+1

i +
un+1
i+1 − u

n+1
i

xn+1
i+1 − x

n+1
i

(x̂n+1
i − xn+1

i ) = L(xn+1
i , xn+1

i+1 , u
n+1
i , un+1

i+1 ; x̂n+1
i )

for the interpolation of values x̂n+1
i lying within the interval [xn+1

i , xn+1
i+1 ]. Then, for transforma-

tions of the form Γ1–Γ4, we obtain that

ũ(˜̂xn+1

i )− L(x̃n+1
i , x̃n+1

i+1 , ũ
n+1
i , ũn+1

i+1 ; ˜̂xn+1

i ) = u(x̂n+1
i )− L(xn+1

i , xn+1
i+1 , u

n+1
i , un+1

i+1 ; x̂n+1
i ),

which proves the invariance of linear interpolation under transformations from G1. Similarly,

invariance of quadratic and cubic spline interpolation can be shown.

Regarding the use of non-invariant grid equations, which is the second possibility to complete

the description of the scheme (6.5), in principle all choices excluding xn+1
i = xni are admissible.

We will now return to the remedy proposed in [1]. The proposed approach falls into the category

of non-invariant grid equations. In that paper, it was suggested to use a reference frame moving

with the (constant) bulk velocity of the flow. In the case of Burgers equation, the authors set

xn+1
i = xni + c∆t, (6.9)

where c = const. It is readily verified that this grid equation is not Galilean invariant, as

x̃n+1
i − x̃ni − c∆t̃ = xn+1

i − xni − (c− ε4)∆t.

If c 6= 0 is the bulk velocity of a flow, one may indeed expect that the numerical results obtained

from scheme (6.5) with grid equation (6.9) are better than for scheme (6.5) on a stationary grid.

More precisely, Galilean invariance could be restored by extending the transformation Γ4 to c by

setting c̃ = c+ ε4. This extension is justified in case c is related to u, which is the main reason

why the remedy proposed in [1] may work. In other words, reference frames moving with a

constant velocity could be made Galilean invariant in the sense that Galilean transformations

have an extension to equivalence transformations for such reference frames. A similar extension

of the transformation Γ3 to c is necessary to incorporate the scale invariance.

For the sake of convenience, we summarized the characteristics of the different schemes dis-

cussed in the present section in Table 6.1.

6.3 Numerical results

In this section we present some numerical results obtained from the invariant discretization

schemes introduced in the previous section. For all the experiments, we use u(0, x) = sin(x)
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Table 6.1: Different numerical schemes for the viscous Burgers equation (6.2).

Numerical scheme Grid equation Galilean invariance Grid spacing

Finite differences None Not invariant constant

Lagrangian Lagrangian grid movement fully invariant variable

Eulerian adaptive Equidistribution principle fully invariant variable

[1] Bernardini et al. Constant grid movement semi-invariant constant

Evolution–projection Lagrangian grid movement fully invariant constant

as the initial condition on a 2π-periodic domain and the integration is carried out up to time

t = 0.5 for ν = 0.1. Unless otherwise stated, we use N = 64 grid points and fix the time step

with ∆t ∝ h2, where h is the mean grid spacing over the domain.

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u

 

 

uFD[1], ε3 = 0
uFD[1], ε3 = 1
uL, ε3 = 0
uL, ε3 = 1
uA, ε3 = 0
uA, ε3 = 1
uEP , ε3 = 0
uEP , ε3 = 1

Figure 6.2: Integration of Burgers equation (6.2) using the three invariant discretization schemes

introduced in Section 6.2 as well as the scheme presented in [1]. Solid line: Finite differences

in a resting reference frame as in [1]. Solid line with squares: Finite differences in a constantly

moving reference frame as in [1], ε3 = 1, c = −0.5. Dashed–dotted line: Lagrangian scheme

in the resting reference frame. Dashed line: Lagrangian scheme in a reference frame moving

with constant velocity ε3 = 1. Solid line with diamonds: Eulerian adaptive scheme in the

resting reference frame. Solid line with crosses: Eulerian adaptive scheme in a reference frame

moving with constant velocity ε3 = 1. Solid line with pluses: Evolution–projection scheme in

the resting reference frame. Solid line with circles: Evolution–projection scheme in a reference

frame moving with constant velocity ε3 = 1.

In Figure 6.2 we carry out numerical integrations for three invariant numerical schemes for

Burgers equation based on (6.5) and employing different grid equations: (i) The fully Lagrangian

scheme uses the Lagrangian grid equation (6.6), (ii) in the invariant Eulerian adaptive scheme

the grid points {xn+1
i } is determined from the invariant discretization of the equidistribution

principle (6.7) and (iii) in the evolution–projection scheme we use the Lagrangian grid equa-

tion (6.6) and use quadratic interpolation to re-map the off-grid points to their original location

at the previous time step. For the sake of reference, we also add the scheme proposed in [1].

For all schemes we numerically verify Galilean invariance, i.e. each of the pairs of integrations

in a resting and a constantly moving coordinate system yields visually the same numerical
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solution for (i) the Lagrangian scheme (dashed–dotted line, ε3 = 0 and dashed line, ε3 = 1), (ii)

the Eulerian adaptive scheme (solid line with diamonds, ε3 = 0 and solid line with crosses ε3 = 1)

and (iii) the evolution–projection scheme (solid line with pluses, ε3 = 0 and solid line with circles

ε3 = 1). Moreover, it is seen from Figure 6.2 that all three schemes yield approximately the same

numerical solution. In contrary, the scheme proposed in [1] is not invariant (solid line, ε = 0

and solid line with squares ε = 1 and c = −0.5), illustrating the discussion from Section 6.1.

We aim to detail and analyze this result further now.
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Figure 6.3: Grid spacing ∆xni = xni+1 − xni at final time t = 0.5 for the five discretizations of

Burgers equation shown in Figures 6.1 and 6.2.

The difference between the three invariant numerical schemes for Burgers equation is the

invoked grid equation. For the sake of a clearer presentation, we depict the grid spacing ∆xni =

xni+1 − xni as a function of the location of the grid points xni at the final integration time

t = 0.5 in Figure 6.3. For the classical, non-invariant finite difference scheme the spacing is

by definition constant (solid line) as is in the scheme proposed in [1] (solid line with squares).

For the Lagrangian discretization (dashed line) the location of the grid points depends on the

solution itself and therefore one does not have control over the local resolution. It is a mere

consequence of equating the physical velocity and the grid velocity. In the adaptive Eulerian

scheme (dashed line with diamonds) we observe a proper concentration of the grid points along

the building shock, which follows from using the equidistribution principle and the arc-length

monitor function. Away from the steepening front, the points remain quasi-equally distributed.

By construction, the grid points in the evolution–projection method (solid line with pluses) are

again equally spaced.

To estimate the overall accuracy of the different schemes, in Figure 6.4 we display the point-

wise differences of the numerical solutions and the exact solution of the chosen initial value

problem u(0, x) = sin(x) for Burgers equation, which is

ue(t, x) = 2ν

∑∞
j=1 ajje

−νtj2 sin jx∑∞
j=0 aje

−νtj2 cos jx
,

a0 =
1

2π

∫ 2π

0
e−(1−cosx)/(2ν)dx, aj>0 =

1

π

∫ 2π

0
e−(1−cosx)/(2ν) cos jx dx.
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Figure 6.4: Pointwise difference of the numerical and the exact solution at final time t = 0.5 for

the five discretizations of Burgers equation shown in Figures 6.1 and 6.2.

It can be seen from Figure 6.4 that all the numerical schemes achieve a comparable accuracy

(with the scheme proposed in [1] coinciding with classical finite differences). The overall l∞-

errors of the schemes for the runs depicted in Figure 6.4 are summarized in Table 6.2.

Table 6.2: l∞-errors for the various invariant discretization schemes for the viscous Burgers

equation (6.2) with N = 64 grid points. Classical finite differences are included as reference.

classical FD Lagrangian Eulerian adaptive Evolution–projection

||E||l∞ 2.53 · 10−3 1.69 · 10−3 2.50 · 10−3 2.63 · 10−3

The convergence rates of the different schemes in the l∞-norm are depicted in Figure 6.5 using

N ∈ {4, 8, 16, 32, 64, 128, 256, 512} grid points. It is seen from this plot that all schemes yield

comparable errors. The overall convergence rates demonstrate that all three types of invariant

schemes for Burgers equation introduced in this paper are asymptotically of second order and

that the different invariant discretization strategies do not alter the accuracy of the underlying

approximations. More details on this can be found in [3].

6.4 Conclusion

In the present paper we have revisited the problem recently pointed out in [1] that classical

finite difference discretizations of the governing equations of hydrodynamics violate Galilean

invariance. We have discussed three possible ways of constructing Galilean invariant finite

difference schemes for Burgers equation: (i) Lagrangian discretization schemes, (ii) Eulerian

adaptive discretizations and (iii) discretizations using an evolution–projection strategy. These

three approaches can be readily adapted to the two- and three-dimensional Euler or Navier–

Stokes equations. The approach proposed in [1] leads to a semi-invariant scheme in that the

authors use the discretization on a moving coordinate system but employ a non-invariant grid

equation by moving the grid points with a constant velocity (e.g. the bulk velocity) rather than

with the actual physical velocity. If properly done, this approach can indeed reduce the effects
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Figure 6.5: Convergence plots for the five numerical schemes presented above for N ∈
{4, 8, 16, 32, 64, 128, 256, 512} grid points. Solid line: Classical finite difference scheme. Solid

line with squares: Scheme [1]. Dashed–dotted line: Lagrangian scheme. Solid line with dia-

monds: Eulerian adaptive scheme. Solid line with pluses: Evolution–projection scheme.

of the violation of Galilean invariance in classical finite difference discretizations, while still not

yielding a fully Galilean invariant scheme.

All of the invariant discretization approaches presented above have their advantages and

disadvantages. Purely Lagrangian discretization schemes are not in widespread use as such

schemes usually lead to a strong concentration of grid points, leaving other regions of the

domain poorly resolved. Moreover, in multi-dimensional cases of interest in hydrodynamics,

Lagrangian schemes can lead to tangled meshes. At the same time, Lagrangian schemes are

good in that they are able to preserve sharp interfaces within a fluid. The Eulerian adaptive

approach is attractive because it provides a natural way to link the problem of finding invariant

discretization schemes to the properties of the numerical solution at each time step. At the

same time, the computational overhead required to efficiently generate the meshes can be a

crucial factor determining the feasibility of the adaptation methodology, especially for multi-

dimensional systems. Finally, in situations where adaptive numerical schemes are not desirable,

the evolution–projection strategy based on the Lagrangian grid equation (or any other invariant

grid equation one is able to find) and a simple (but invariant) interpolation is a possible way to

maintain Galilean invariance in a finite difference scheme while still being able to operate on a

fixed, uniformly spaced mesh. The drawback of the evolution–projection approach is that it also

requires an additional operation, the interpolation, which may cause additional computational

overhead compared to, for instance, the Lagrangian scheme.

Applied to Burgers equation, the three invariant discretization methodologies yielded numer-

ical schemes that are asymptotically second order accurate. Compared to the standard FTCS

scheme, which is also second order accurate, one thus gets as a bonus the preservation of a geo-

metric feature of Burgers equation, namely a subgroup of its symmetry group. The preservation

of this symmetry subgroup can be a crucial factor for problems for which it is inevitable to carry

out the simulations in a moving reference frame. In fact, the benefits offered by an invariant

scheme compared to its non-invariant counterpart of the same order is difficult to assess. On one
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hand, conservation properties of invariant schemes only become evident when long integration

times are considered. On the other hand, in the case of turbulent channel flows, having a high

order numerical scheme guarantees that small features present in the flow are well accounted

for. Only the combination of both properties can lead to accurate long time integration of such

systems. As a result, the construction of higher order yet invariant numerical schemes is a sub-

ject of great importance in both technique and application. This is the subject of current and

future research.
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The Korteweg–de Vries equation is one of the most important nonlinear evolution equations

in the mathematical sciences. In this article invariant discretization schemes are constructed

for this equation both in the Lagrangian and in the Eulerian form. We also propose invariant

schemes that preserve the momentum. Numerical tests are carried out for all invariant

discretization schemes and related to standard numerical schemes. We find that the invariant

discretization schemes give generally the same level of accuracy as the standard schemes with

the added benefit of preserving Galilean transformations which is demonstrated numerically

as well.

7.1 Introduction

This article is part of a general program the purpose of which is to study the possibility of

discretizing the equations of physics while preserving their Lie point symmetries [6–8, 13, 14, 16–

18, 21, 34–37, 49, 53, 54]. There are both conceptual and practical reasons for doing this. From

the conceptual point of view symmetries under rotations, Galilei or Lorentz transformations,

conformal and other transformations are of primordial importance both in classical and quantum

1Presently on sabbatical leave at: Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via

della Vasca Navale 84, 00146 Roma, Italy
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physics. Indeed, in fields such as nuclear and particle physics where the dynamical laws are not

well established, symmetries provide crucial restrictions on the form of the interaction. For

instance, they determine the possible general form of the nucleon-nucleon potential [41, 45]. It

would be a pity to lose such symmetries and their implications in the study of physics in a

discrete world. From the practical point of view symmetries of differential equations determine

many of the properties of solutions. Preserving symmetries in a discretization should provide

difference systems that share some exact solutions with the original differential equations, or

at least provide better approximations than noninvariant systems. In turn, this should have

implications for numerical solutions. Thus, symmetry preserving discretizations should provide

solutions that are in some sense “better” than “standard” discretizations.

The basic idea [6, 13, 53] of this approach is to approximate a differential equation by a “dif-

ference system” consisting of several discrete equations. The solutions of this system determine

the lattice and approximate the solution of the differential equation. In the continuous limit

the lattice equations reduce to identities (like 0 = 0) and the remaining equations go to the

appropriate differential equation. The difference scheme is constructed out of invariants of the

Lie point symmetry group G of the differential equation. The action of G on the independent

and dependent variables is the same as for the continuous case and this action is assumed to

be known. The action of G is not prolonged to derivatives, but to all points of the lattice (the

“discrete jet space”).

This invariant discretization approach has been extensively applied to ordinary differential

equation (ODEs). It has been shown that for first order ODEs an invariant discretization is

exact [49]. The solution of an invariant difference scheme coincides point by point with the

appropriate solution of the ODE. Moreover it is sufficient if the difference system is invariant

under a one-dimensional subgroup of the symmetry group.

For second and third order ODEs it is often possible to integrate the invariant scheme di-

rectly and thus see explicitly how solutions of the difference scheme converge to those of the

ODE [16–18, 54]. It has been shown on the example of numerous second and third order non-

linear ODEs that the invariant discretizations provide more accurate numerical solutions than

standard methods [6, 7, 48]. This is specially so in the neighborhood of singularities where

invariant methods, as opposed to standard ones, make it possible to continue solutions beyond

the singularities.

For partial differential equations (PDEs) the first application of Lie group theory to numerical

methods is, to our knowledge, due to Shokin and Yanenko [51, 55]. Their approach “Differential

approximation” is quite different from ours (for a comparison see [36]).

Quite a few articles devoted to the symmetry adapted discretization of PDEs have appeared

over the last 20 years (see e.g. [2–4, 4, 7, 8, 8–10, 12, 17, 21, 21, 31, 35, 47, 52]). Invariant

discretizations of the Korteweg–de Vries (KdV) equation were presented in [6, 14, 52].

The purpose of this article is to study invariant discretizations of the KdV equations in

greater depth. Thus we will compare the known invariant discretizations amongst each other

and propose new ones. All of them will be tested as numerical schemes for known exact solutions.

Their accuracy and stability will be evaluated by comparing with known analytic solutions.

The KdV equation is very suitable for such a study. On one hand, it is an integrable equation

so a very large body of analytical solutions is known (due to inverse scattering techniques [1,

24]). On the other hand the KdV equation has an interesting Lie point symmetry group that

includes Galilei invariance. It is a prototype of a Galilei invariant evolution equation that can
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be invariantly discretized on a mesh with horizontal time lines, but not on an orthogonal one

(nor any other equally spaced one).

The original invariant discretizations [7, 14] essentially correspond to using the Lagrange

formulation of hydrodynamics in the continuous limit. We suggest an alternative discretization

that is natural in the Eulerian formalism, especially when combined with adaptive computational

schemes.

In Section 7.2 we review some well known results on the symmetry group of the continuous

KdV equation and on its known analytical solutions. We also present the Lagrangian form of

the KdV equation. The invariant discretizations are presented in Section 7.3. All numerical

results are concentrated in Section 7.4. The final Section 7.5 is devoted to the conclusions.

7.2 The continuous KdV equation

We shall write the KdV equation in the form

ut + uux + uxxx = 0. (7.1)

Its Lie point symmetry group is well-known (see e.g. [42]). A basis for its Lie algebra g is given

by the vector fields

D = 3t∂t + x∂x − 2u∂u, B = t∂x + ∂u, P1 = ∂x, P0 = ∂t, (7.2)

corresponding to dilations, Galilei boosts and space and time translations, respectively.

The symmetry algebra g has precisely five conjugacy classes of one-dimensional subalgebras.

A representative list of these classes is given by the algebras

{D}, {B}, {B + P0}, {P0}, {P1}. (7.3)

Conjugacy is considered under the group of inner automorphisms of (7.1), extended by the

simultaneous reflections of x and t

Rx = −x, Rt = −t, Ru = u. (7.4)

Thus, G = R 3G0, where G0 = edDevBet0P0ex0P1 .

The group can be used to get new solutions from known ones. If u(t, x) is a solution of the

KdV equation then so are u(−t,−x) and

ũ(t̃, x̃) = e2du
(
e−3d(t− t0), e−d(x− x0 − v(t− t0))

)
+ e−2dv, d, v, t0, x0 ∈ R, (7.5)

where d, v, t0 and x0 are group parameters.

7.2.1 Lagrangian formulation of the KdV equation

The original form of the KdV equation (7.1) is written in Eulerian variables, i.e. the velocity u is

a function of time and space, u = u(t, x). An alternative to the Eulerian form is the Lagrangian

form. In the Lagrangian description of fluid mechanics the velocity u is a function of time

and of the original position of the fluid particle ξ. Assuming that the fluid particles maintain

their identity (hence ξ is independent of time), one needs to express the KdV equation as an
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equation for u = u(τ, x(τ, ξ)), where τ = t. Using the chain rule, the Eulerian form of the KdV

equation (7.1) is transformed to

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= 0. (7.6)

Up to now, no particular relation between the original physical coordinate x and the new La-

grangian coordinate ξ has been imposed. In the classical Lagrangian framework, this change of

coordinates is specified by setting

xτ (τ, ξ) = u(x(τ, ξ), t). (7.7)

In other words, the change of variables from the Lagrangian coordinates to the Eulerian coor-

dinates is completed upon integrating the equation for the particle trajectories (7.7). The KdV

equation in Lagrangian coordinates then reduces to

uτ +
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= 0.

The change of coordinates from the Eulerian form (7.1) to the form (7.6) is more general

than the particular Lagrangian case given through (7.7). In the more general case, the variables

(τ, ξ) are referred to as the computational coordinates. From the numerical point of view,

using the KdV equation in computational coordinates (7.6) gives the perspective of defining the

relation x = x(τ, ξ) in such a manner that the evolution of the discretization grid is coupled

to the evolution of the KdV equation itself. This is the main idea of using adaptive numerical

schemes [11]. The importance of such schemes in the framework of invariant discretization will

be clarified in Section 7.3.

We should like to stress here that even for the more general form (7.6) of the KdV equation

with yet unspecified relation x = x(τ, ξ) it makes sense to fix the transformation τ = t. This

guarantees that the resulting equation will be of evolutionary type (though it would be sufficient

to put τ = τ(t)).

7.2.2 Symmetry reduction and exact solutions

One of the reasons why exact analytical solutions of PDEs are useful is that they can be used

to check the accuracy of numerical algorithms, in particular the invariant discretizations to

be presented below. For integrable equations with nontrivial symmetry groups (like the KdV

equation) there exist two main sources of exact solutions. One is symmetry reduction, producing

solutions invariant under some subgroup of the symmetry group. The other is the method of

inverse scattering and its generalizations that lead to multisoliton and periodic and quasiperiodic

solutions.

Let us start with the method of symmetry reduction. In order to reduce the KdV equation to

an ODE we impose that the solution u(t, x) be invariant under a one-dimensional subgroup ofG0

corresponding to a one-dimensional subalgebra of the symmetry algebra g. The classification

of these subalgebras leads to the list (7.3). Invariance under a subgroup corresponding to the

algebra element X = τ∂t + ζ∂x + φ∂u corresponds to imposing that u(t, x) in addition to (7.1)

should satisfy the quasilinear first order PDE

τut + ζux = φ. (7.8)
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This equation is solved and the result is put into the KdV equation (7.1) which reduces to an

ODE.

Let us run through the individual subalgbreas listed in (7.3).

(i) P1 = ∂x. From (7.8) we obtain u = f(t) and (7.1) implies that

u(t, x) = A. (7.9)

Thus, the only solution of the KdV invariant under space translations is a constant.

(ii) B = t∂x + ∂u. From (7.8) we get the reduction formula

u(t, x) =
x

t
+ f(t).

Substituting into (7.1) and solving the obtained ODE for f(t) we find f(t) = A
t . Applying the

group transformations (7.5) we obtain the Galilei (and dilation) invariant solution

u(t, x) =
x− x0

t− t0
. (7.10)

(ii) B + P0 = t∂x + ∂u + ∂t. The reduction formula following from (7.8) is

u(t, x) = t+ f(γ), γ = x− 1

2
t2.

The KdV equation reduces to f ′′′ + ff ′ + 1 = 0. Integrating once and putting

f(γ) = −123/5P

[(
1

12

)1/5

(γ) + δ

]

we find that P (z) satisfies the first Painlevé equation

P ′′ = 6P 2 + z, (7.11)

see [25, 28]. The corresponding solution of the KdV equation is

u(x, t) = t− 123/5PI

[(
1

12

)1/5

(γ) + δ

]
,

where PI is the first Painlevé transcendent and δ is an arbitrary constant. No elementary

solutions of (7.11) are known.

(iv) D = 3t∂t + x∂x − 2u∂u. The reduction formula (7.8) in this case yields

u = t−2/3F (γ), γ = xt−1/3,

where F (γ) satisfies

F ′′′ + FF ′ − 1

3
γF ′ − 2

3
F = 0. (7.12)

The Miura transformation [42] F = w′ − w2/6 and subsequent integration takes (7.12) into

wγγ =
1

18
w3 +

1

3
γw + k. (7.13)
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Eq. (7.13) can be reduced to the equation

P ′′ = 2P 3 + zP + α, (7.14)

where α is an arbitrary constant. This is the equation for the second Painlevé transcendent PII.

Finally, the dilationally invariant solution of the KdV equation is

uα(t, x) = 2(3)1/3t−2/3(P ′′α(γ)− P 2
α(γ)), γ = xt−1/3, (7.15)

where Pα is a solution of (7.14) (we have denoted Pα the PII transcendent viewed as a function

of the parameter α). Contrary to PI, the PII equation allows two families of elementary solutions

for special values of the parameter α [25]. For integer values α = ±n these are rational solutions.

For half integer values α = ±(2n+1)/2 the solutions are expressed in terms of Airy functions. In

both cases they satisfy Pα = −P−α and are listed in [25] for low values of n. For the combination

Wα = P ′′α − P 2
α we observe an additional relation, namely Wn+1 = −W−n, so for convenience

we restrict to α = 0,−1,−2,−3. We thus obtain the following dilationally invariant solutions of

the KdV equation

u0 = 0, , u−1 = −12

x2
, u−2 = −36x(24t− x3)

(12t+ x3)2
,

u−3 = −72(x9 + 5400x3t2 + 43200t2)x

(720t2 − 60x3t− x6)2
.

(7.16)

The solution u0 is also invariant under space and time translations, u−1 is also invariant under

time translations.

(v) P0 = ∂t. Solutions invariant under time translations have the form u = f(x). A Galilei

transformations boosts such a solution to a traveling wave u = f(x− λt) + λ.

Substituting into the KdV equation and integrating twice we get an ODE that can be written

as

(f ′)2 = −1

3
(f − a)(f − b)(f − c), a+ b+ c = 0. (7.17)

The roots of the polynomial in (7.17) can all be real. Then we order them to have a ≥ b ≥ c.

The other possibility is a ∈ R, b = c̄ = p+ iq, with q > 0, p, q ∈ R.

We are interested in real solutions only. They may be finite or singular (for x ∈ R), periodic

or localized. Let us run through the individual cases. Solutions are expressed in terms of Jacobi

elliptic functions [11] or degenerate cases thereof.

Cnoidal waves: c < b ≤ f ≤ a, b < a. The solution in this case reads

u(t, x) = b+ (a− b)cn2(ωx, k), k =

√
a− b
2a+ b

, ω =

√
2a+ b

3
, 2a+ b > 0. (7.18)

We can apply a Galilei boost with v = −b and obtain the more usual form

u(t, x) = (a+ v)cn2(ω(x− vt), k), k =

√
a+ v

2a− v
, ω =

√
2a− v

3
. (7.19)

Soliton: c = b ≤ f ≤ a, b = −a
2 , k = 1, ω = 1

2

√
a
2 . The associated solution of the KdV

equation is

u(t, x) = −a
2

+
3a

2

1

cosh2 1
2

√
a
2x
, a > 0. (7.20)
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After a boost with a = 2v we have the usual KdV soliton

u(t, x) =
3v

cosh2 1
2

√
v(x− vt)

. (7.21)

Singular snoidal solution: f ≤ c < b < a. The solution of the KdV equation reads

u(t, x) = a− a− c
sn2(ωx, k)

, ω =
1

2

√
a− c

3
, k =

√
2a+ c

a− c
. (7.22)

Singular soliton: f ≤ c = b < a. The solution of the KdV equation in this case is

u = −a
2

(
1 +

3

sinh2(ωx)

)
, ω =

1

2

√
a

2
. (7.23)

Singular trigonometric solution: f ≤ c < b = a. We obtain the solution

u = a− 3a

sin2(ωx)
, ω =

1

2

√
a. (7.24)

Singular algebraic soliton: a = b = c = 0. The solution of the KdV equation in this case reduces

to

u = −12

x2
, (7.25)

which coincides with the solution u−1 listed in (7.16) which is thus invariant under dilations and

time translations. Galilei transformations take it into

u(t, x) = − 12

(x− vt)2
+ v. (7.26)

Real solutions corresponding to complex roots: f ≤ a ∈ R, b = −a
2 + iq, c = −a

2 − iq, q > 0.

The corresponding solution of the KdV equation is

u(t, x) = a−A1 + cn(ωx, k)

1− cn(ωx, k)
, A =

√
9a2

4
+ q2, ω =

√
A

3
, k2 =

(A+ 3a
2 )2 + q2

4A2
. (7.27)

An elementary special case is obtained for k = 1, i.e. a = ±2
3 , A =

√
1 + q2, namely

u(t, x) = ±2

3
−
√

1 + q2 −
√

1 + q2

sinh2 ωx
2

, ω =

√
1 + q2

3
. (7.28)

Other exact solutions are obtained by the inverse scattering method [1, 24]. Amonst them

the most relevant for this article is the double soliton

u(t, x) = 12
∂2

∂x2
ln(1 +B1e

iQ1 +B2e
iQ2 +AB1B2e

i(Q1+Q2)),

Q1 = a1x− a3
1t, a2x− a3

2t, A =

(
a1 − a2

a1 + a2

)2

,

(7.29)

where a1, a2, B1 and B2 are arbitrary constants. Real solutions are obtained by putting a1 = iα1,

a2 = iα2 with α1, α2, B1, B2 ∈ R.

Many other solutions (n-soliton, multigap quasiperiodic solutions, etc.) are available in the

literature [20, 22, 23, 25, 32].
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7.3 Invariant discretization of the KdV equation

7.3.1 Invariant discretization on a ten point stencil

The KdV equation is a scalar (1+1)-dimensional evolution equation. In the finite difference

approximation on the t-x-plane, the continuous space of independent variables (t, x) is sampled

by a collection of finite points {Pni } only. Here and in the following, we use the double index

notation (tni , x
n
i ) to denote a discrete point in this t-x-plane, where i ∈ Z is the spatial index and

n ∈ N is the temporal index. Likewise, the dependent functions are defined on the associated

points {Pni } only, i.e. uni = u(tni , x
n
i ).

A partial differential equation L : ∆(x, u(q)) = 0, where u(q) denotes all the derivatives of u

with respect to t and x up to order q, is discretized in a symmetry-preserving manner if it is

expressed by a consistent finite difference approximation that can be written as a function of

the finite difference invariants of the symmetry group of the equation itself. By consistent it is

meant that in the continuous limit (i.e. the distance between the points {Pni } goes to zero) the

finite difference approximation converges to the original differential equation L.

In writing this discretization, it is not only necessary to define a finite difference approxi-

mation of the differential equation L itself but also to specify the lattice of points {Pni } in an

invariant fashion. In other words, the equation L is replaced by a system of finite difference

equations of the form

∆S : Eα(tni , x
n
i , u

n
i ) = 0, α = 1, . . . , N, imin ≤ i ≤ imax, 0 ≤ n ≤ nmax

where the number of equations N in the system ∆S is at least N = 3.

The general method for finding invariant numerical schemes using difference invariants can be

found e.g. in [6, 13]. Here we only present the respective computations for the KdV equation. We

should also like to mention here that there is another method for finding invariant discretization

schemes that rests on invariantization using equivariant moving frames. For more information

on this alternative method, see e.g. [3, 12, 17, 21].

The minimum number of points in the stencil to discretize the derivatives in the KdV equa-

tion is five as spatial derivatives up to order three and a first order time derivative have to be

approximated. In order to increase the accuracy of the finite difference approximation we intro-

duce an extended ten point stencil. Lower order approximations can be obtained by restricting

oneself to a subset of these 10 stencil points.

The stencils used are depicted in Fig. 7.3.1. It can be seen that a two-step time integration

is employed allowing for either forward Euler (six point stencil, squares), backward Euler (six

point stencil, crosses) or trapezoidal time integrators (ten point stencil, solid circles). Invariant

numerical schemes using higher order time-stepping are possible as well but will not be presented

here.

To simplify the notation, we also introduce the following abbreviations

∆τ = tn+1 − tn, hni = xni+1 − xni , Duni =
uni+1 − uni

hni
,

for the spacings and elementary first order discrete derivatives. Note that the spacing in time

does not carry an index as we use equally spaced, horizontal time layers only. It is readily

checked that variable time-stepping would leave the following numerical scheme invariant as

well, as long as the time-step control is invariant itself. See the similar discussion for the spatial

adaptation strategies presented in Section 7.3.4.
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(tn, xn
i , u

n
i ) (tn, xn

i+1, u
n
i+1) (tn, xn

i+2, u
n
i+2)(tn, xn

i−2, u
n
i−2)

(tn+1, xn+1
i , un+1

i ) (tn+1, xn+1
i+1 , u

n+1
i+1 ) (tn+1, xn+1

i+2 , u
n+1
i+2 )(tn+1, xn+1

i−2 , u
n+1
i−2 )

(tn, xn
i−1, u

n
i−1)

(tn+1, xn+1
i−1 , u

n+1
i−1 )

Figure 7.1: Stencils for the discretization of the KdV equation: Ten point stencil (solid circles).

Explicit six point stencil (squares). Implicit six point stencil (crosses).

The prolongation of vector fields of the maximal Lie invariance algebra g to the stencil shown

in Fig. 7.3.1 yields

∂tn + ∂tn+1 ,

∂xni + ∂xni+1
+ ∂xni+2

+ ∂xni−1
+ ∂xni−2

+ ∂xn+1
i

+ ∂xn+1
i+1

+ ∂xn+1
i+2

+ ∂xn+1
i−1

+ ∂xn+1
i−2

,

tn(∂xni + ∂xni+1
+ ∂xni+2

+ ∂xni−1
+ ∂xni−2

) + tn+1(∂xn+1
i

+ ∂xn+1
i+1

+ ∂xn+1
i+2

+ ∂xn+1
i−1

+ ∂xn+1
i−2

)

+ ∂uni + ∂uni+1
+ ∂uni+2

+ ∂uni−1
+ ∂uni−2

+ ∂un+1
i

+ ∂un+1
i+1

+ ∂un+1
i+2

+ ∂un+1
i−1

+ ∂un+1
i−2

,

xn+1
i ∂xn+1

i
+ xn+1

i+1 ∂xn+1
i+1

+ xn+1
i+2 ∂xn+1

i+2
+ xn+1

i−1 ∂xn+1
i−1

+ xn+1
i−2 ∂xn+1

i−2

+ 3(tn+1
i ∂tn+1

i
+ tn+1

i+1 ∂tn+1
i+1

+ tn+1
i+2 ∂tn+1

i+2
+ tn+1

i−1 ∂tn+1
i−1

+ tn+1
i−2 ∂tn+1

i−2
)

− 2(un+1
i ∂un+1

i
+ un+1

i+1 ∂un+1
i+1

+ un+1
i+2 ∂un+1

i+2
+ un+1

i−1 ∂un+1
i−1

+ un+1
i−2 ∂un+1

i−2
).

(7.30)

A complete list of functionally independent finite difference invariants annihilated by the

prolonged infinitesimal generators on the ten point stencil (7.30) is exhausted by

I1 =
hni−1

hni
, I2 =

hni+1

hni
, I3 =

hni−2

hni
, I4 =

hn+1
i

hni
, I5 =

hn+1
i−1

hni
, I6 =

hn+1
i+1

hni
,

I7 =
hn+1
i−2

hni
, I8 =

(hni )3

∆τ
, I9 =

xn+1
i − xni − τuni

hni
, I10 = (un+1

i − uni )(hni )2,

I11 = ∆τDuni , I12 = ∆τDuni+1, I13 = ∆τDuni−1, I14 = ∆τDuni−2,

I15 = ∆τDun+1
i , I16 = ∆τDun+1

i+1 , I17 = ∆τDun+1
i−1 , I18 = ∆τDun+1

i−2 .

(7.31)

Building the numerical scheme for the KdV equation and the lattice using these invariants

guarantees that the resulting scheme is invariant under the same maximal Lie invariance group G

as is the KdV equation. We first start with the discretization of (7.6).

It turns out that the straightforward discretization of the KdV equation in terms of the

computational coordinates (τ, ξ) given by (7.6) is already invariant under the maximal Lie

invariance group G. We demonstrate this first for the explicit six point stencil scheme here.

Indeed, the invariant finite difference expression,

I10 − I8I9
I11 + I13

2
+

1

2

[
2
I12 − I11

1 + I2
− 2

I11 − I13

1 + I1
+

1

I1

(
2
I11 − I13

1 + I1
− 2

I13 − I14

I1 + I3

)]
= 0,
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reads explicitly

un+1
i − uni

∆τ
+ (uni − ẋi)

Duni +Duni−1

2
+

1

2hni

[
2
(
Duni+1 −Duni

)
hni+1 + hni

−
2
(
Duni −Duni−1

)
hni + hni−1

]
+

1

2hni−1

[
2
(
Duni −Duni−1

)
hni + hni−1

−
2
(
Duni−1 −Duni−2

)
hni−1 + hni−2

]
= 0,

(7.32)

after some re-arrangements, where

ẋi =
xn+1
i − xni

∆τ
,

denotes the grid velocity. Correspondingly, this discretization preserves the four-dimensional

maximal Lie invariance group of the KdV equation. In order to use the scheme (7.32) it is

necessary to specify an invariant equation for the grid velocity. This will be pursued in the

following subsections.

The continuous limit of scheme (7.32) is taken by parameterizing the spacings hni as a function

of computational coordinates ξ. This implies that

hni = xξ∆ξ

and a Taylor series expansion of (7.32) gives that

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= O(∆τ,∆ξ2).

Thus, as expected, the scheme (7.32) is of first order in time and second order in space. From

the numerical point of view the scheme (7.32) is not advantageous as the forward in time

discretization is unconditionally unstable.

A more appropriate numerical scheme can be realized on the entire ten point lattice and is

given by

I10 − I8I9
I11 + I13 + I15 + I17

4
+

1

4

[(
2
I16 − I15

I4 + I6
− 2

I15 − I17

I4 + I5

)
+

1

I5

(
2
I15 − I17

I4 + I5
− 2

I17 − I18

I5 + I7

)
+

(
2
I12 − I11

1 + I2
− 2

I11 − I13

1 + I1

)
+

1

I1

(
2
I11 − I13

1 + I1
− 2

I13 − I14

I1 + I3

)]
= 0,

which reads in expanded form as

û− u
∆τ

+ (uni − ẋi)
Duni +Duni−1 +Dun+1

i +Dun+1
i−1

4

+
1

4hn+1
i

[
2
(
Dun+1

i+1 −Du
n+1
i

)
hn+1
i+1 + hn+1

i

−
2
(
Dun+1

i −Dun+1
i−1

)
hn+1
i + hn+1

i−1

]

+
1

4hn+1
i−1

[
2
(
Dun+1

i −Dun+1
i−1

)
hn+1
i + hn+1

i−1

−
2
(
Dun+1

i−1 −Du
n+1
i−2

)
hn+1
i−1 + hn+1

i−2

]

+
1

4hni

[
2
(
Duni+1 −Duni

)
hni+1 + hni

−
2
(
Duni −Duni−1

)
hni + hni−1

]

+
1

4hni−1

[
2
(
Duni −Duni−1

)
hni + hni−1

−
2
(
Duni−1 −Duni−2

)
hni−1 + hni−2

]
= 0.

(7.33)
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In the continuous limit, this scheme becomes

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= O(∆τ,∆ξ2).

which is still of first order in time due to the particular way the grid velocity has been discretized.

Due to the use of the trapezoidal rule, the resulting scheme is conditionally stable now. The

implicit six point stencil scheme is constructed in a similar fashion.

For the sake of reference we also present the standard forward in time, centered in space

scheme on an orthogonal and stationary six point lattice for the KdV equation expressed in

Eulerian form (7.1) here:

hni = h = const, ∆τ = ∆t,

un+1
i − uni

∆t
+ uni

uni+1 − uni−1

2h
+
uni+2 − 2uni+1 + 2uni−1 − uni−2

2h3
= 0,

It is readily checked that this discretization scheme breaks the Galilean invariance of the KdV

equation while preserving invariance under both shifts and dilations. The standard, non-

invariant implicit schemes on the six and ten point stencils are defined in a similar manner

but not given here.

7.3.2 Invariant Lagrangian discretization schemes

In order to complete the numerical scheme (7.32) and (7.33) it is necessary to formulate an

equation for the grid velocity. In the purely Lagrangian scheme one uses the discretization of

the relation (7.7), which is

xn+1
i − xni

∆τ
= uni . (7.34)

That is, the grid velocity coincides with the physical velocity. It is well known that a purely

Lagrangian scheme can perform poorly as there is no built-in mechanism preventing the clus-

tering of grid points as the numerical integration proceeds [11]. In the higher-dimensional case,

usually mesh tangling occurs when using Lagrangian schemes.

An alternative to using (7.34) to obtain the position of the grid points on the next time level

is to use adaptive moving mesh methods. These will be shortly introduced in Section 7.3.4.

7.3.3 Invariant evolution–projection discretization

A possibility to make invariant Lagrangian schemes numerically competitive is to invoke them

in an evolution–projection strategy [40, 50]. The main idea is to use the invariant Lagrangian

scheme introduced in the previous subsection only for a single time step and then project the

solution defined on the new grid points {xn+1
i } back to the original grid {xni }. This way, mesh

movement can be effectively avoided. The projection step is in general accomplished through

interpolation and the invariance of the whole solution procedure is guaranteed if the interpolation

method used is invariant under the same symmetry group that has been used to construct the

numerical scheme itself. This strategy has been successfully adapted for the linear heat equation

and the viscous Burgers equation [3, 4].

We show here that polynomial interpolation of any order is invariant under the maximal Lie

invariance group of the KdV equation and hence can be used in an invariant evolution–projection
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scheme for this equation. In the numerical results below we then choose quadratic interpolation

as using it in conjunction with a second order invariant numerical scheme guarantees that

the whole evolution–projection procedure is second order accurate. However, standard higher

order interpolation could be used as well in invariant evolution–projection schemes for the KdV

equation.

As our goal is to interpolate the solution un+1
i defined at time tn+1 back to the grid as given

on time level tn the appropriate form of the mth order polynomial interpolation formula is

un+1(x) =

m∑
i=0

Li(x)un+1
i , (7.35)

where

Li(x) =
∏

06j6m
j 6=i

x− xn+1
j

xn+1
i − xn+1

j

are the Lagrange polynomials and x ∈ [xn+1
0 , xn+1

m ] is the point where the solution un+1(x)

should be interpolated. It is readily seen that the interpolation formula (7.35) is invariant under

space and time translations as well as under the scale symmetry of the KdV equation. Galilean

invariance (t̃n, x̃ni , ũ
n
i ) = (tn, xni + εtn, uni + ε) is respected by (7.35) too, as

ũn+1(x) = un+1(x) + ε =
m∑
i=0

L̃i(x)ũn+1
i =

m∑
i=0

Li(x)(un+1
i + ε) =

(
m∑
i=0

Li(x)un+1
i

)
+ ε

thus leading back to (7.35). Note that we have used here the property of the Lagrange polyno-

mials that

m∑
i=0

Li(x) = 1.

Specifying the general polynomial interpolation (7.35) to quadratic interpolation for the KdV

equation on the ten point stencil can be done e.g. by setting (xn+1
0 , un+1

0 ) = (xn+1
i−2 , u

n+1
i−2 ),

(xn+1
1 , un+1

1 ) = (xn+1
i , un+1

i ) and (xn+1
2 , un+1

2 ) = (xn+1
i+2 , u

n+1
i+2 ). In practice, the projection step is

completed by choosing the interpolating point x ∈ {xni }, i.e. by evaluating the solution un+1(x)

at the location of the old grid points.

7.3.4 Invariant adaptive discretization schemes

Before we give the form of an invariant adaptive scheme for the KdV equation we introduce some

basic background material related to adaptive numerical schemes in general. More information

can be found, e.g. in the textbook [11].

Adaptive discretization schemes

The main idea behind moving mesh methods is to link the evolution of a mesh to the numerical

solution of the discretized PDE itself. In the case of a Lagrangian scheme the new location of

the grid points is determined by the solution u itself only. A better criterion is usually to link

the evolution of the grid points to the derivatives of u. This can be accomplished through the

computation of equidistributing meshes.

143



Definition 7.1. Let ρ(x) be a strictly positive continuous function on the interval [a, b]. Let

a = x1 < x2 < · · · < xN−1 < xN = b be a partition (i.e. a mesh) of this interval. The mesh is

said to be equidistributing for ρ on [a, b] if∫ x2

x1

ρ(x)dx =

∫ x3

x2

ρ(x)dx = · · · =
∫ xN

xN−1

ρ(x)dx (7.36)

holds.

The function ρ is called mesh density function or monitor function. For the practical imple-

mentation it is advantageous to convert the relation (7.36) into a differential equation. This is

done by first using the equivalent expression∫ xj

a
ρ(x)dx =

(j − 1)

N − 1

∫ b

a
ρ(x)dx = ξj

∫ b

a
ρ(x)dx,

where ξj , j = 1, . . . , N , is the discrete computational coordinate. By definition, ξj ∈ [0, 1].

Regarding x as a function of the computational coordinate, i.e. xj = x(ξj), in the continuous

limit the above integral equation becomes∫ x(ξ)

a
ρ(x)dx = ξ

∫ b

a
ρ(x)dx,

which holds for all ξ ∈ [0, 1]. Differentiating this equation twice with respect to ξ leads to

(ρ(x)xξ)ξ = 0, (7.37)

which is the differential form of the equidistribution principle when subjected to the boundary

conditions x(0) = a and x(1) = b.

So as to complete the description of a numerical scheme upon using the equidistribution

principle in its differential form (7.37) one needs to specify the mesh density function ρ. A

classical choice is the arc-length type function

ρ =
√

1 + αu2
x,

where α ∈ R is a constant parameter governing the strength of the adaptation. Other monitor

functions, such as built around the curvature of u are used as well.

Invariant adaptive scheme for the KdV equation

In order to complete the invariant numerical scheme for the KdV equation one has to discretize

the differential form of the equidistribution principle (7.37) in an invariant way. As the missing

ingredient in the grid velocity ẋi is xn+1
i , we discretize (7.37) on the time layer tn+1. This is

done upon composing a discretization of (7.37) out of the difference invariants for the KdV

equation (7.31). A possible discretization using the arc-length type mesh density function is:

ρni+1 + ρni
2

I11 −
ρni + ρni−1

2

I13

I1
= 0,

where

ρi+1 =
√

1 + αI2
11, ρi =

√
1 + αI2

12, ρi−1 =
√

1 + αI2
13,
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or, explicitly,

ρni+1 + ρni
2

(xn+1
i+1 − x

n+1
i )−

ρni + ρni−1

2
(xn+1
i − xn+1

i−1 ) = 0, (7.38)

where

ρni =

√
1 + α

(
∆τ

uni+1 − uni
xni+1 − xni

)2

. (7.39)

7.3.5 Momentum preserving invariant discretization

It is well-known that the KdV equation admits infinitely many conservation laws, see e.g. [42]

for a discussion. Numerically preserving conservation laws of partial differential equations is

generally a nontrivial problem that belongs to the realm of geometric numerical integration.

More information on this field can be found in the books [26, 33]. The problem of finding

finite difference discretizations for the KdV equation that preserve sub-sets of the infinite span

of conservation laws is a complicated problem that will not be investigated here. We are only

concerned with finding invariant discretization schemes that also preserve linear momentum

M =

∫
udx.

This conservation law is associated with expressing the KdV equation itself in conserved form

Dtu+ Dx

(
1

2
u2 + uxx

)
= 0.

It is possible to preserve the above conserved form also on a moving mesh, which as we have

seen above is a basic requirement for preserving Galilean invariance. In particular, the following

discretization is invariant under the maximal Lie invariance group of the KdV equation and

momentum-preserving:

(hn+1
i + hn+1

i−1 )un+1
i − (hni + hni−1)uni
∆τ

−

(
xn+1
i+1 − xni+1

∆τ
uni+1 −

xn+1
i−1 − xni−1

∆τ
uni−1

)

+
1

2
((uni+1)2 − (uni−1)2) +

[
2(Duni+1 −Duni )

hni+1 + hni
−

2(Duni−1 −Duni−2)

hni−1 + hni−2

]
= 0.

(7.40)

The associated continuous expression to this discretization is

(xξu)τ +

1

2
u2 +

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

− uxτ


ξ

= 0,

which is of conserved form in the computational coordinates. It thus discretely conserves mo-

mentum M.

Let us now show that (7.40) also preserves all the Lie symmetries as admitted by the KdV

equation. One way of showing this would be to express (7.40) in terms of the difference in-

variants (7.31). However, due to the particular form of (7.40) a direct expression in terms of

difference invariants would be cumbersome. It is much easier to verify invariance directly by

transforming the scheme (7.40) under the action of the symmetry group of the KdV equation.
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It is obvious that the discretization (7.40) is invariant under shifts in space and time as

well as under scale transformations. It thus only remains to show invariance under Galilean

transformations (tn, xni , u
n
i ) 7→ (tn, xni + εtn, uni + ε). We proceed term by term:

(h̃n+1
i + h̃n+1

i−1 )ũn+1
i − (h̃ni + h̃ni−1)ũni

∆̃τ
=

(hn+1
i + hn+1

i−1 )un+1
i − (hni + hni−1)uni
∆τ

+ ε

(
xn+1
i+1 − xni+1

∆τ
−
xn+1
i−1 − xni−1

∆τ

)
, x̃n+1

i+1 − x̃ni+1

∆̃τ
ũni+1 −

x̃n+1
i−1 − x̃ni−1

∆̃τ
ũni−1

 =

(
xn+1
i+1 − xni+1

∆τ
uni+1 −

xn+1
i−1 − xni−1

∆τ
uni−1

)

+ ε(uni+1 − uni−1) + ε

(
xn+1
i+1 − xni+1

∆τ
−
xn+1
i−1 − xni−1

∆τ

)
,

1

2
((ũni+1)2 − (ũni−1)2) =

1

2
((uni+1)2 − (uni−1)2) + ε(uni+1 − uni−1),2(D̃uni+1 − D̃uni )

h̃ni+1 + h̃ni
−

2(D̃uni−1 − D̃uni−2)

h̃ni−1 + h̃ni−2

 =

[
2(Duni+1 −Duni )

hni+1 + hni
−

2(Duni−1 −Duni−2)

hni−1 + hni−2

]
Substituting into the transformed form of equation (7.40) proves Galilean invariance.

As it stands, the momentum preserving invariant scheme (7.40) still needs to be completed

by adapting an appropriate strategy to obtain the new mesh {xn+1
i }. Here, the same strategies

as proposed above for the case of the non-conservative invariant scheme (7.33) can be applied.

These strategies lead to invariant momentum-preserving Lagrangian, evolution–projection and

adaptive schemes, respectively.

7.3.6 Exact discretization

An interesting question on the behavior of numerical schemes is whether they are able to repro-

duce exact solutions of the original differential equation exact, i.e. without numerical error.

Among all the exact solutions given in Section 7.2.2, the only solutions that are exact for all

schemes reported in Section 7.3 is the constant solution (7.9). In addition, the Galilean invari-

ant solution (7.10) is an exact solution for the invariant Lagrangian schemes (7.32) and (7.33)

using (7.34) which is readily verified directly. Below we verify numerically that this solution is

also exact for the invariant evolution–projection scheme and the invariant momentum preserving

scheme.

7.4 Numerical results

In this section we collect the numerical results obtained using the various schemes proposed in

the previous section. Our purpose is not to do a technical optimization of every scheme but to

rather demonstrate the feasibility of implementing invariant discretization schemes as well as

the resulting physical implications.
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For the invariant adaptive scheme, we use the discretization (7.38) of the equidistribution prin-

ciple with the invariant mesh density function (7.39). To compare the invariant adaptive scheme

against a non-invariant adaptive one we also use the mesh density function ρ =
√

1 + αu2
xx, dis-

cretized by

ρni non-inv =

√√√√√1 + α

∆τ
2
uni+2−uni
xni+2−xni

− 2
uni+1−uni−1

xni+1−xni−1

xni+2 − xni + xni+1 − xni−2

2

. (7.41)

in conjunction with (7.38). Similar mesh density functions are also used in adaptive numerical

schemes, see e.g. [11]. In the present case, using (7.41) breaks the scale invariance in the

discretization of the KdV equation. The resulting scheme therefore serves as reference for a

non-invariant adaptive scheme.

Note that for the sake of brevity we abbreviate the standard notation a · 10n in the tables

and figure legends below by aen.

7.4.1 Decaying cosine evolution

Before we use the exact solutions computed in Section 7.2.2 as benchmark tests, we reproduce the

classical results obtained by Zabusky and Kruskal in 1965 [56] of a wave decaying into solitons.

For this experiment, Zabusky and Kruskal used the following form of the KdV equation

ut + uux + δ2uxxx = 0,

where δ = 0.022. The initial condition used was u = cos(πx) on a periodic domain of length

L = 2. Zabusky and Kruskal observed the formation of eight solitons at time t = 3.6/π.

A main problem reproducing this result with the invariant Lagrangian schemes (7.32) and (7.33)

using (7.34) is that mesh tangling occurs before the final integration time t = 3.6/π. In turn, us-

ing the invariant Lagrangian scheme only in the framework of the invariant evolution–projection

method allows us to arrive at a solution at the final integration time.

All the other schemes presented above are able to compute this test problem. The results

of these integrations are shown in Fig. 7.2. From this figure it can be seen that all schemes

are capable of capturing the decay into solitons as originally presented in [56]. It can also be

seen that the two evolution–projection schemes show a slight lag for the first four solitons when

compared to the high resolution solution. The other schemes lie visually very close to this high

resolution solution.

To quantify these findings, in Table 7.1 we present the root-mean-square error (RMSE) for

the various schemes tested, using the high resolution finite difference solution as reference. The

RMSE is defined by

RMSE =

√√√√ N∑
i=1

(unumi − uexacti)
2

N
.

where in place of the exact solution, uexact, the high resolution numerical solution is used.

It can be seen from this table that the evolution–projection schemes have indeed errors larger

by a factor of ten than the other schemes tested, which all give quite comparable errors. A

possible explanation for this increase of error is that the interpolation used does not accurately

take into account the rapid change in the first derivatives of the numerical solution. Using higher

order interpolation incorporating derivative information, such as Hermite interpolation, could

help reduce this phase error in the evolution–projection scheme, see also [40, 50].
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Figure 7.2: Numerical solution of the Zabusky–Kruskal decaying into soliton problem. The

following schemes were tested on the ten point stencil, using N = 512 mesh points except for

the high resolution reference run (solid line) for which N = 2048 points were used: Non-

invariant standard finite differences (crosses), non-invariant momentum conservative (dots),

invariant evolution–projection (open circles), invariant evolution–projection momentum con-

servative (stars), invariant adaptive with monitor function ρ =
√

1 + 104u2
x (upward pointing

triangles), invariant adaptive momentum-preserving with monitor function ρ =
√

1 + 104u2
x

(downward pointing triangles), non-invariant adaptive with monitor function ρ =
√

1 + 102u2
xx

(rightward pointing triangles), non-invariant adaptive momentum-preserving with monitor func-

tion ρ =
√

1 + 102u2
xx (leftward pointing triangles). See Table 7.1 for a quantification of these

numerical experiments that are visually practically indistinguishable.

7.4.2 Exact algebraic solution

As was discussed in Section 7.3.6, the invariant Lagrangian schemes (7.32) and (7.33) using (7.34)

are exact for the Galilean invariant solution (7.10). We verify this by numerically computing this

solution and calculating the l∞-norm and the RMSE. The l∞-norm is the maximum absolute

difference between the numerical solution unum and the exact analytical solution uexact calculated

at the discrete mesh points.

The results as seen in Table 7.2 show that we achieve machine precision (i.e. the errors come

only from rounding) with the different invariant schemes introduced in Section 7.3 but do not get

comparable accuracy with the standard schemes. Table 7.2 also highlights that the evolution–

projection method (both invariant and invariant momentum conserving) reproduces the exact

solution up to machine precision as well.
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Scheme RMSE

Non-invariant standard 0.0138

Non-invariant standard M-cons 0.0139

Invariant evolution–projection 0.189

Invariant evolution–projection M-cons 0.202

Invariant adaptive (ρ(α, ux) with α = 1e4) 0.0142

Invariant adaptive M-cons (ρ(α, ux) with α = 1e4) 0.0139

Non-invariant adaptive (ρ(α, uxx) with α = 1e2) 0.0144

Non-invariant adaptive M-cons (ρ(α, uxx) with α = 1e2) 0.0138

Table 7.1: Numerical errors for the Zabusky–Kruskal problem. The RMSE is based on a high

resolution integration using N = 2048 mesh points and a time step ∆t = 3.125 · 10−7 in the

non-invariant standard numerical scheme for the KdV equation. All other schemes use N = 512

mesh points with time step ∆t = 5 · 10−6.

Scheme l∞-norm RMSE

Non-invariant standard 6.76e-6 2.39e-6

Non-invariant standard M-cons 7.77e-6 3.30e-6

Invariant Lagrangian 4.73e-13 2.02e-13

Invariant evolution–projection 2.13e-14 7.93e-15

Invariant Lagrangian M-cons 9.73e-13 4.02e-14

Invariant evolution–projection M-cons 5.15e-14 1.31e-14

Table 7.2: Comparison of errors for the various ten point schemes to reproduce the exact solu-

tion (7.10) evaluated at t = 2. All schemes use N = 35 mesh points on the domain [0, 20] and

time steps of ∆τ = 0.001. The starting time of the integrations is t0 = 1.

This solution, being monotonously increasing, is one of the few where the Lagrangian moving

mesh points cause no instability over a longer period of time. No interpolation or adaptation

is therefore needed to get an exact solution at any time. We should also stress that for this

simple solution the adaptive schemes would coincide with the standard scheme as ux = 1/t and

uxx = 0 thus reducing the discretized equidistribution principle (7.38) for both the invariant and

non-invariant mesh density functions (7.39) and (7.41) to xn+1
i+1 − x

n+1
i = xn+1

i − xn+1
i−1 .

While integrating such a simple function is trivial, this example shows the compatibility of

preserving symmetries and obtaining exact discrete solutions.

7.4.3 Cnoidal wave and soliton solution

For any numerical scheme, one important test is to verify consistency and the order of conver-

gence. To verify the order of the numerical schemes proposed in this paper, we take cnoidal

wave periodical solution of the form

u = (a− b)cn2(ω(x+ bt), k) (7.42)

where a = 3.332, b = −0.784, c = −2.548, k =
√

a−b
a−c =

√
0.7 and ω =

√
a−c
12 = 0.7
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We then vary the total number of mesh points n ∈ {16, 24, 32, 38} and measure for each

associated numerical experiment the error characterized by the l∞-norm of the difference between

the numerical and the discrete analytical solutions. A linear regression of log(n) vs. log(error)

gives a slope corresponding to the order of convergence in O(np). All our ten point schemes

should theoretically converge as O(n−2) and we notice in Table 7.3 that this is numerically

effectively the case.

Scheme p in O(Np)

Non-invariant standard -2.00

Non-invariant standard M-cons -2.05

Invariant Lagrangian -2.13

Invariant Lagrangian M-cons -2.11

Invariant evolution–projection -1.91

Invariant evolution–projection M-cons -2.04

Invariant adaptive (ρ(α, ux) with α = 5e6) -2.05

Invariant adaptive M-cons (ρ(α, ux) with α = 5e6) -2.05

Non-invariant adaptive (ρ(α, uxx) with α = 1e6) -2.00

Non-invariant adaptive M-cons (ρ(α, uxx) with α = 1e6) -2.02

Table 7.3: Convergence tests are done for the cnoidal solution over one spatial period at time

t = 0.2 with time step ∆t = 10−4. All schemes use the ten point lattice. The integrations are

done using N = {16, 24, 32, 48} points. We confirm that all schemes converge as O(N−2) in the

l∞-norm and are therefore consistent.

To assess not only the order of the numerical schemes but also the absolute approximation

errors in Table 7.4 we present the RMSE comparing the numerical solution against the exact

cnoidal wave solution as given in (7.42). As a second example, we also compare against the

soliton solution

u =
3ν

cosh2 (1
2

√
ν(x− νt))

(7.43)

with ν = 7. In addition to the approximation error we also monitor the change in momen-

tum ∆M over the integration period.

By computing the RMSE of the different invariant and non-invariant schemes, in Table 7.4 we

are able to affirm that invariant and non-invariant schemes give roughly the same approximation

errors. The invariant adaptive and non-invariant adaptive scheme give comparable accuracy

while the standard scheme is slightly better than the Lagrangian scheme. We confirm that the

invariant ten point scheme gives better accuracy than the invariant explicit scheme on the five

point lattice as expected. The basic projection method using parabolic interpolation helps to

reduce the error and allows using longer integration times. Optimizing the adaptation parameter

α is possible as well (see [11]) and could lead to error improvements. This will however not be

pursued here.

7.4.4 Double soliton solution and Galilean invariance

The above numerical experiments show that in terms of accuracy the invariant and the non-

invariant schemes are mostly comparable (except for the exact solution (7.10)). Still, from the
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Cnoidal wave Soliton

Scheme RMSE ∆M RMSE ∆M
Non-inv standard 3.98e-3 1.96e-14 9.56e-2 3.20e-14

Non-inv standard M-cons 1.52e-3 2.66e-14 3.38e-2 7.11e-14

Inv 5 point explicit Lagrangian 4.59e-2 8.07e-3 0.439 0.367

Inv Lagrangian 7.69e-3 1.26e-3 0.346 0.166

Inv Lagrangian M-cons 9.91e-3 2.31e-14 0.436 3.91e-14

Inv evolution–projection 4.93e-3 8.19e-4 0.288 7.78e-2

Inv evolution–projection M-cons 5.58e-3 7.59e-4 0.327 4.08e-2

Non-inv adaptive (ρ(α, uxx), α = 1e6) 3.92e-3 2.71e-6 — —

Non-inv adaptive M-cons (ρ(α, uxx), α = 1e6) 1.57e-3 2.31e-14 — —

Inv adaptive (ρ(α, ux), α = 5e6) 3.99e-3 1.54e-5 — —

Inv adaptive M-cons (ρ(α, ux), α = 5e6) 1.48e-3 3.38e-14 — —

Non-inv adaptive (ρ(α, uxx), α = 1e4) — — 9.49e-2 9.12e-4

Non-inv adaptive M-cons (ρ(α, uxx), α = 1e4) — — 2.94e-2 4.97e-14

Inv adaptive (ρ(α, ux), α = 1e4) — — 9.28e-2 5.74e-4

Inv adaptive M-cons (ρ(α, ux), α = 1e4) — — 0.682 3.55e-14

Table 7.4: Errors of different schemes for the cnoidal wave and soliton solutions. All schemes

use the ten point lattice unless otherwise stated. Time steps are always ∆t = 10−4. The cnoidal

wave is integrated over one period up to t = 0.2 while the soliton is computed up to t = 0.05 on

the domain [−4, 4]. The short integration time is to allow using the purely Lagrangian method.

For both integration N = 48 total mesh points are used. The projection method is parabolic

interpolation. The suitable adaptation parameter depends on both the form of the monitor

function and the initial conditions.

physical point of view, the additional advantage of the invariant schemes over the standard

ones is the preservation of Galilean invariance. In particular, Galilean invariance in a numerical

scheme implies that applying a boost to any solution does not change the discrete numerical

solution. Hence, the numerical solutions can be obtained in any constantly moving reference

frame. This can be an important property in practical applications, see e.g. [4] and references

therein for applications of this property to hydrodynamics.

To numerically verify Galilean invariance in the proposed invariant schemes, we integrate the

double soliton solution over a short period of time and apply a boost to the invariant and the

non-invariant schemes. The following form of the double soliton solution is used:

ũ(t, x̃) = 12
∂2

∂x2
ln(1 +B1e

iQ1 +B2e
iQ2 +AB1B2e

i(Q1+Q2)) + c,

Q1 = a1x̃− a3
1t, a2x̃− a3

2t, A =

(
a1 − a2

a1 + a2

)2

where a1 = −2i, a2 = −i, B1 = 10000, B2 = 1, {ũ, x̃ = x − ct} belong to the moving reference

frame and c is the speed of the moving reference frame.

Two sets of numerical experiments are carried out for each scheme. One in a resting reference

frame, i.e. c = 0 and one in a constantly moving reference frame, c 6= 0. After the end of each
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integration both solutions are compared to each other. Galilean invariance implies that both

solutions must coincide up to machine precision.

By increasing the strength of the boost and by computing the RMSE, we observe an increase

in the error for the non-invariant momentum-conserving scheme while the invariant adaptive

and momentum-conserving scheme is largely unaffected, see Table 7.5 for quantification. The

Galilean boosted solution for the invariant scheme in Fig. 7.3 is identical to its equivalent in the

resting reference frame and visually confirms the Galilean invariance of this scheme, a major

physical property lost when using standard non-invariant schemes. For the other invariant and

non-invariant schemes the results are essentially the same and are hence not presented here.

RMSE compared to c=0 solution

c/∆x Non-inv standard M-cons Inv adaptive M-cons (ρ(α, ux), α = 1e4)

-10 2.14e-1 1.82e-12

-1 2.29e-2 1.07e-12

0 0 0

1 2.19e-2 8.76e-13

5 0.103 3.15e-12

10 0.202 1.86e-12

30 0.564 1.03e-12

Table 7.5: RMSE comparing the resting reference solution (c = 0) to a constantly moving

solution (c 6= 0) for the non-invariant momentum-preserving scheme (left) and the invariant

adaptive momentum-preserving scheme (right). Integrations were done up to t = 1 using the

time step ∆t = 10−3 and N = 128 points. It can be seen that varying the speed c of the reference

frame leads to significantly different solutions for the standard scheme as measured through the

RMSE while for the invariant scheme the RMSE stays approximately constant and is due to

rounding only.

7.5 Conclusions

In this paper we have constructed invariant numerical schemes for the Korteweg–de Vries equa-

tion. While some invariant numerical schemes have already been constructed for this equation

in the past [7, 14], to the best of our knowledge this is the first time that actual numerical

experiments have been carried out for the KdV equation using such schemes. We found that

these existing schemes, all Lagrangian in nature, can develop tangling meshes and hence may not

allow integration beyond some fixed time limit. A remedy for these schemes is provided through

invoking them in an evolution–projection framework. As shown for several test cases, these

evolution–projection schemes can produce numerical solutions for the KdV equation without

being restricted by the development of mesh problems.

In addition, we have proposed several Eulerian numerical schemes most notably by using ideas

of adaptive moving mesh methods. These schemes are attractive in that they link the required

moving meshes (to preserve Galilean invariance) to the development of pronounced features of

the numerical solution. Hence, such schemes are capable of tracking developing shots, blow-ups
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Figure 7.3: Double soliton solution at time t = 0.1 computed using the non-invariant and

invariant adaptive momentum-conservative schemes. Time step used is ∆t = 10−4 with N = 128

grid points. The non-invariant solutions are shifted with respect to the invariant solutions for the

sake of comparison. While the non-invariant scheme in a resting reference frame (open squares)

approximates closely the exact solution (dashed line), using this scheme in a constantly moving

reference frame (triangles) leads to large deviations from the true solution. For the invariant

scheme, both the solution in the resting reference frame (open circles) and in a constantly moving

reference frame (crosses) are in good accordance with the exact solution (solid line).

etc. Furthermore, we have shown that it is possible to develop invariant numerical schemes that

also preserve momentum.

The results of the present article can be viewed from two points of view, physics and numerical

analysis.

From the point of view of a physicist it is obvious that symmetries of a physical system and

of the equations describing it are important. We have confirmed that for the KdV equation it is

possible to write a discrete system that in addition to translations and dilations preserves Galilei

invariance. The method provides a good numerical description of the exact solutions considered.

Moreover, as analyzed in Section 4.4, a solution calculated in the rest frame and then boosted

to a moving frame will be numerically the same as one calculated in the moving frame. In a non

invariant scheme the two solutions will be different and that is not acceptable physically.

From the point of view of numerical analysis this article fits into the field of Geometric

Integration [26, 29, 39] the aim of which is to incorporate qualitative features of a specific

equation into its discretization and numerical solution. We concentrate on the preservation of

point symmetries. For the KdV equation we have found that in terms of accuracy the invariant
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and non invariant schemes give comparable results.This is in striking contrast to symmetry-

preserving integrators for ODES, where invariant schemes can perform significantly better than

their non-invariant counterparts, especially for solutions with singularities [6, 7, 48]. For the

KdV equation, one possible explanation for this discrepancy is that the maximal Lie invariance

group is of rather simple structure, with three of the four admitted one-parameter symmetry

transformations (shifts in space and time as well as dilations) already preserved by standard

numerical schemes for this equation. Hence, the only difference between the non-invariant

and invariant schemes for the KdV equation is whether Galilean invariance is admitted or

not. Another point is that probably the most important feature of the KdV equation is its

integrability [1] which is not conserved in our discretization.

For other equations point symmetries can be much richer. For example the Liouville equation

has an infinite dimensional Lie point symmetry group. In a recent study [34] it was shown that

a discretization preserving invariance under the maximal finite dimensional subgroup of the

symmetry group gives much better numerical results than other discretizations.

We hope to carry out a more numerically focused study of invariant numerical schemes in

the near future and to tackle more challenging problems such as the use of non-smooth data as

suggested by Chen and Olver in connection with nonlinear dispersive quantization [12, 13].
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A method is introduced for the construction of meshless discretization schemes which pre-

serve Lie symmetries of the differential equations that these schemes approximate. The

method exploits the fact that equivariant moving frames provide a way of associating invari-

ant functions to non-invariant functions. An invariant meshless approximation of a nonlinear

diffusion equation is constructed. Comparative numerical tests with a non-invariant mesh-

less scheme are presented. These tests yield that invariant meshless schemes can lead to

substantially improved numerical solutions compared to numerical solutions generated by

non-invariant meshless schemes.

8.1 Introduction

Invariant discretization schemes have received increasing attention over the past 20 years, see

e.g. [6, 7, 13, 17]. Such schemes are attractive in that they preserve an important property of a

system of differential equations, namely its maximal Lie invariance group G or at least a certain

physically interesting subgroup of G.

One of the most distinct properties of invariant discretization schemes for evolution equations

is that they in general require the usage of a moving discretization mesh. The necessity of

using non-orthogonal and/or non-stationary meshes considerably complicates the construction

and analysis of invariant numerical schemes, especially in the multi-dimensional case. Special

techniques can be used to overcome this problem, such as the symmetry-preserving discretization

in computational coordinates [4, 11] or invariant interpolation schemes [3]. A problem with the
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former technique is that in the higher-dimensional case quite some computational overhead might

be required to construct a proper mapping from the computational domain to the physical space

of the system of differential equations.

On the other hand, moving meshes or grids that are adapted to complicated domain geome-

tries which hamper the straightforward use of finite differences or related discretization strategies

are not new in the numerical analysis of differential equations. In fact, constructing, storing and

modifying discretization grids is costly and hence is attributed as one of the main drawbacks

of the otherwise popular finite element method [5, 15, 16]. Indeed, often a large fraction of the

computational time spent for the numerical integration of a system of differential equations is

consumed by the construction of the discretization mesh itself.

This is why a new class of discretization schemes is steadily growing in importance over

the past years, namely so-called meshless schemes. The main observations on which meshless

methods rest is that no information on the connectivity of the single nodes at which the numerical

solution is sought is required in order to discretize a system of differential equations [5, 15, 16].

All the information needed to approximate the various derivatives is already included in the

nodes themselves. This makes meshless methods attractive to (at least partially) avoid the

computational overhead required by the construction of discretization meshes.

It is then obvious to ask whether meshless methods could be employed in the construction of

invariant numerical discretization schemes as well. This would allow one to (partially) bypass the

complication one faces in attempting to find discrete approximations of a system of differential

equations that preserve the symmetries of that system.

It is the purpose of this paper to describe an algorithm for the construction of invariant

meshless discretization schemes. The key idea on which our construction relies is a property

of equivariant moving frames to send a given function to an invariant function [9, 10]. This

property was successfully exploited to construct invariant finite difference schemes for partial

differential equations starting from non-invariant schemes [3, 12, 21]. In the present paper we

extend this method to meshless discretization schemes.

As what concerns the organization of this paper, in Section 8.2 we describe the general proce-

dure for finding invariant meshless discretization schemes. This method is applied in Section 8.3

to construct an invariant meshless scheme for a nonlinear diffusion equation. Numerical tests

comparing the invariant with the non-invariant meshless scheme are carried out in Section 8.4.

The conclusion and some thoughts for further research directions are presented in Section 8.5.

8.2 Invariant meshless discretization schemes

There is not a unique way of constructing meshless approximations to differential equations.

In fact, a number of different strategies to discretize a differential equation without or only

partial usage of a discretization lattice are used, such as meshless (generalized) finite differences,

smooth particle hydrodynamics, the element free Galerkin method or the meshless local Petrov–

Galerkin method. For a review of these and further techniques, see e.g. [2, 5, 14–16] and

references therein.

In the present paper we exclusively work with meshless discretizations based on meshless

finite differences. We stress, though, that similar techniques as introduced below could be

applied to other meshless methods that discretize a system of differential equations in the strong

form.
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Meshless finite differences basically rest on the expansion of a function u : Rp → R in a

multi-dimensional Taylor series around the node x0,

u(x) =
∑
α

1

α!
uα|x0(x− x0)α,

where x = (x1, . . . , xp) and α = (α1, . . . , αp) is a multi-index, αj ∈ N0, uα = ∂|α|u/∂xα1
1 · · · ∂x

αp
p ,

|α| = α1 + · · ·+ αp, α! = α1! · · ·αp! and (x− x0)α = (x1 − x0
1)α1 · · · (xp − x0

p)
αp .

Truncating this series to the mth order derivatives one is left with an expansion that includes

s = (p + m)!/(p!m!) coefficients. Thus, in theory s nodes xj are needed to solve for the s

derivatives uα evaluated at the node x0 from the linear system

u(xj) = uj =
∑
α

1

α!
uα|x0(xj − x0)α, (8.1)

j = 1, . . . , s. The s nodal points (xj , uj) are usually chosen to be neighboring points lying in

the ball of radius r centered around the node x0. In particular, the nodes are not required to

lie on a predefined, topologically connected mesh which makes the method truly meshless.

The practical problem that can arise in this construction is that for certain distributions of

the s nodes (e.g. all points lying on a line), the system (8.1) cannot be solved for the required

derivatives uα|x0 . A possible ad hoc remedy for this problem is to include more than s points

in the system (8.1), i.e. to over-determine it [5, 14]. The derivatives uα|x0 then follow from the

least squares solution of (8.1), which reads

(u(m))d|x0 = (STWS)−1STWb, (8.2)

where

(u(m))d|x0 =


u0

ud
x1
...

ud
α

 , S =


1 ∆x1

1 · · · ∆x1
α

1 ∆x2
1 · · · ∆x2

α
...

...
...

...

1 ∆xk1 · · · ∆xkα

 , b =


u1

u2

...

uk

 .

The vector (u(m))d|x0 contains the s derivatives of the truncated Taylor series evaluated at the

node x0 where ud
α is the highest derivative occurring. The matrix S is build from the associated

coefficients of these derivatives where ∆xjα = (xj − x0)α. The vector b includes the k ≥ s

functions values uj of the nodes in the ball of radius r centered at x0. A (diagonal) weight

matrix W is included in the least squares solution for the geometrical reason to give greater

weight to the points xj closer to x0. More details on this construction can be found in [5, 14].

The extension to vector-valued functions u = (u1, . . . , uq) is straightforward.

The meshless approximated derivatives ud
α can be used to discretize a system of differential

equations L : ∆l(x, u
(m)) = 0, l = 1, . . . , L, where u(m) includes all the derivatives of u with

respect to x up to order m as well as u itself. This leads to a meshless numerical scheme

D : Dl(x
j , (u(m))d) = 0, where (u(m))d denote the discretizations of derivatives in u(m) using

Eq. (8.2). If the system L includes derivatives of u with respect to the time t then D in addition

to the meshless spatial derivatives requires discretizations of the time-dependent derivatives.

We now briefly describe the method of invariantization using moving frames. An extended

discussion can be found in several excellent papers on that subject, including [9, 10, 17, 18, 21].
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Definition 8.1. A (right) moving frame ρ is a smooth map ρ : M → G from a manifold M to

a finite dimensional Lie group G acting on M with the property that

ρ(g · z) = ρ(z)g−1, (8.3)

for all z ∈M and g ∈ G.

The theorem on moving frame requires a group action to be free and regular in order to

guarantee the existence of the moving frame ρ. Although the group G in Definition 8.1 is

restricted to be finite dimensional, this restriction is in fact only apparent as the theory of

moving frames is already formulated for infinite dimensional Lie (pseudo)groups, see e.g. [19].

If the group action of G is not free, it can be made free by constructing the moving frame

on a jet space Jm = Jm(M,p) of appropriate order m. An alternative way of making a group

action free is to extend it to the product action on the subset M� of the Cartesian product of

copies of the original space M , which is defined as M� = {(z1, . . . , zk)|xi 6= xj for all i 6= j},
where zj = (xj , uj) are the nodal points. The joint product action is simply the component-wise

action, g · (z1, . . . , zk) = (g · z1, . . . , g · zk), see also [3, 17, 21].

Moving frames are determined from a method referred to as normalization. For a r di-

mensional group action, in this procedure one sets up a system of r equations involving the

coordinate functions z, where z ∈ {xi, u(m)} in the case G acts on the mth order jet space Jm or

z ∈ {xji , uj}, in case the action of G on M� is considered. The first possibility leads to a moving

frame ρ(m) on the jet space Jm, ρ(m) : Jm → G while the second possibility leads to a product

frame ρ� on the space M�, ρ� : M� → G.

The system of r normalization conditions is chosen in such a manner as to determine a sub-

manifold of Jm (or M�) which intersects the group orbits only once and transversally. One usu-

ally sets r of the coordinate functions z to appropriately chosen constants, i.e. the normalization

equations are z1 = c1, . . . , zr = cr, although in the discrete case it is beneficial to set combina-

tions of the coordinate functions to constants, see the example in Section 8.3. Then one replaces

these equations with their respective transformed forms, i.e. Z1 = g ·z1 = c1, . . . , Zr = g ·zr = cr,

and solves this algebraic system for the group parameters g = (ε1, . . . , εr) in terms of z. The

result of this construction is the right moving frame ρ(m) (or ρ�).
For the present purpose the most important property of moving frames is that they define a

map from a given (non-invariant) function to a G-invariant function.

Definition 8.2. The invariantization of a real-valued function f : M → R using the (right)

moving frame ρ is the function ι(f), which is defined as ι(f)(z) = f(ρ(z) · z).

Invariantization is the key for constructing invariant discretization schemes. To accomplish

this, the product frame ρ� is computed using the symmetry group G of the system of differential

equations L and extending its action to the joint space M�. The product frame should be

compatible with the moving frame ρ(m), which is determined for the action of G prolonged to

the jet space Jm. Compatibility means that ρ� → ρ(m) in the continuous limit xj → x. This

is achieved by computing the product frame ρ� using the discretized form of the normalization

conditions that are used to construct the moving frame ρ(m), see [3, 17, 21] for more details.

With the moving frame ρ� at hand one can invariantize any standard numerical scheme

D which approximates a system of differential equations L. The invariant scheme associ-

ated with D is ι(D) : Dl(ι(x
j), ι((u(m))d)) = 0, l = 1, . . . , L, which in the continuous limit
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xj → x yields the system of differential equations L expressed in terms of differential invariants,

ι(L) : ∆l(ι(x), ι(u(m))) = 0. See [3, 12, 17, 21] for further details.

The extension of the invariantization procedure to meshless discretization schemes is now

straightforward. Once the moving frame ρ� is determined on the space of nodes (xj , uj) it can

be applied to the least squares solution (8.2) by invariantizing the vectors (u(m))d|x0 and b and

the matrix S in the following way,

ι((u(m))d|x0) =


ι(u0)

ι(ud
x1)
...

ι(ud
α)

 , ι(S) =


1 ι(∆x1

1) · · · ι(∆x1
α)

1 ι(∆x2
1) · · · ι(∆x2

α)
...

...
...

...

1 ι(∆xk1) · · · ι(∆xkα)

 , ι(b) =


ι(u1)

ι(u2)
...

ι(uk)

 .

The invariantized derivatives in ι((u(m))d|x0) and the invariantized nodal points (ι(xj), ι(uj))

are sufficient to invariantize any meshless approximation D of the system L. This is done by

replacing the occurring nodal points and meshless discrete derivatives in D by their respective

invariantizations, just in the same way as this is done in the case of finite difference schemes.

An example for this construction is presented in the subsequent section.

8.3 Invariant meshless scheme for a nonlinear diffusion equation

In this section an invariant meshless scheme is constructed for the nonlinear diffusion equation

ut = (u−4/3ux)x. (8.4)

The meshless Euler forward scheme for Eq. (8.4) is given by

û− u
∆t

= −4

3
u−7/3(ud

x)2 + u−4/3ud
xx, (8.5a)

where û stands for the value of u = u0 at the subsequent time level of the integration and

∆t = t̂− t is the (constant) time step. The meshless derivatives ud
x and ud

xx of u0 are evaluated

at t and x = x0. Likewise, the meshless leapfrog scheme for Eq. (8.4) reads

û− ǔ
2∆t

= −4

3
u−7/3(ud

x)2 + u−4/3(ud
xx), (8.5b)

where ǔ is the value of u at the previous time level. In the numerical results reported in

Section 8.4 we use the leapfrog scheme (8.5b) and every 20 steps the Euler scheme (8.5a) to

suppress the computational mode of the leapfrog integration.

In both these schemes the derivatives ud
x and ud

xx are the meshless approximations of the

derivatives ux and uxx. These derivatives are found from the least squares solution (8.2), where

in the present one-dimensional case

(u(4))d|x =


u

ud
x

ud
xx

ud
xxx

ud
xxxx

 , S =


1 ∆x1 1

2(∆x1)2 · · · 1
24(∆x1)4

1 ∆x2 1
2(∆x2)2 · · · 1

24(∆x2)4

...
...

...
...

...

1 ∆xk 1
2(∆xk)2 · · · 1

24(∆xk)4

 , b =


u1

u2

...

uk

 ,

As a weight matrix we use W = diag(exp(−µ(∆xj)2/r2)), j = 1, . . . , k and µ = const.

162



The reason for also including the third and fourth derivatives in the vector (u(4))d|x is that

it increases the order of approximation of the derivatives ud
x and ud

xx. If the matrix S is square,

it can be directly inferred from the truncated Taylor series that (at least on a uniform grid)

including ud
xxx and ud

xxxx leads to first derivatives with fourth order accuracy and to second

derivatives with third order accuracy. Moreover, in [5] it was shown (again for a uniform grid)

that the least square solution (S non-square) invoked for finding (u(m))d|x does not degrade the

accuracy of the approximation.

We now discuss the invariant meshless approximation of Eq. (8.4). The diffusion equa-

tion (8.4) admits a five dimensional maximal Lie invariance algebra g which is generated by

∂t, ∂x, 2t∂t + x∂x, 2x∂x − 3u∂u, x2∂x − 3xu∂u, (8.6)

see [6, 8] where an invariant finite difference discretization for (8.4) was constructed.

Remark 8.1. It was shown in [6, 8] that the maximal Lie invariance group G of Eq. (8.4)

associated with g cannot be preserved on a uniform discretization mesh. As was indicated

in the introduction, the violation of a symmetry (sub)group by a uniform and/or time-space

orthogonal grid is rather common in classical finite difference schemes for evolution equations.

This is the main reason why it is necessary to develop suitable invariant mesh generation and

adaption strategies for such problems and to use discretizations that can operate on practically

all distributions of nodes, such as meshless schemes. As a uniform mesh is not consistent with

the symmetry group G of Eq. (8.4) we regard the choice of this equation as reasonable to

demonstrate the construction of invariant meshless schemes in the simplest possible setting,

despite meshless schemes are traditionally constructed mostly for problems in spatial dimension

greater than one.

The single vector fields in (8.6) spanning g can be exponentiated to one-parameter Lie groups,

which can be composed to yield transformations from the five-parameter maximal Lie invariance

group G of (8.4). The transformations of G acting on M = {(t, x, u)} are of the form

T = e2ε3(t+ ε1), X = eε3+2ε4

(
x

1− ε5x
+ ε2

)
, U = e−3ε4(1− ε5x)3u. (8.7)

The action of G becomes free on the first jet space J1 = J1(M, 2). The moving frame ρ(1) on J1

is constructed from the normalization conditions t = 0, x = 0, u = 1, ut = 1 and ux = 0. This

allows one to solve for the group parameters ε1, . . . , ε5. The resulting moving frame ρ(1) is

ε1 = −t, ε2 = −x
2ux + 3xu

3u
, ε3 =

1

2
ln
(ut
u

)
,

ε4 = ln

(
u

4/3
x

xux + 3u

)
, ε5 =

ux
xux + 3u

.

(8.8)

We now turn to the construction of the compatible product frame ρ�. The joint product

action of G on M� follows from evaluating (8.7) at the single nodes (tj , xj , uj), i.e.

T j = eε3(tj + ε1), Xj = eε3+2ε4

(
xj

1− ε5xj
+ ε2

)
, U j = e−3ε4(1− ε5x

j)3uj , (8.9)

and similar on the subsequent and previous time layers. It is readily verified that the joint

product action leaves invariant the condition for the nodes to remain fixed during the integration,
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which is x̂j − xj = 0. For this reason, fixed nodes do not break the invariance of Eq. (8.4) and

we can assume that x̂j = xj , which we do for the sake of simplicity. The same is true for the

equation tj+1 − tj = 0, which defines the flatness of the time layers. Hence, tj+1 = tj = t.

Before constructing ρ� it is worthwhile pointing out that the scheme (8.5) is already invariant

under the action of the one-parameter groups associated with ε1, . . . , ε4. This can be seen as

both the variables t and xj only arise in the differences ∆t and ∆xj , which are obviously invariant

under translations in t and x. At the same time, the scaling properties of the scheme (8.5) are

the same as of (8.4) and therefore the scale invariance is preserved by scheme (8.5). Thus, the

only symmetry transformation which is violated by (8.5) is associated with the group parameter

ε5, i.e. inversions in x. This is why we construct the invariantization map only for this group

parameter.

In the moving frame ρ(1), the component ε5 follows from the normalization condition ux = 0.

This normalization condition is replaced by ud
x = 0 to guarantee the compatibility of the moving

frame ρ� with ρ(1) in the continuous limit. The problem when using the least square solution (8.2)

to obtain ud
x is that it will be very hard (or even impossible) to find the moving frame component

ε5 as the normalization procedure boils down to solving a high order polynomial equation for ε5.

This is why we use a less accurate approximation of ud
x to compute ε5. In particular, using the

Taylor series expansions ur = u + ud
x(xr − x) and ul = u− ud

x(x− xl) is sufficient to determine

ud
x at x, where (xr, ur) and (xl, ul) are the nodes lying immediately to the right and to the left

of x. This leads to the usual centered difference approximation

ud
x =

ur − ul

xr − xl
. (8.10)

Note that on a non-uniform grid it is not guaranteed that this approximation is second order

accurate. However, it is numerically verified in the following section that the invariant meshless

scheme which follows from the moving frame that employs the approximation (8.10) for ud
x is

more accurate than the associated non-invariant meshless scheme (8.5).

Computing the ρ�-component ε5 from the normalization ud
x = 0 using the approxima-

tion (8.10) leads to the equation

(1− ε5x
r)3ur − (1− ε5x

l)3ul = 0,

which has the solution

ε5 =
3
√
ur − 3

√
ul

xr 3
√
ur − xl 3

√
ul
. (8.11)

It is readily verified that in the continuous limit xr → x and xl → x, the above solution (8.11)

converges to ε5 = ux/(xux + 3u). This shows that the moving frames ρ� and ρ(1) are indeed

compatible.

The invariant meshless counterpart to the scheme (8.5) is given by

ι(û)− ι(u)

∆t
= −4

3
ι(u)−7/3ι(ud

x)2 + ι(u)−4/3ι(ud
xx), (8.12a)

and

ι(û)− ι(ǔ)

2∆t
= −4

3
ι(u)−7/3ι(ud

x)2 + ι(u)−4/3ι(ud
xx). (8.12b)
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The invariantized discrete derivatives follow from solving Eq. (8.2) using the invariantized ex-

pressions for (u(4))d|x, S and b, which are, respectively,

ι((u(4))d|x) =


ι(u)

ι(ud
x)

ι(ud
xx)

ι(ud
xxx)

 , ι(S) =


1 ι(∆x1) · · · 1

24 ι(∆x
1)4

1 ι(∆x2) · · · 1
24 ι(∆x

2)4

...
...

...
...

1 ι(∆xk) · · · 1
24 ι(∆x

k)4

 , ι(b) =


ι(u1)

ι(u2)
...

ι(uk)

 .

Likewise, the weight matrix W is invariantized to give ι(W ) = diag(exp(−µ ι(∆xj)2/r2)). In all

these formulas, ε5 is the moving frame parameter (8.11) and we have

ι(xj) =
xj

1− ε5xj
, ι(uj) = (1− ε5x

j)3uj , ι(û) = (1− ε5x)3û, ι(ǔ) = (1− ε5x)3ǔ.

8.4 Numerical tests

We compare the invariant scheme (8.12) against the non-invariant meshless scheme (8.5) by

carrying out numerical tests with the following three exact solutions of Eq. (8.4),

u1 = (2c1x− 3c2
1t+ c2)−3/4,

u2 =

(
(x+ c1)2

t+ c2
+ c3(t+ c2)2

)−3/4

,

u3 = (c1x+ c2)−3,

(8.13)

where c1, c2, c3 are arbitrary constants. The third solution is a stationary solution. For these

and further solutions of Eq. (8.4), see [1, 20].

In all the numerical experiments reported we solve Eq. (8.4) with the invariant meshless

scheme (8.12) and the non-invariant meshless scheme (8.5). We carry out the numerical inte-

gration on the interval L = [1, 2] and choose the constants c1, c2 and c3 so that the respective

exact solution ue is not singular within L. On this interval, we first create an equally-spaced

grid with N = 40 grid points. Each of the grid point is then perturbed by adding a Gaussian

distributed random number with zero mean and standard deviation 0.1 ·∆x, where ∆x is the

spacing of the initial uniform grid. Dirichlet boundary conditions are used with the values of uj

at the boundaries given by the corresponding values of the exact solution u1, u2 or u3.

Ten independent integrations using ten different realizations of the above described grid

generation procedure are carried out for 1000 time steps of the size ∆t = 0.001. The time

step is rather small so as to avoid numerical instability in the course of the integration. Larger

time steps could be used if implicit schemes would be employed instead of the explicit schemes

in (8.12) and (8.5). The resulting root mean square errors

rmse =

√√√√ 1

n

n∑
j=1

(ujn − uje)2,

are computed after each integration, where ujn and uje are the numerical and exact solutions of

Eq. (8.4) at t = 1 at the nodal point xj , respectively. The averaged root mean square errors for

each of the three solutions (8.13) for the non-invariant and the invariant scheme are reported in

Table 8.1 and denoted by rmsenis and rmseis, respectively.
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Table 8.1: Root mean square errors for the exact solutions (8.13) of the nonlinear diffusion

equation (8.4).

u1 u2 u3

rmsenis 1.43 · 10−5 3.48 · 10−5 5.20 · 10−6

rmseis 3.31 · 10−6 7.86 · 10−7 0

rmseis/rmsenis · 100 23.2% 2.3% 0%

In the first run (solution u1), c1 = c2 = 0.1, in the second run (solution u2), c1 = c3 = 0 and

c2 = 10 and c1 = c2 = 0.1 in the third run (solution u3). It is worthwhile pointing out that

the weight matrices W were chosen differently for the invariant and the non-invariant scheme.

The reason for this is that the invariantization of ∆xj enters the weight matrix of the invariant

scheme. To facilitate the comparison of the results, we have specified the parameter µ in each of

the runs of the invariant scheme so that the entries in the weight matrices of both the invariant

and the non-invariant scheme are of the same order of magnitude.

Table 8.1 shows that the invariant scheme is able to better approximate the exact solution at

t = 1 in all three test cases. On top of that, for the case of the stationary solution u3 we found

that the invariant scheme approximates the exact solution up to machine precision.

As a further sensitivity test we run several integrations of the invariant scheme (8.12) and

the non-invariant scheme (8.5), respectively, and vary the parameter µ in the weight matrices

W . This parameter controls the influence of distant grid points in the meshless approximation

of the discrete derivatives of u at the center node. We use u1 as the exact solution in these

runs. In Fig. 8.1 we depict the result of this sensitivity study (using r = 0.2). As was discussed

before, it is necessary to choose µ differently in the invariant and non-invariant integrations due

to the different magnitudes of ∆xj and ι(∆xj). It can be seen from Fig. 8.1 that the invariant

numerical scheme (8.12) gives (substantially) better integration results over virtually all values

of the parameter µ.

The final sensitivity test we carry out is with respect to the parameter r, i.e. the radius within

which grid points are used to compute the meshless approximations of the partial derivatives of

u at the node x. The result of this study using u1 as the exact solution is depicted in Fig. 8.2

(using the values for µnis and µis that were found to be optimal in the previous test for r = 0.2).

Again, varying r the invariant scheme is (substantially) better than the non-invariant scheme.

Moreover, for the lowest value of r chosen the non-invariant scheme (8.5) did not converge,

whereas the invariant scheme (8.12) produced one of the best root mean square errors of all the

integrations. This means that fewer nodal points are needed to compute a stable approximation

of the derivatives for the invariant scheme in the present example.

Remark 8.2. We have also carried out numerical simulations with the schemes (8.12) and (8.5)

computing ι((u(3))d|x) rather than ι((u(4))d|x) to approximate the first and second derivatives

of u with respect to x in a less accurate way. Also in these simulations we found the invariant

meshless scheme to be consistently better than the non-invariant discretization in approximating

the above exact solutions.
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Figure 8.1: Sensitivity study of the invariant scheme (8.12) and the non-invariant scheme (8.5)

with respect to the parameter µ in the weight matrix W . Upper x-axis: µ used in the invariant

scheme. Lower x-axis: µ used in the non-invariant scheme.
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Figure 8.2: Sensitivity study of the invariant scheme (8.12) and the non-invariant scheme (8.5)

with respect to the parameter r.
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8.5 Conclusion

In this paper we developed a technique for the construction of invariant meshless discretization

schemes. The key ingredient of this method is the application of the moving frame invarianti-

zation map to meshless discrete derivatives which ultimately boils down to the invariantization

of a system of truncated Taylor series expansions.

Despite practically demonstrated solely for a one-dimensional evolution equation, the method

of invariant meshless discretization as introduced in this paper is particularly suitable for multi-

dimensional problems. Differential equations with more than one space dimensions posed a

severe problem for the invariant scheme construction machinery available so far due to the

necessity of using non-orthogonal, possibly moving discretization meshes. Consequently, most

of what is known by today about invariant discretization schemes has been learned from the

consideration of ordinary differential equations or single (1+1)-dimensional evolution equa-

tions [6, 8, 12, 13, 21]. It was only recently that methods for the construction of invariant

numerical schemes for multi-dimensional systems of partial differential equations were devel-

oped, see e.g. [3, 4].

The construction of invariant meshless numerical integrators thus seems to be attractive for

several reasons. From the point of view of invariant numerical schemes, it is beneficial to have

one more method available that allows one to construct discretization schemes with symmetry

properties for equations in any space dimension. In turn, from the side of meshless methods

it is interesting to show that ideas from the field of geometric numerical integration can be

successfully implemented into such methods. It was shown in this paper that the preservation

of qualitative properties of a differential equation in a meshless approximation can substantially

increase the quality of the scheme. The invariant discretization we constructed for a nonlinear

diffusion equation is able to better reproduce several exact solutions of this equation in practically

all the parameter ranges that can be tuned in the scheme. We thereby also demonstrated that

preserving symmetries in a numerical integrator is not solely an academic problem.

It will be instructive to apply the proposed technique to multi-dimensional discretization

problems and compare invariant meshless schemes against other types of invariant numerical

schemes, both in terms of accuracy and computational cost. Also, certain symmetries (e.g.

Galilean boosts) cannot be preserved on fixed discretization meshes. Moving grid points can

lead to strongly distorted meshes and are thus likely to deteriorate the quality of the numerical

solution or to slow down the convergence rate. This is what generally happens to Lagrangian

integration schemes. As a matter of fact, most invariant numerical schemes preserving Galilean

invariance are Lagrangian integrators [6, 8]. On the other hand, it is known that certain meshless

methods are to some degree insensitive regarding the distribution of the nodes. It will therefore

be informative to compare invariant meshless methods with discretizations that employ classical

or invariant moving meshes such as those constructed in [4, 11].
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21 May–14 June 2012 Research stay at the Department of Mathematics at the University

of British Columbia, Vancouver, BC, Canada

17–20 May 2012 Conference Symmetries of Differential Equations: Frames, Invari-

ants and Applications, University of Minnesota, MN, USA

179



28–30 Sept 2011 Workshop Balance, Boundaries and Mixing in the Climate Problem,
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